CTCF blocks anti-sense transcription initiation at divergent gene promoters

Jing Luan¹, Camille M. Syrett^{2¶}, Marit W. Vermunt², Allison Coté^{3,4}, Jacob M. Tome^{5§}, Haoyue

Zhang^{2†}, Anran Huang², Jennifer M. Luppino⁴, Cheryl A. Keller⁶, Belinda M. Giardine⁶, Shiping

Zhang⁷, Margaret C. Dunagin³, Zhe Zhang⁷, Eric F. Joyce⁴, John T. Lis⁵, Arjun Raj^{3,4}, Ross C. Hardison⁶, Gerd A. Blobel^{2,8*}

10	¹ Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
	² Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, USA
	³ Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
	⁴ Department of Genetics, University of Pennsylvania, Philadelphia, USA
15	⁵ Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
	⁶ Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
20	⁷ Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, USA
	⁸ Lead contact
	¶ present affiliation: Clarion Healthcare, LLC, Boston, MA, USA
	§ present affiliation: Shape Therapeutics Inc, Seattle, WA, USA
25	† present affiliation: Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China

*Correspondence: <u>BLOBEL@chop.edu</u>

30

Abstract

Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense (uasTrx). How 35 antisense transcription is regulated and to what extent it is coordinated with sense transcription is largely unknown. Here by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters, the great majority of which bear proximal CTCF binding sites. Genome editing, chromatin conformation studies, and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its chromatin architectural function. Primary transcript RNA FISH revealed co-bursting of sense and anti-sense transcripts is disfavored, suggesting CTCF-regulated competition for transcription initiation. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.

50 Main Text

Divergent transcription at active promoters is prevalent among eukaryotes, producing upstream antisense transcripts (uasTrx) that are rapidly processed and tend to be short lived¹⁻³. Divergent promoters are nucleosome-depleted region densely occupied by transcription factors. They typically harbor two distinct core promoters positioned in inverted orientations, instructing the assembly of separate transcription pre-initiation complexes (PICs) that transcribe along opposite DNA strands⁴⁻⁷. Transcriptional outputs by divergent promoters in both orientations are generally concordant, suggesting co-regulation^{1,2,8-10}. In certain cases, however, sense and antisense transcription appears to be anti-correlated¹¹. It thus remains unclear whether and how divergent transcription is coordinated spatially and temporally. On one hand, divergent transcription may be cooperative, as simultaneous presence of two PICs may help maintain nucleosome-depleted regions and allow for efficient transcription factor recruitment^{5,12}. On the other, divergent PICs may compete for common transcription activators or physical space, thus rendering co-occurrence unfavorable¹³.

CTCF (CCCTC-binding factor) was first identified as a transcription factor and was later recognized to also shape genome topology together with the cohesin protein complex¹⁴. CTCF depletion is known to cause genome-wide architectural perturbation but limited changes in the transcription of coding genes¹⁵⁻²³. However, the mammalian genome is ubiquitously expressed, producing abundant noncoding transcripts that have now gained increasing recognition as functional²⁴. Whether and how CTCF affects the noncoding transcriptome remains to be explored experimentally.

We performed precision nuclear run-on sequencing (PRO-seq) in the mouse murine erythroid cell line G1E-ER4 in which both *CTCF* alleles have been modified to bear an auxininducible degron (AID) that allows for rapid CTCF degradation²³. PRO-seq interrogates nascent transcription in a strand-specific manner at single base-pair resolution²⁵. Overall, we observed limited perturbation of annotated transcripts after acute CTCF depletion²³. Notably, however, at 376 active promoters we observed a significant increase in uasTrx production (Fig. 1a-c and Supplementary Data 1). These changes were corroborated by ChIP-seq (chromatin immunoprecipitation sequencing) of RNA polymerase II subunit A (POLR2A) and RT-qPCR at 3 select loci (Extended Data Fig. 1a,b). UasTrx were heterogenous in size, with the median being

60

65

70

55

75

1956 nucleotides (Extended Data Fig. 1c). The most 5' ends of these transcripts initiated upstream of sense transcription start sites (TSSs). The average distance of the most frequently used uasTrx start sites from sense TSSs was approximately 100 bp (Fig. 1d), which is similar to that of divergent promoters found in other mammalian cells where this distance was $\sim 110 \text{ bp}^{5,13}$. CTCF depletion led to increases only in the antisense direction leaving sense transcription 85 ostensibly unperturbed, suggesting that CTCF promotes the directionality of divergent promoters by exerting strand-specific transcription repression (Fig. 1d and Extended Data Fig. 1b,d,e,f).

Different terms have been used to describe antisense transcription from divergent promoters in eukaryotes, including cryptic unannotated transcripts (CUTs), stable unannotated transcripts (SUTs), and Xrn1-sensitive unstable transcripts (XUTs) in yeast, as well as PROMoter uPstream Transcripts (PROMPTs) and "upstream divergent transcripts" in higher eukaryotes^{1,3,9,26,27}. The uasTrx that we found to be repressed by CTCF may represent a subset of PROMPs/upstream divergent transcripts.

Promoters with up-regulated uasTrx are enriched with proximal (mostly <100bp from annotated TSSs) CTCF binding, reminiscent of an earlier finding observed across multiple human cell lines (Fig. 1e and Extended Data Fig. 2a)²⁸. Notably, only a fraction of CTCF-bound promoters (319 out of 1,846) increased uasTrx production in response to CTCF loss, but those tended to have a stronger CTCF binding intensity (Extended Data Fig. 2b). However, CTCF binding reduction and uasTrx gains were only weakly correlated (Extended Data Fig. 2c). Because strong CBSs tend to be conserved across cell types^{15,23}, we assessed CTCF occupancy across mouse tissues²⁹. Indeed, CBSs at uasTrx regulatory sites were more tissue-invariant, indicating that uasTrx repression may be a conserved feature (Extended Data Fig. 2d). To assess whether CTCF functions in a similar way in other species and tissues, we measured uasTrx changes upon CTCF depletion in the human colorectal carcinoma cell line HCT-116 and again found 199 uasTrx to be up-regulated without significantly affecting sense transcription (Extended Data Fig. 3a). We also examined published data sets in mouse embryonic stem cells (mESCs) and observed a similar number of up-regulated uasTrx (Extended Data Fig. 4a,b)³⁰. Antisense changes in both cell types were similarly associated with strong promoter-proximal CTCF binding (Extended Data Fig. 3b and Extended Data Fig. 4c) and a lack of sense perturbation (Extended Data Fig. 3c-f and Extended Data Fig. 4d-f). Lastly, up-regulated uasTrx in mESCs were silenced upon CTCF recovery following auxin removal (Extended Data Fig.

4

80

90

95

100

105

4b,g). Hence, CTCF represses uasTrx at numerous genes across multiple species and cell lineages.

115

120

125

Because promoter-proximal CTCF only suppresses a subset of the uasTrx, we examined features that determine uasTrx regulation by CTCF. In addition to being enriched with strong CBSs, promoters with up-regulated uasTrx harbored high levels of cohesin, a protein complex central to genome folding^{31,32}, compared to those that were unchanged upon CTCF depletion (Extended Data Fig. 5a). In addition, they are enriched at chromatin loop anchors and chromatin domain boundaries (Fig. 1f,g and Extended Data Fig. 5b,c). The associated sense transcripts also tend to be housekeeping genes, which are frequently found at domain boundaries³³ (Extended Data Fig. 5d). Finally, in yeast, chromatin looping ("gene loops") was implicated in the control of transcription directionality³⁴. Therefore, we interrogated the possibility of CTCF controls transcription directionality by regulation architectural functions.

We first determined whether the repressive effects of CTCF on uasTrx were direct by disrupting CTCF binding at TSS-proximal CTCF binding site (CBS) at three loci (Fig. 2a), *Ahcyl1, Azi2* and *Rps3a1*, through CRISPR/Cas9-mediated genome editing (Fig. 2b, Extended Data Fig. 7a and Extended Data Fig. 7-8a)³⁵. Upon disruption of TSS-proximal CTCF binding, uasTrx production became elevated while sense transcription remained unperturbed, demonstrating that CTCF binding directly constrains uasTrx production (Fig. 2c-e, Extended Data Fig. 6a,b, Extended Data Fig. 7a-d,f and Extended Data Fig. 8b-d).

Most chromatin boundaries are occupied by CTCF; however, a large fraction of CTCF sites is not associated with domain boundaries or measurable chromatin loops³³. We thus employed 4C-seq (Circularized Chromosome Conformation Capture sequencing) to determine whether CTCF-bound promoters engage in long-range looped interactions³⁶. We focused on the 2 loci, *Ahcyl* and *Azi2*, where uasTrx was strongly and directly suppressed by CTCF, and found significant looping interactions with distant CBSs (Fig. 2b and Extended Data Fig. 7a). Upon CTCF depletion, these loops were strongly diminished, indicating that CBSs are indeed involved in architectural functions at these 2 genes. In light of prior studies in yeast invoking gene looping as a mechanism to constrain uasTrx, we assessed whether CTCF's architectural function constrains uasTrx production³⁴. Inspection of the 4C-seq tracks identified the most prominent loop anchors, which we disrupted via CRISPR-Cas9 mediated genome editing in a manner that

preserved promoter-proximal CTCF binding. At the *Ahcvl1* gene, deletion of the distal CTCF site (Dist A) that is associated with the most prominent loop promoter loop (Dist A) led to loss of 4C-seq contacts (Fig. 2c and Extended Data Fig. 6c-e) but no change in uasTrx production (Fig. 2d,e). However, since some contacts remained, we removed two additional CBSs at 4C-seq contact sites (Dist B and Dist C), which further reduced interactions with the promoter proximal CBS (Fig. 2c). None of these perturbations increased uasTrx production (Fig. 2 d,e). At the Azi2 locus, deletion of distal loop anchors (Dist A and Dist B) but not promoter-proximal CBS led to significant architectural perturbations (Extended Data Fig. 7b-e). In contrast to promoter-primal CBS removal, Dist A/Dist B deletions failed to increase uasTrx production (Extended Data Fig. 7f). Of note, neither CTCF depletion nor CBS removal at the promoters of the Ahcyl1 and Azi2 genes detectably increased contacts between uasTrx promoters and surrounding putative enhancers (not shown). This argues against promoter-proximal CBSs functioning as enhancer blocking insulators. Together, these results separate the uasTrx repressive effects of CBSs from their architectural involvement at these loci.

155 Promoter-proximal CTCF sites involved in inhibition of uasTrx generation are enriched for cohesin (Extended Data Fig. 5a). As an independent means to assess a possible role of CTCF/cohesin-associated loops in regulating uasTrx production, we globally disrupted looped contacts by depleting Nipbl in HCT-116 cells, a cohesin-loading factor³⁷, and interrogated transcriptional changes. PRO-seq experiments in Nipbl deficient cells revealed minimal uasTrx 160 upregulation (Extended Data Fig. 9a). Finally, we analyzed published data sets in HCT-116 cells in which transient depletion of the cohesin component Rad21 was previously shown to cause genome-wide chromatin organization disruption³⁸. Again, we did not observe strand-specific uasTrx changes. Instead, hundreds of genes underwent concomitant changes in both sense and antisense directions (Extended Data Fig. 9b-e), and were not enriched with strong CTCF or Rad21 binding at their promoters (Extended Data Fig. 9f). Together, three orthogonal approaches 165 demonstrate that CTCF inhibits uasTrx directly and proximally, and independently of its architectural functions.

The process of transcription involves multiple steps, including initiation, pausing of RNA polymerase II (Pol II) after transcribing the first 20-60 nucleotides, and release of Pol II into the gene body (GB). CTCF was previously reported as capable of repressing pause-release in the sense direction³⁹ and was also implicated in impeding Pol II elongation in the GB^{40,41}. To

145

150

170

determine the CTCF-controlled step(s) in uasTrx transcription, we took advantage of the single base-pair resolution afforded by PRO-seq and examined the distribution of CTCF motifs relative to the 5' and 3' PRO-seq signals which allows assessment of transcription initiation and stalling, respectively. Only active promoters with proximal (±100bp relative to TSS) CTCF binding sites harboring high-confidence CTCF motifs (motif score>75) were included in the analysis to ensure precise prediction of CTCF positioning (Extended Data Fig. 10a and Supplementary Data 2). Changes in transcription initiation and stalling would be expected to give rise to distinct PROseq patterns. Specifically, blockade of Pol II processivity would show significant accumulation of 3' PRO-seq signals (i.e. paused Pol II) upstream of CTCF motifs, which would then get released upon CTCF depletion (Fig. 3a, "stalling"). Release from CTCF-mediated blockade on transcription initiation, on the other hand, would reveal enrichment of 5' PRO-seq signal extending from the motif to the end of uasTrx after CTCF removal (Fig. 3a, "Initiation blockade").

The measured 5' PRO-seq changes triggered by CTCF loss indicate that CTCF impacts 185 antisense transcription initiation (Fig. 3b). Strikingly, CTCF is consistently positioned ~20bp downstream of uasTrx initiation sites at affected promoters, reminiscent of a previous observation that CTCF tends to reside at the borders of transcription initiation clusters⁴² (Fig. 3b,c). This distinct spatial arrangement is in stark contrast to the much more variable distribution around unperturbed promoters (Fig. 3d,e). A fraction (120 of 1201) of the unperturbed promoters 190 did have CBSs downstream proximally (Extended Data Fig. 10b, "Downstream proximal"). However, a closer look revealed an upward trend of uasTrx production even though they were not included in the perturbed group because of thresholding (Extended Data Fig. 10c,d). Thus, uasTrx appears to be linked to a particular positioning pattern of CTCF. Finally, 3' PRO-seq 195 reads accumulated downstream, rather than upstream, of CTCF motifs, indicating that Pol II can successfully pass through CTCF without stalling (Fig. 3f and Extended Data Fig. 10e-g). Altogether, the evidence points to CTCF repressing uasTrx transcription through initiation inhibition rather than Pol II stalling, which is consistent with our recent observation that CTCF binding does not strongly interfere with Pol II processivity in the gene body²³.

200

175

180

Transcription is known to occur in bursts, with burst frequency and amplitude subject to modulation⁴³⁻⁴⁵. To investigate the effects of CTCF on bursting, and whether sense and antisense

transcription are coordinated, we employed single-molecule fluorescence in situ hybridization (smFISH) to quantify at the *Ahcyl1* and *Rps3a1* loci 1) transcription burst size (i.e. amplitude), 2) burst fraction (related to burst frequency), and 3) co-burst frequency (Fig. 4a). CTCF depletion led to no significant changes in burst fraction or size on the sense strand, consistent with bulk PRO-seq readouts. Antisense transcription, on the other hand, underwent significant increases in burst fraction but minimal changes in burst size, suggesting that CTCF mainly affects antisense burst frequency without altering sense transcription dynamics (Fig. 4b,c).

To interrogate sense/antisense burst coordination, we quantified the frequency at which 210 both strands burst alone or together before and after CTCF depletion. At baseline, sense/antisense co-bursting occurred at a minimal number of alleles that is significantly less than expected (i.e. the product of sense and antisense burst fractions), suggesting that co-bursting is highly disfavored (Fig. 4d,e and Extended Data Fig. 11a). Upon CTCF removal, co-burst frequency increased significantly (Extended Data Fig. 11b) but still less frequently than would be expected if these events were independent of each other (Extended Data Fig. 11h). It is important 215 to note that the results are confounded by the unexpectedly long half-lives (>4hr) of uasTrx at both loci (Extended Data Fig. 11c-g), which causes uasTrx transcripts to persist after completion of a burst, thus reducing temporal resolution of smFISH and inflating signal overlap. Regardless, sense and antisense bursts appear to be anti-coordinated temporally when transcribing from the 220 same divergent promoter, suggesting competition between sense and antisense transcription initiation.

A variety of factors have been shown to affect uasTrx transcription, including R-loop formation, oncoprotein MYC, transcription elongation factor SPT6, transcription factor Rap1, looped contacts, histone modifications, and chromatin remodeling proteins (ex. Mot1, Ino80, NC2)^{34,46-51}. In many instances, perturbations were accompanied by changes in the sense counterparts, which is in contrast to the present findings and suggests that CTCF functions through mechanism(s) distinct from those previously reported. On the other hand, the CAF-1 complex and histone H3K56 acetylation have been shown to suppress antisense transcription without significantly perturbing sense transcription in yeast⁸, but it remains to be tested whether a similar process is operational in mammalian cells and whether CTCF is involved.

205

230

Our smFISH results show that CTCF removal increases antisense burst fraction. Since CTCF can block enhancer-promoter contacts^{52,53} and since enhancers can increase burst fraction⁵⁴, it is conceivable that CTCF loss leads to illegitimate enhancer contacts. However, we did not observe increased long-range contacts upon CTCF loss. Combined with our 5' transcript mapping, this indicates that CTCF inhibits uasTrx production locally at the step of transcription initiation, possibly by preventing PIC formation. The dynamic relationship between sense and antisense transcriptional bursts has not been investigated previously. Single-molecule RNA-FISH at the two genes revealed that co-bursting of divergent transcripts is disfavored, suggesting that at higher temporal resolution the oppositely oriented core promoters may compete at the level of transcription initiation. The mechanisms underlining this competition are unclear, but may include steric hindrance and/or local DNA structure alterations, where supercoiling from transcription in one direction impacts transcription dynamics of the other^{55,56}.

The competitive relationship of transcriptional bursting was unexpected since at the PRO-seq level no significant reduction in sense transcription was observed upon uasTrx upregulation. We speculate that compensatory mechanisms may buffer against reduction in sense transcription in cases where maintenance of normal gene expression is essential. Finally, although divergent transcription is largely concordant in population-based assays^{1,2,8-10}, that concordance might be a reflection of overall promoter strength rather than a direct coordination of sense/antisense core promoters.

CTCF at gene promoters has been invoked to facilitate communication with enhancers^{16,57}. Nevertheless, CTCF (previously also known as NeP1) was originally shown to function as a direct transcriptional repressor in reporter gene assays^{39,58}, either alone or perhaps by aiding the adjacent binding of a distinct repressor molecule⁵⁸. The CTCF function uncovered here is novel and distinct in that it blocks initiation selectively of uasTrx production at hundreds of genes without significantly impacting sense transcription. Whether CTCF inhibits chromatin binding of PIC components directly by steric hindrance, by recruiting co-repressors, or by facilitating the binding of neighboring repressor molecules remains to be determined. Regardless, our study demonstrates that CTCF can play separate and independent roles in both genome architecture and transcriptional regulation, even at sites with architectural connectivity.

240

235

245

255

250

260 In sum, we uncovered a novel role for CTCF as direct and selective repressor of uasTrx production, independently of its architectural functions, which expands CTCF's role in the control of the non-coding genome.

265 **References**

- Seila, A. C. *et al.* Divergent transcription from active promoters. *Science (New York, N.Y.)* 322, 1849–1851 (2008).
- 2. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters. *Science* **322**, 1845–1848 (2008).
- 3. Preker, P. *et al.* RNA exosome depletion reveals transcription upstream of active human promoters. *Science (New York, N.Y.)* **322,** 1851–1854 (2008).
 - 4. Rhee, H. S. & Pugh, B. F. Genome-wide structure and organization of eukaryotic preinitiation complexes. *Nature* **483**, 295–301 (2012).
 - 5. Scruggs, B. S. *et al.* Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. *Mol. Cell* **58**, 1101–1112 (2015).
 - 6. Andersson, R., Sandelin, A. & Danko, C. G. A unified architecture of transcriptional regulatory elements. *Trends in Genetics* **31**, 426–433 (2015).
 - 7. Duttke, S. H. C. *et al.* Human promoters are intrinsically directional. *Mol. Cell* **57**, 674–684 (2015).
- 8. Marquardt, S. *et al.* A Chromatin-Based Mechanism for Limiting Divergent Noncoding Transcription. *Cell* **158**, 462 (2014).
 - 9. Xu, Z. *et al.* Bidirectional promoters generate pervasive transcription in yeast. *Nature* **457**, 1033–1037 (2009).
 - 10. Kapranov, P. *et al.* RNA maps reveal new RNA classes and a possible function for pervasive transcription. *Science (New York, N.Y.)* **316,** 1484–1488 (2007).
 - 11. Trinklein, N. D. *et al.* An abundance of bidirectional promoters in the human genome. *Genome Res.* **14**, 62–66 (2004).
 - 12. Seila, A. C., Core, L. J., Lis, J. T. & Sharp, P. A. Divergent transcription: a new feature of active promoters. *Cell Cycle* **8**, 2557–2564 (2009).
 - 13. Core, L. J. *et al.* Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. *Nat Genet* **46**, 1311–1320 (2014).
 - 14. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. *Cell* **137**, 1194–1211 (2009).
 - 15. Khoury, A. *et al.* Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. *Nat Comms* **11**, 54 (2020).
 - 16. Kubo, N. *et al.* Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. *Nature Structural & Molecular Biology* **459**, 108 (2021).
 - 17. Nora, E. P. *et al.* Spatial partitioning of the regulatory landscape of the X-inactivation centre. *Nature* **485**, 381–385 (2012).
 - 18. Thiecke, M. J. *et al.* Cohesin-Dependent and -Independent Mechanisms Mediate Chromosomal Contacts between Promoters and Enhancers. *Cell Rep* **32**, 107929 (2020).
 - 19. Wutz, G. *et al.* Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. *EMBO J.* **36**, 3573–3599 (2017).
 - 20. Zuin, J. *et al.* Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. *Proceedings of the National Academy of Sciences of the United States of America* **111**, 996–1001 (2014).
 - 21. Busslinger, G. A. *et al.* Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. *Nature* **544**, 503–507 (2017).

280

275

270

285

295

300

290

22. Hyle, J. *et al.* Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. *Nucleic Acids Research* **47**, 6699–6713 (2019).

310

320

340

345

350

- 23. Luan, J. *et al.* Distinct properties and functions of CTCF revealed by a rapidly inducible degron system. *Cell Rep* **34**, 108783 (2021).
- 24. Mattick, J. S. & Makunin, I. V. Non-coding RNA. *Hum Mol Genet* **15 Spec No 1**, R17–29 (2006).
- 25. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. *Science (New York, N.Y.)* **339**, 950–953 (2013).
 - 26. Wyers, F. *et al.* Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. *Cell* **121**, 725–737 (2005).
 - 27. van Dijk, E. L. *et al.* XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. *Nature* **475**, 114–117 (2011).
 - 28. Bornelöv, S., Komorowski, J. & Wadelius, C. Different distribution of histone modifications in genes with unidirectional and bidirectional transcription and a role of CTCF and cohesin in directing transcription. *BMC Genomics 2013 14:1* **16**, 300 (2015).
- 325 29. Shen, Y. *et al.* A map of the cis-regulatory sequences in the mouse genome. *Nature* **488**, 116–120 (2012).
 - 30. Nora, E. P. *et al.* Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. *Cell* **169**, 930–944.e22 (2017).
- 330 31. Fudenberg, G. *et al.* Formation of Chromosomal Domains by Loop Extrusion. *Cell Rep* **15**, 2038–2049 (2016).
 - 32. Sanborn, A. L. *et al.* Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. *Proceedings of the National Academy of Sciences of the United States of America* **112**, E6456–65 (2015).
- 335 33. Dixon, J. R. *et al.* Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature* **485**, 376–380 (2012).
 - 34. Tan-Wong, S. M. *et al.* Gene loops enhance transcriptional directionality. *Science (New York, N.Y.)* **338,** 671–675 (2012).
 - 35. Ran, F. A. *et al.* Genome engineering using the CRISPR-Cas9 system. *Nat Protoc* **8**, 2281–2308 (2013).
 - 36. van de Werken, H. J. G. *et al.* Robust 4C-seq data analysis to screen for regulatory DNA interactions. *Nat Meth* **9**, 969–972 (2012).
 - 37. Schwarzer, W. *et al.* Two independent modes of chromatin organization revealed by cohesin removal. *Nature* **551**, 51–56 (2017).
 - 38. Rao, S. S. P. *et al.* Cohesin Loss Eliminates All Loop Domains. *Cell* **171**, 305–320.e24 (2017).
 - 39. Filippova, G. N. *et al.* An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. *Molecular and Cellular Biology* **16**, 2802–2813 (1996).
 - 40. Shukla, S. *et al.* CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. *Nature* **479**, 74–79 (2011).
 - 41. Mayer, A. *et al.* Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. *Cell* **161**, 541–554 (2015).

355	42.	Tome, J. M., Tippens, N. D. & Lis, J. T. Single-molecule nascent RNA sequencing
		identifies regulatory domain architecture at promoters and enhancers. Nat Genet 50,
		1533–1541 (2018).

- 43. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036 (2005).
- Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a 44. developmental gene. Current Biology 16, 1018–1025 (2006).
- 45. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4, e309 (2006).
- 46. Wu, A. C. K. et al. Repression of Divergent Noncoding Transcription by a Sequence-Specific Transcription Factor. Mol. Cell 72, 942–954.e7 (2018).
- 47. Sansó, M. et al. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Research 48, 7154–7168 (2020).
- 48. Baluapuri, A. et al. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol. Cell 74, 674–687.e11 (2019).
- 49. Xue, Y. et al. Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol. Cell 67, 594-607.e4 (2017).
 - Tan-Wong, S. M., Dhir, S. & Proudfoot, N. J. R-Loops Promote Antisense Transcription 50. across the Mammalian Genome. Mol. Cell 76, 600-616.e6 (2019).
 - 51. Nojima, T. et al. Deregulated Expression of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Mol. Cell 72, 970-984.e7 (2018).
 - 52. Hou, C., Zhao, H., Tanimoto, K. & Dean, A. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proceedings of the National Academy of Sciences of the United States of America 105, 20398–20403 (2008).
- Hsu, S. C. et al. The BET Protein BRD2 Cooperates with CTCF to Enforce 53. Transcriptional and Architectural Boundaries. Mol. Cell 66, 102–116.e7 (2017).
 - Bartman, C. R., Hsu, S. C., Hsiung, C. C.-S., Raj, A. & Blobel, G. A. Enhancer 54. Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. Mol. Cell 62, 237-247 (2016).
- 55. Lim, H. M., Lewis, D. E. A., Lee, H. J., Liu, M. & Adhya, S. Effect of varying the 385 supercoiling of DNA on transcription and its regulation. *Biochemistry* 42, 10718–10725 (2003).
 - 56. Peter, B. J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. 5, R87 (2004).
- Lee, J., Krivega, I., Dale, R. K. & Dean, A. The LDB1 Complex Co-opts CTCF for 57. 390 Erythroid Lineage-Specific Long-Range Enhancer Interactions. Cell Rep 19, 2490–2502 (2017).
 - 58. Baniahmad, A., Steiner, C., Köhne, A. C. & Renkawitz, R. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell **61,** 505–514 (1990).
 - 59. Weiss, M. J., Yu, C. & Orkin, S. H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Molecular and Cellular Biology 17, 1642–1651 (1997).
 - Luppino, J. M. et al. Cohesin promotes stochastic domain intermingling to ensure proper 60. regulation of boundary-proximal genes. Nat Genet 52, 840-848 (2020).

365

360

375

370

380

400

- 61. Stonestrom, A. J. *et al.* Functions of BET proteins in erythroid gene expression. *Blood* **125**, 2825–2834 (2015).
- 62. Cong, L. & Zhang, F. Genome engineering using CRISPR-Cas9 system. *Methods Mol. Biol.* **1239**, 197–217 (2015).
- 63. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis. *Mol. Cell* **81**, 998–1012.e7 (2021).
 - 64. Letting, D. L., Chen, Y.-Y., Rakowski, C., Reedy, S. & Blobel, G. A. Context-dependent regulation of GATA-1 by friend of GATA-1. *Proc Natl Acad Sci USA* **101**, 476–481 (2004).
 - 65. Splinter, E., de Wit, E., van de Werken, H. J. G., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. *Methods* **58**, 221–230 (2012).
- 66. van de Werken, H. J. G. *et al.* 4C technology: protocols and data analysis. *Methods Enzymol* **513**, 89–112 (2012).
 - 67. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. *Science* **280**, 585–590 (1998).
 - 68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. **15**, 550 (2014).
- 69. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Meth* **9**, 357–359 (2012).
 - 70. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). 9, R137 (2008).
 - 71. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. *Nature* **463**, 913–918 (2010).

405

415

410

420

Acknowledgments

We are grateful to Hardison, Raj, Lis, and Blobel laboratories for insightful discussions.

430

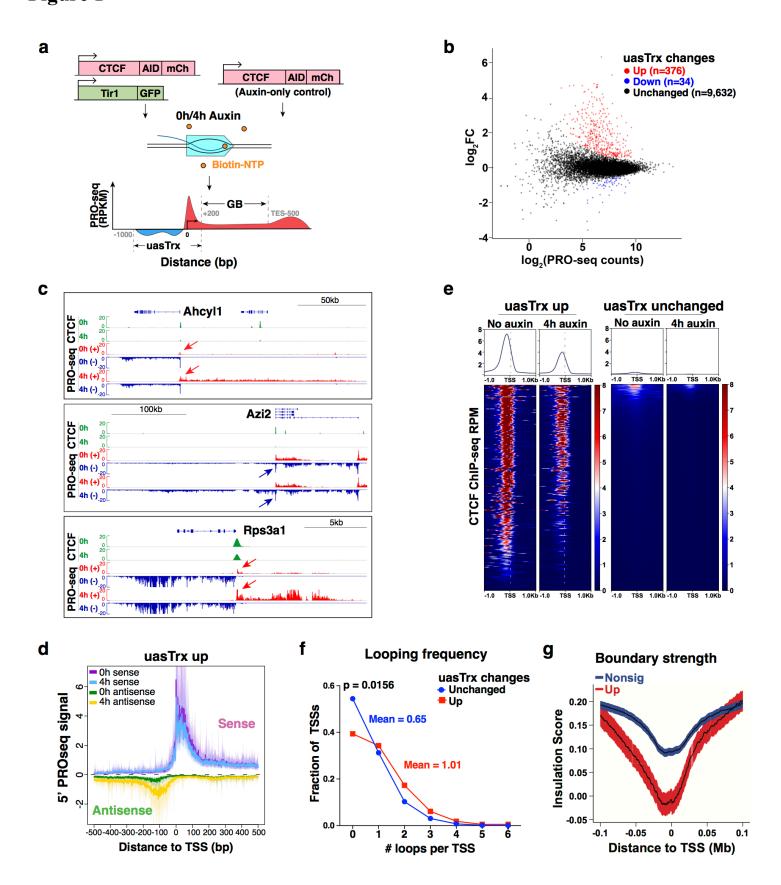
Funding

This work was supported by NIH grants R01 DK054937 to G.A.B., R24 DK106766 to G.A.B. and R.C.H., T32 HL07439 to C.M.S., R01GM121613 to R.C.H, and U01 DK127405 to G.A.B. and A.R.

435

Author contributions

J.L. and G.A.B. conceived the study and designed experiments. J.L. and C.A.K. performed ChIPseq experiments; J.L., M.W.V., and B.M.G. performed ChIP-seq analysis. J.L., C.M.S, and A.H. performed CRISPR editing experiments and 4C experiments. 4C results were analyzed by J.L. and S.Z. J.M.L. performed PRO-seq experiments; J.L. and Z.Z. analyzed PRO-seq results with advice from J.M.T. and J.T.L. C.M.S., M.G., and A.H. performed single-molecule FISH experiments, with data analyzed by C.M.S., J.L., and A.C. under the supervision of A.R. J.L. and G.A.B. wrote the manuscript with input from all authors.


445

440

Competing interests: The authors declare no competing interests.

Data and materials availability

All sequencing and processed data have been deposited at GEO under accession GSE173442, GSE173443, GSE173444.

Fig. 1 | **Transient CTCF depletion leads to widespread antisense transcription upregulation at divergent promoters. a**, Schematics of PRO-seq experiment and quantification strategy. **b**, PRO-seq MA plot of control versus CTCF-depleted cells on the antisense strand (-1000bp to +200 relative to annotated TSS) in G1E-ER4s. Differentially expressed transcripts highlighted in color. **c**, Genome browser views of CTCF ChIP-seq and PRO-seq signals at *Ahcyl1*, *Azi2* and *Rps3a1* loci. Arrows point to uasTrx, with colors indicating strandedness. **d**, Metaplot of sense and antisense 5' PRO-seq signals at activated uasTrx, centered at annotated TSSs and plotted with respect to sense orientation. Solid lines and shades show bootstrapped estimates of average signals and the 12.5/87.5 percentiles, respectively. **e**, Row-linked heatmaps showing CTCF occupancy at active promoters (up n=376; unchanged n=9,632), grouped by uasTrx changes upon CTCF depletion, sorted by occupancy level and shown with respect to sense orientation. **f**, Frequency of looping interactions engaged by all gained and unchanged uasTrx. *P* value calculated by Wilcoxon signed-rank test. **g**, Averaged insulation score centered at annotated TSSs over 0.2Mb window, grouped by uasTrx changes, and plotted with respect to sense orientation.

455

460

Figure 2 (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

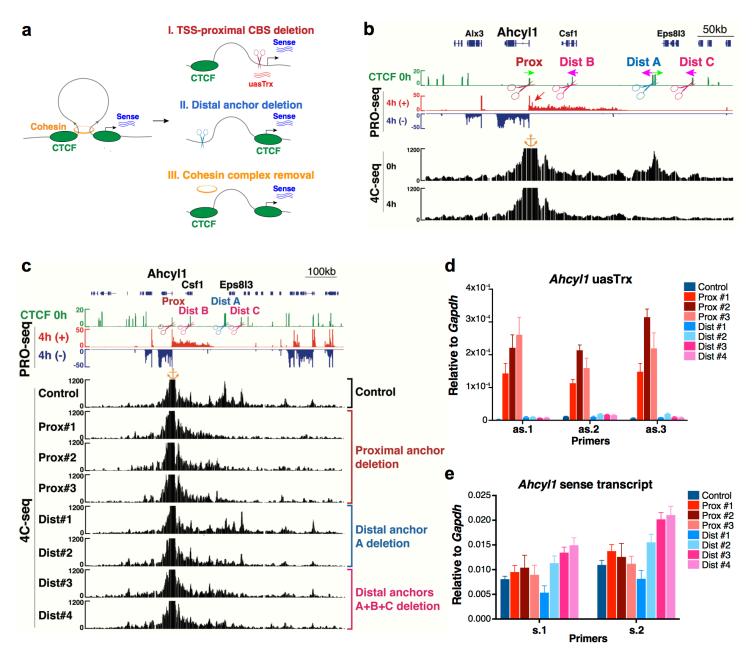
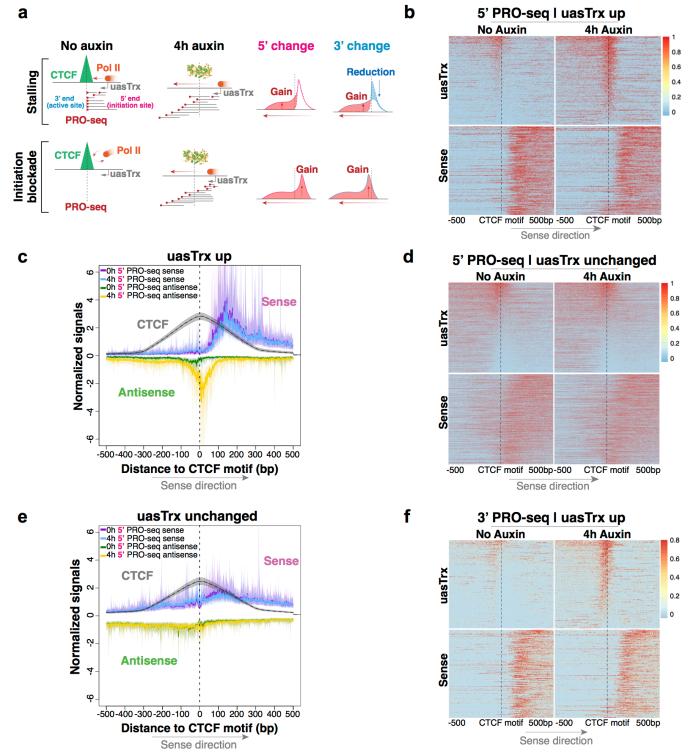



Fig. 2 | CTCF inhibits uasTrx directly and proximally, independent of its architectural functions. a, Illustration of experimental strategy and summarized findings in Fig. 2 and 470 Extended Data Figs. 6-9. b, Genome browser views of CTCF ChIP-seq, PRO-seq and 4C-seq signals at *Ahcvl1*. 4C-seq anchored at *Ahcvl1* promoter. Colored arrows above ChIP-seq track indicate CTCF motif directionality. Red arrow points to elevated uasTrx after CTCF depletion. Scissors point to regions disrupted by CRISPR/Cas9-mediated genome editing, one at CBS proximal to Ahcyll promoter and the others at a distal CBSs engaging in loop contacts with the 475 promoter. Orange anchor indicates 4C-seq viewpoint. c, Genome browser tracks of bulk CTCF ChIP-seq and PRO-seq and representative 4C-seq profiles of control and edited clones with indicated regions disrupted. Similar observations were made in 2 additional independent 4C-seq experiments and not shown. Orange anchor indicates 4C-seq viewpoint. d, RT-qPCR of Ahcvl1 480 uasTrx in control and edited clones. Transcripts were normalized to *Gapdh* (error bar: SEM; n=3-4). e, Same as (d) but of nascent *Ahcvl1* sense transcripts. Prox, TSS-proximal CBS. Dist, distal anchor.

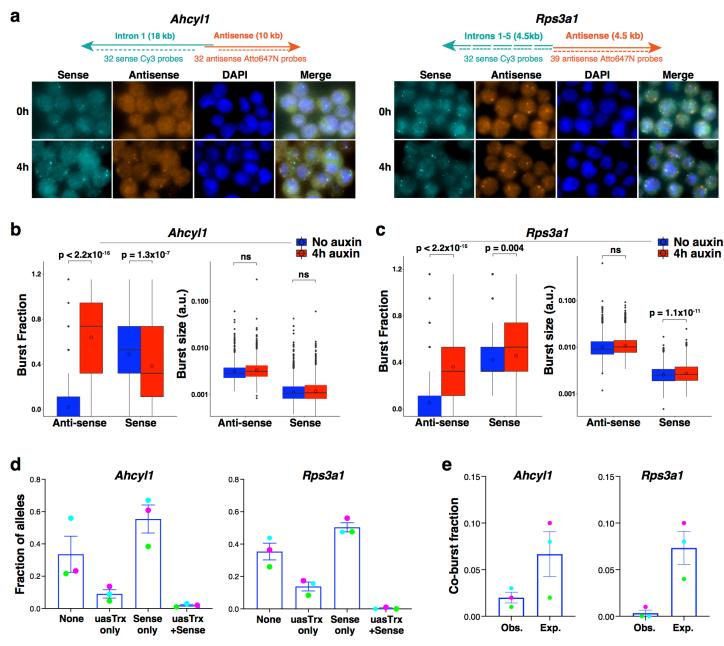

Figure 3 (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 3 | **CTCF** inhibits antisense transcription initiation through proximal binding. a, Model illustrating expected 5' and 3' PRO-seq distribution when CTCF blocks transcription processivity or initiation. **b**, 5' PRO-seq heatmap at affected active promoters (n=298) that exhibit proximal CTCF binding and high-confidence CTCF motif(s) (motif prediction score>75), centered at CTCF motifs, sorted by mean antisense signal densities over the center 200bp and shown with respect to sense orientation. Black line highlights CTCF motif locations. **c**, Metaplot centered by CTCF motifs summarizing 5' PRO-seq and CTCF signals shown in **b**. Solid lines and shades show bootstrapped estimates of average signals and the 12.5/87.5 percentiles, respectively. **d**, Same as (**b**) but at unaffected promoters (n=1,201) that satisfy the same CTCF criteria. **e**, Same as (**c**) but summarizing sites in **d**. **f**, Same as (**b**), but plotting 3' PRO-seq signals at activated uasTrx.

485

Figure 4

495

500

505

Fig. 4 | **CTCF mainly regulates antisense burst fraction; sense and antisense bursts appear to compete temporally at divergent promoters. a,** Top, maps of FISH probes targeting sense and antisense nascent transcripts at *Rps3a1* and *Ahcyl1* loci. Bottom, representative FISH images before and after CTCF depletion. **b,** Left, box plots showing antisense and sense burst fractions before and after CTCF depletion at *Ahcyl1*. Right, box plot showing antisense and sense burst sizes before and after CTCF depletion. n=3 biological replicates. *P* values were calculated by two-sample *t*-test. **c,** Same as (**b**) but at *Rps3a1*. **d,** Left, fraction of *Ahcyl1* alleles with 4 different sense/antisense bursting status at baseline (error bar: SEM; n=3). Right, same as left but at *Rps3a1*. Biological replicates matched by dot colors. **e,** Left, predicted and observed co-burst fraction at *Ahcyl1* at baseline (error bar: SEM; n=3). Right, same as left but at *Rps3a1*. Biological replicates matched by dot colors.

Methods

520

525

530

535

540

510 Experiments. *Cell culture and maintenance*. G1E-ER4 is an established murine erythroblast cell line⁵⁹.
 G1E-ER4 cells were grown in IMDM+15% FBS, penicillin/ streptomycin, Kit ligand, monothioglycerol and erythropoietin in a standard tissue culture incubator at 37°C with 5% CO₂. Cells were maintained at density below 1 million/ml at all times. Transient CTCF depletion in G1E-ER4 cells was induced by 1mM auxin in culture. Nascent RNA half-life was assessed by quantifying transcript levels via smFISH and RT-qPCR after transcription blockade for 0h, 4h and 6h with 75uM DRB. HCT-116 cells were cultured in McCoy's 5A medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U ml⁻¹ penicillin, and 100 µg ml⁻¹ streptomycin at 37°C with 5% CO2.

siRNA-mediated CTCF/Nipbl depletion. RNAi was performed in HCT-116 cells as previously described using the same published guide sequences⁶⁰ with a final siRNA concentration of 50 nM (non-targeting control, NIPBL) or 150 nM (CTCF). Cells were harvested after 72 hr treatment.

CRISPR-Cas9-mediated genome editing. We performed all CRISPR editing in a previously established Cas9-TagBFP expressing G1E-ER4 cell line to enhance editing efficiency²³. All sgRNA encoding oligonucleotides were inserted into a retroviral U6-sgRNA-PGK-GFP expression vector⁶¹ using a BsmBI restriction site and transfected into cells by Amaxa II electroporator (Lonza; program G-016) and Amax II Cell Line Nucleofector Kit (R) (Lonza, VCA-1001). GFP+ cells were sorted by FACS 24h posttransfection, followed by single-cell clone screening and genotyping by Sanger sequencing. All guide RNA sequences were obtained using CRISPR design tool (<u>https://zlab.bio/guide-design-resources</u>)⁶². Guide sequences are listed in Extended Data Table 2.

PRO-seq library preparation. PRO-seq libraries in G1E-ER4 was performed as described previously²³. For each library, 50 million cells were used with 2 million Drosophila Schneider 2 (S2) cells added as spike-in to control for potential global bias associated with library scaling. Fragments longer than 140bp from the PCR-amplified library were selected and sequenced (2x75bp) on the Illumina NextSeq 500 platform according to manufacturer's instructions to a depth of ~100 million/library.

PRO-seq libraries in HCT-116 were performed by the Nascent Transcriptomics Core at Harvard Medical School, Boston, MA. Specifically, aliquots of frozen (-80°C) permeabilized cells were thawed on ice and pipetted gently to fully resuspend. For each sample, 1 million permeabilized cells were used, with 50,000 permeabilized Drosophila S2 added for normalization. Nuclear run on assays and library preparation were performed as described⁶³ with following modifications: 2X nuclear run-on buffer consisted of 10 mM Tris (pH 8), 10 mM MgCl2, 1 mM DTT, 300mM KCl, 40uM/ea biotin-11-NTPs

(Perkin Elmer), 0.8U/uL SuperaseIN (Thermo), 1% sarkosyl. Run-on reactions were performed at 37°C. Adenylated 3' adapter was prepared using the 5' DNA adenylation kit (NEB) and ligated using T4 RNA 545 ligase 2, truncated KO (NEB, per manufacturer's instructions with 15% PEG-8000 final) and incubated at 16°C overnight. 180uL of betaine blocking buffer (1.42g of betaine brought to 10mL with binding buffer supplemented to 0.6 uM blocking oligo (TCCGACGATCCCACGTTCCCGTGG/3InvdT/)) was mixed with ligations and incubated 5 min at 65°C and 2 min on ice prior to addition of streptavidin beads. After T4 polynucleotide kinase (NEB) treatment, beads were washed once each with high salt, low salt, and 550 blocking oligo wash (0.25X T4 RNA ligase buffer (NEB), 0.3uM blocking oligo) solutions and resuspended in 5' adapter mix (10 pmol 5' adapter, 30 pmol blocking oligo, water). 5' adapter ligation was per Reimer but with 15% PEG-8000 final. Eluted cDNA was amplified 5-cycles (NEBNext Ultra II O5 master mix (NEB) with Illumina TruSeq PCR primers RP-1 and RPI-X) following the manufacturer's suggested cycling protocol for library construction. A portion of preCR was serially diluted and for test 555 amplification to determine optimal amplification of final libraries. Pooled libraries were sequenced using the Illumina NovaSeq platform.

RNA extraction, cDNA synthesis and RT-qPCR. Cells were harvested in buffer RLT Plus (Qiagen, Cat # 1053393) with lysate homogenized using QIAshredders (Qiagen, Cat # 79656), followed by RNA purification with RNeasy Mini Kit that included an on-column DNase treatment step (Qiagen, Cat. #74106). Complementary DNA (cDNA) was synthesized with iScript Supermix (Bio-Rad, Cat. #1708841). Quantitative polymerase chain reaction (qPCR) was performed using Power SYBR Green kit (Invitrogen; 4368577) with signals detected by ViiA7 System (Life Technologies). Primers used for RT-qPCR are listed in Extended Data Table 3.

565

570

575

560

ChIP-seq library preparation. Chromatin immunoprecipitation (ChIP) was performed as previously described⁶⁴. Antibodies include: CTCF (Millipore; 07-729), POLR2A (Cell Signaling; Cat#14958), IgG from rabbit serum (Sigma; 15006). Quantitative polymerase chain reaction (qPCR) was performed using Power SYBR Green kit (Invitrogen; 4368577) with signals detected by ViiA7 System (Life Technologies). ChIP-seq libraries were prepared using Illumina's TruSeq ChIP sample preparation kit (Illumina, Cat#IP-202-1012) according to manufacturer's specifications, with the addition of size selection (left side at 0.9x, right side at 0.6x) using SPRIselect beads (Beckman Coulter, Cat#B23318). Library size was determined (average 351 bp, range 333-372 bp) using the Agilent Bioanalyzer 2100, followed by quantitation using real-time PCR using the KAPA Library Quant Kit for Illumina (KAPA Biosystems; Cat#KK4835). Libraries were then pooled and sequenced (1x75bp) on the Illumina NextSeq

500 platform according to manufacturer's instructions. Bclfastq2 v 2.15.04 (default parameters) was used to convert reads to fastq. Primers used for RT-qPCR are listed in Extended Data Table 4.

4C-seq sample preparation. The 4C experiments were performed as previously described using DpnII and Csp6I as restriction enzymes^{65,66}. Sequencing was done on Illumina Hiseq 2000 genome sequencer with reads mapped onto mm9. Reads mapping to multiple fragment ends were removed, and 4C coverage was computed by averaging mapped reads in running windows of 41 fragment ends. Amplification primers for each view point are listed in Extended Data Table 5. Quality of all libraries meet the previously described standards⁶⁶ based on the *cis*/overall ratio and the percentage of covered fragends within 0.2Mb window around the viewpoints.

smFISH imaging. Single-molecule RNA FISH was performed as previously described^{45,67}. All sense
probes used were complementary to introns of gene of interest and are listed in Extended Data Table 6.
Briefly, cells were fixed in 1.85% formaldehyde for 10 min at room temperature, and stored in 70%
ethanol at 4°C. Pools of fluorophore-conjugated FISH probes were hybridized to samples overnight,
followed by DAPI staining and washes performed in suspension. Cells were cytospun onto slides for
imaging on a Nikon Ti-E inverted fluorescence microscope using a 100x Plan-Apo objective (numerical
aperture of 1.43), a cooled CCD camera (Pixis 1024B from Princeton Instruments), and filter sets
SP102v1 (Chroma), SP104v2 (Chroma), and 31000v2 (Chroma) for Cy3, Atto647N, and DAPI,
respectively. Slides were imaged in 36 optical z sections at intervals of 0.35 microns with 1 s exposure
time for Cy3/Atto647N and 35 ms for DAPI.

Analysis. *PRO-seq quantification*. Read alignment and identification of active transcripts have been described in detail previously²³. An arbitrary window of +200bp relative to Refseq-annotated TSS to -500 bp relative to TES (transcription end site) was used to quantify sense transcript levels to avoid any confounding effects associated with promoter-proximal pausing. A window of -1000bp to +200bp relative to TSS was selected to quantify uasTrx changes unless noted otherwise. Differential expression analysis was performed using paired DESeq2 method⁶⁸ with FDR<0.05 & fold-change>1.5 as thresholds. Each up-regulated uasTrx in G1E-ER4s was confirmed visually to rule out false positives such as run-throughs from nearby up-regulated genes. For analysis of PRO-seq datasets published in Rao et al. 2017, only active genes identified by the authors were included for characterization.

The start and end sites of uasTrx were annotated as follows: 1) Reads less than 100bp long were extended to 100bp from the 3' end to "smooth over" PRO-seq signals. 2) Regions overlapping any known transcripts were masked. 3) Global averaged sequencing depth was obtained by dividing all mapped reads

590

595

580

585

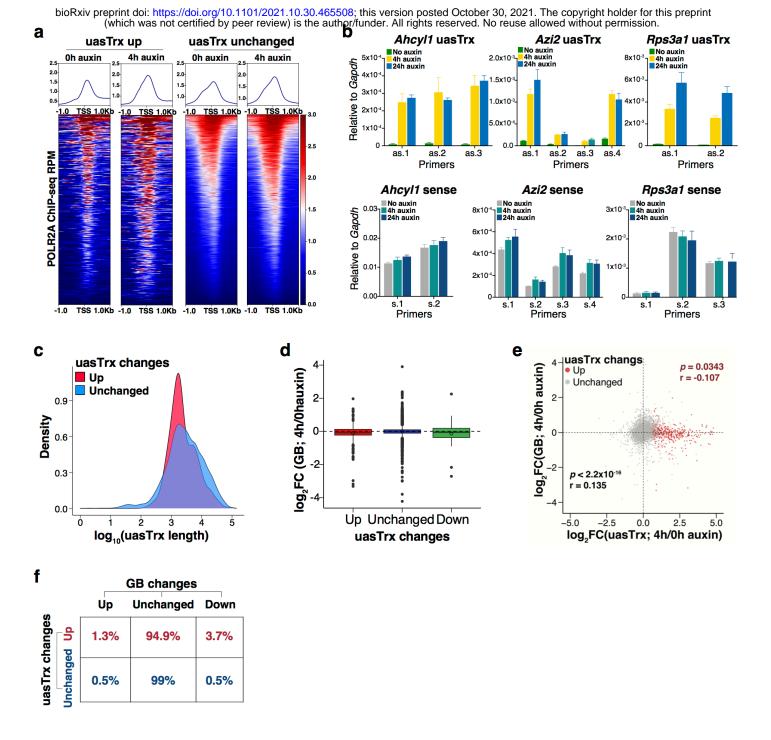
605

610 over the entire genome. 4) Unbroken regions starting within 500bp of the annotated TSSs on the antisense strand and with sequencing depth exceeding global average were counted as part of uasTrx and taken into consideration for length estimates.

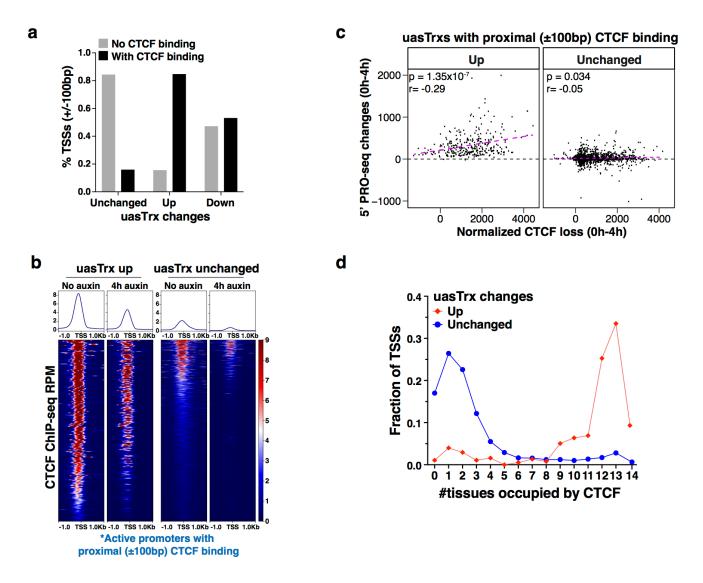
RNA-seq quantification. A window of -2000bp to -50bp relative to annotated TSSs was used to quantify
 uasTrx in unstranded RNA-seq datasets published in Nora et al. 2017 to minimize inclusion of sense
 signals. DESeq2 was applied to read count matrix to evaluate differential expression between groups.

ChIP-seq analysis. Bowtie 1.1.0 was used to align sequences to the mm9 reference genome⁶⁹. Reads with more than one mismatch or multiple alignments were excluded. Significantly enriched regions were called using MACS2 version $2.1.0^{70}$ with the following parameters: p = 10 5, extsize = 300 and local lambda = 100,000 using whole-cell extract input controls. Reads for the bigwigs were RPM normalized.

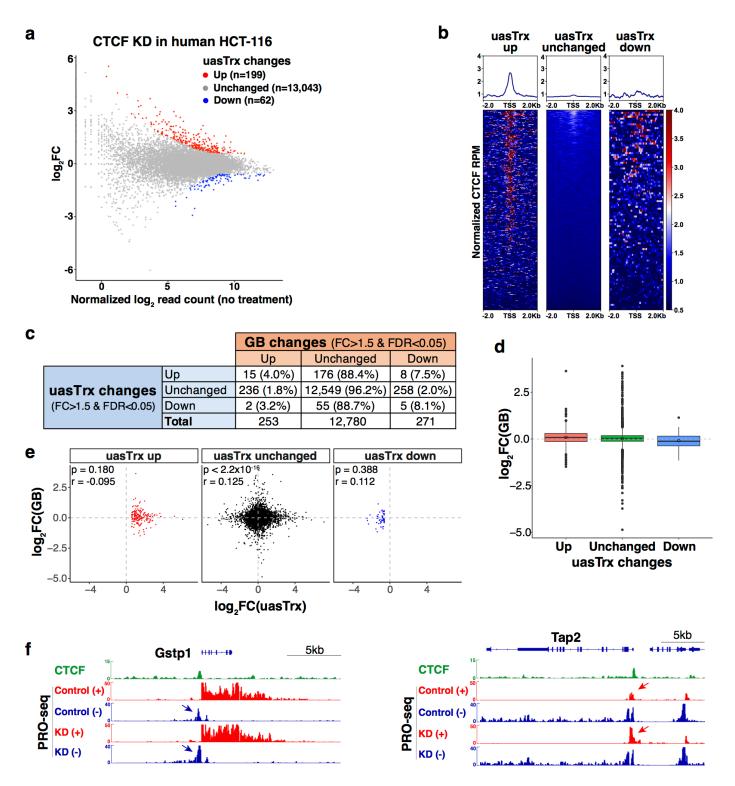
smFISH image analysis. Nuclear boundaries were segmented manually from DAPI images, with RNA spots localized and quantified using custom software written in MATLAB⁷¹. Transcription sites were identified by bright nuclear intron spots; fluorescence intensities of transcription sites were determined by 2D Gaussian fitting on processed image data. Subsequent analysis was performed in R. To identify sense and antisense co-transcription status, a wide range of sense-antisense distance thresholds were tested, ranging from 1 pixel (our resolution limit) to 10 pixels (1.3µm). Almost all distance thresholds yielded similar results. Results shown in Fig. 3 and Extended Data Fig. 11 are based on distance threshold of 3 pixels (0.39µm).

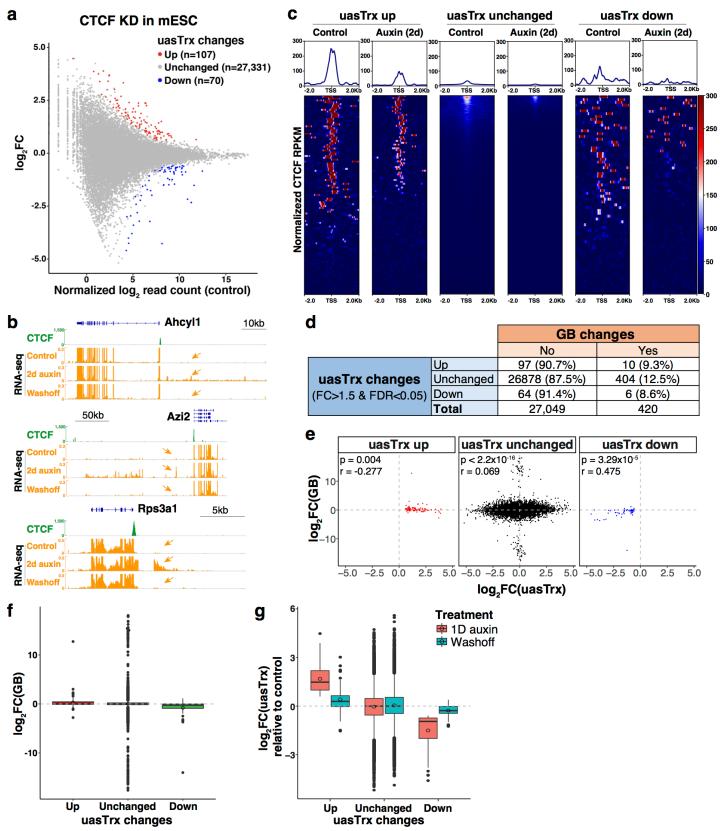

Gene ontology analysis. Gene ontology (GO) analysis was performed using PANTHER overrepresentation test (release 20210224) against all Mus musculus genes in the database as background. The Fisher's exact test was performed with FDR correction. GO Ontology database DOI: 10.5281/zenodo.4495804 (released 2021-02-01).

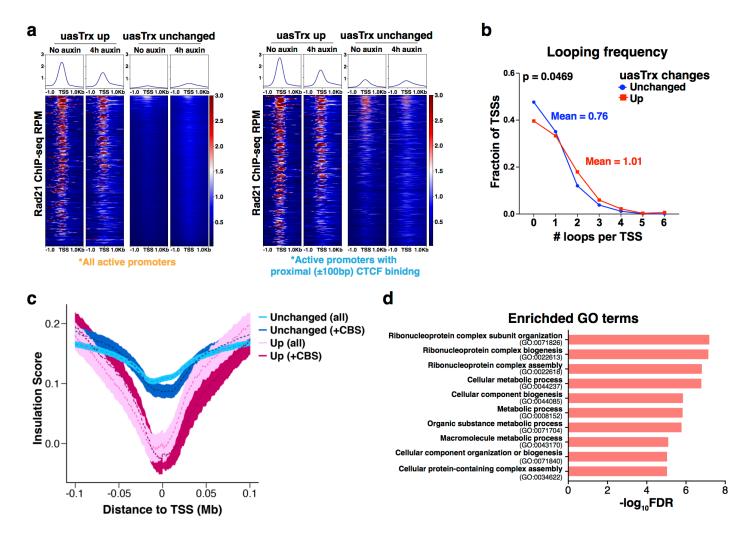
Metaplots. All metaplots were generated as previously described⁴² and show estimated average signals and the 87.5 and 12.5 percentiles obtained from bootstrapping.

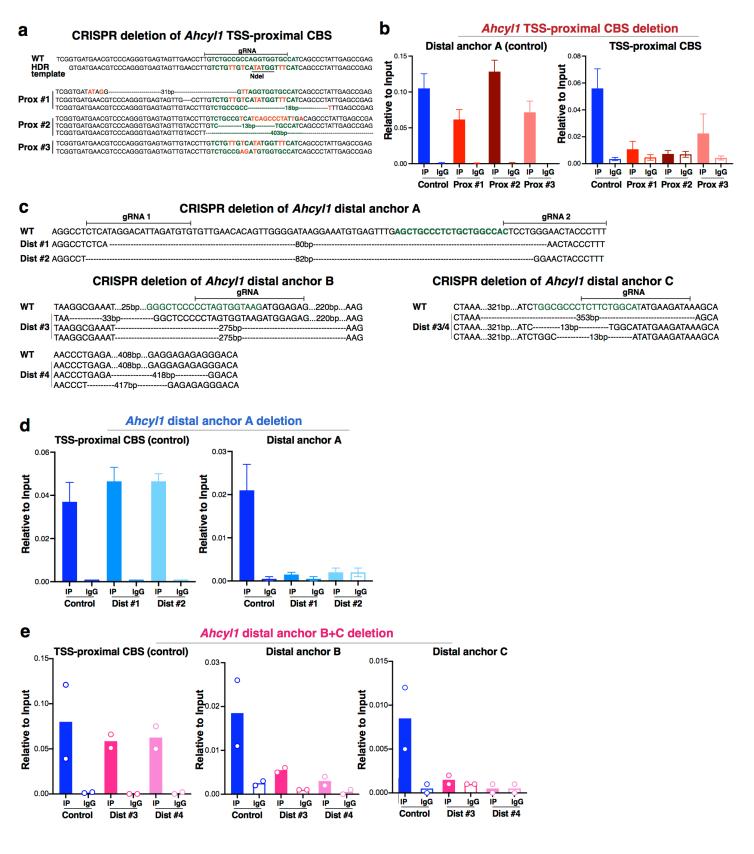

620

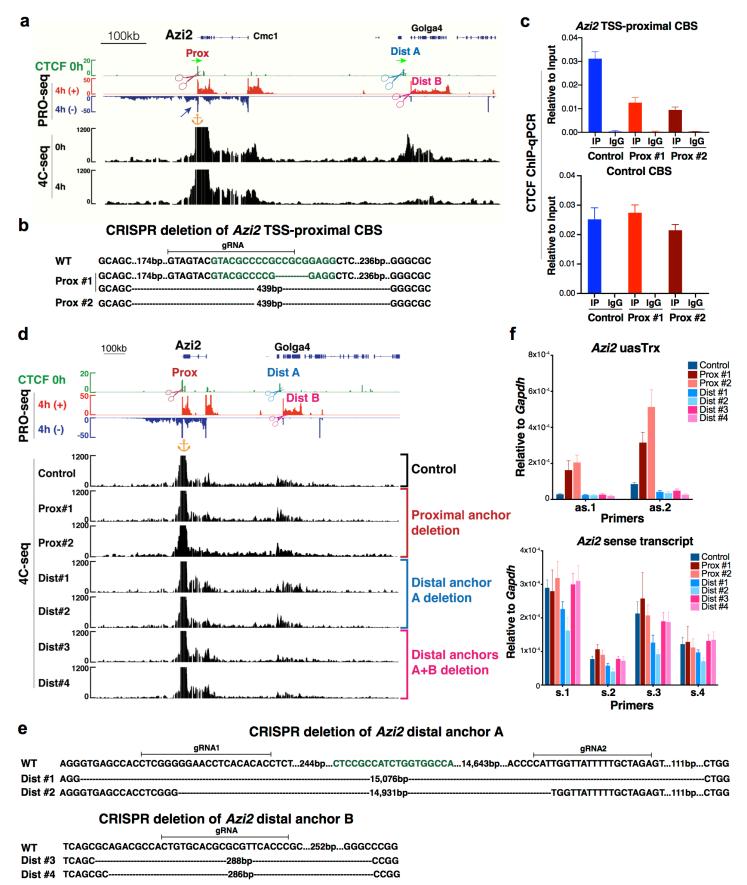
625


630

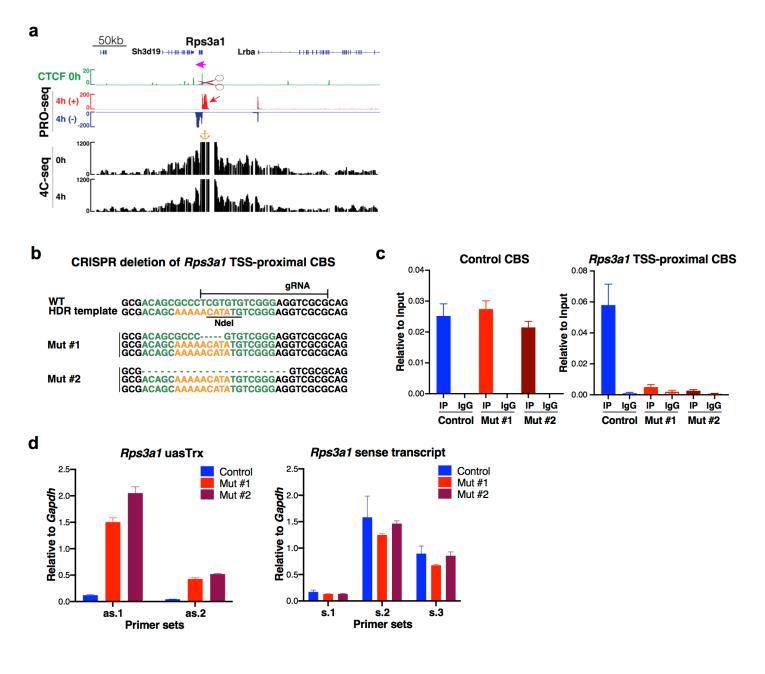

Extended Data Fig.1 | Transient CTCF depletion leads to widespread uasTrx up-regulation at divergent promoters. a, Row-linked heatmaps showing POLR2A occupancy at active promoters, grouped by antisense changes (up n= 376; unchanged n=9,632) upon CTCF depletion, sorted by occupancy level, and shown with respect to sense orientation. **b**, Top, RT-qPCR of uasTrx at indicated loci at indicated time points after CTCF depletion. Transcripts were normalized to *Gapdh* (error bar: SEM; n=3-4). Bottom, same as top but quantifying nascent sense transcripts. **c**, Distribution of uasTrx lengths, grouped by changes in response to CTCF depletion. **d**, Log-transformed PRO-seq fold changes in GB after CTCF depletion, grouped by uasTrx changes. **e**, Scatterplot comparing transcriptional changes in GB versus uasTrx. Data points grouped and colored based on uasTrx changes. **f**, Transcriptional changes in uasTrx and GB after CTCF depletion.


Extended Data Fig.2 | **CBSs proximal to activated uasTrx exhibit distinct features. a**, Percentage of promoters with and without proximal (\pm 100bp) CBSs as a function of uasTrx changes. **b**, Heatmaps showing CTCF occupancy at active promoters with proximal (\pm 100bp) CTCF binding (up n=319; unchanged n=1,527), sorted by occupancy level, and shown with respect to sense orientation. **c**, Correlation between 5' PRO-seq changes and CTCF loss at uasTrx with proximal (\pm 100bp) CTCF binding. Linear regression line shown in magenta. *P* value was calculated by Spearman rank correlation test; r is the correlation coefficient. **d**, Fraction of TSSs detected in the indicated numbers of mouse tissues where CTCF binds in proximity (within \pm 100bp), grouped by uasTrx changes.

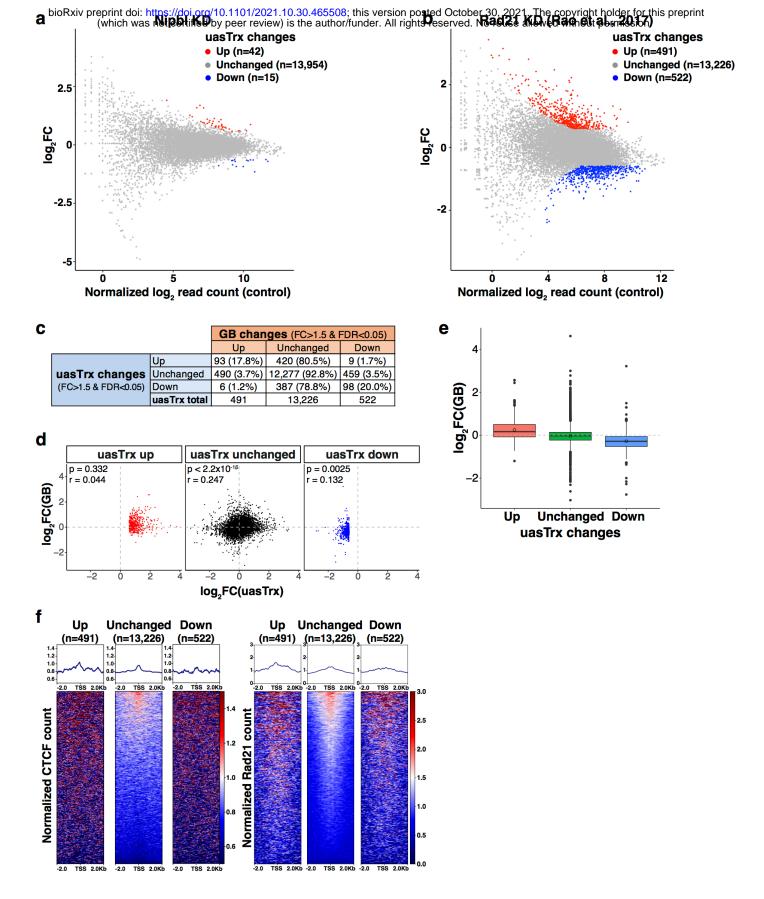

Extended Data Fig.3 | **Transient CTCF depletion in human HCT-116 leads to similar antisense transcriptional changes. a,** PRO-seq MA plot of control versus CTCF-depleted cells on the antisense strand (-1000bp to +200 relative to annotated TSS) in human HCT-116 cells. Differentially expressed transcripts highlighted in color. b, Row-linked heatmaps showing CTCF occupancy at active promoters, grouped by uasTrx changes, sorted by binding enrichment levels, and shown with respect to sense orientation. **c,** Transcriptional changes in uasTrx and GB after CTCF depletion. **d,** Boxplot showing log-transformed PRO-seq fold changes in GB. **e,** Scatterplot showing log-transformed PRO-seq fold changes in GB and uasTrx. **f,** Brower views of CTCF ChIP-seq (mm9 liftover from Rao et al., 2014) and PRO-seq signals at *Gstp1* and *Tap2* loci. Arrows highlight location of CTCF-repressed uasTrx. Arrow color indicates uasTrx strandedness. KD, knockdown.


Extended Data Fig.4 | Transient CTCF depletion in mESC leads to similar antisense transcriptional changes. a, RNA-seq MA plot of control versus CTCF-depleted cells on the antisense strand (-1000bp to +200 relative to annotated TSS) in mESC. Differentially expressed transcripts highlighted in color. **b,** Brower views of CTCF ChIP-seq and RNA-seq signals at *Ahcyl1, Azi2* and *Rps3a1* loci. Arrows highlight signals upstream of TSS indicative of antisense transcription. **c,** Row-linked heatmap showing CTCF occupancy at active promoters, grouped by uasTrx changes and shown with respect to **s**ense orientation. **d,** Transcriptional changes in uasTrx and GB after CTCF depletion. **e,** Correlation between uasTrx and GBs changes in RNA-seq upon CTCF depletion. *P* value was calculated by Spearman rank correlation test; r is the correlation coefficient. **f,** Log-transformed RNA-seq fold changes in GB after CTCF depletion over control. **g,** Log-transformed RNA-seq fold change in uasTrx in indicated conditions over control. Note the repression of elevated uasTrx after auxin washoff.

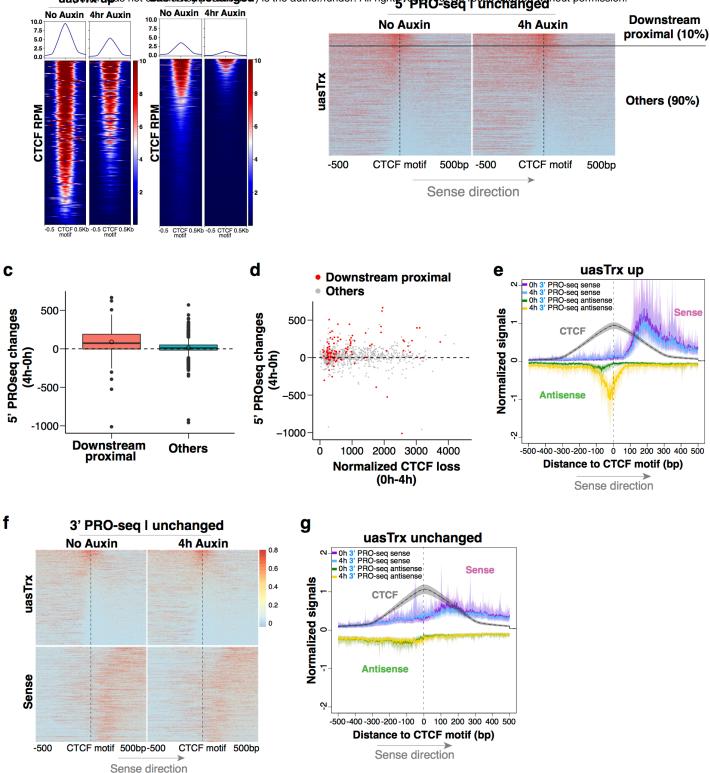
Extended Data Fig.5 | Affected promoters are associated with architectural features. a, Left, row-linked heatmaps showing Rad21 occupancy at all activated (n=376) and unaffected (n=9,632) active promoters, grouped by CTCF depletion-elicited uasTrx changes, sorted in the same order as Fig. 1e, and shown with respect to sense orientation. Right, same as left except only plotting those with proximal (± 100 bp) CTCF binding (up n=319; unchanged n=1,527). b, Distribution of looping frequencies of up-regulated versus unchanged uasTrx with proximal (± 100 bp) CTCF binding. *P* value calculated by Wilcoxon signed-rank test. c, Averaged insulation score centered at annotated TSS over 0.2Mb window, plotted with respect to sense orientation, and grouped by uasTrx changes and whether CTCF binds proximally (± 100 bp; "+CBS"). d, Gene ontology terms enriched at genes with activated uasTrx.



Extended Data Fig.6 | **CRISPR/Cas9-mediated genome editing disrupts CTCF binding at** *Ahcyl1.* **a**, Genotype of edited clones shown in **Fig. 2c**. Predicted CTCF motif highlighted in green. **b**, Left, CTCF ChIP-qPCR showing abrogation of CTCF binding at TSS-proximal CBS in mutants shown in **Fig. 2c**. Right, distal CBS served as a control for ChIP efficiency (error bar: SEM; n=3). **c**, Genotype of distally edited clones shown in **Fig. 2c**. Predicted CTCF motif highlighted in green. **d**, Left, TSS-proximal CBS served as a control for ChIP efficiency. Right, CTCF ChIP-qPCR showing abrogation of CTCF binding at distal anchor A in distal clones #1 and 2 shown in **Fig. 2c** (error bar: SEM; n=3). **e**, Left, TSS-proximal CBS served as a control for ChIP efficiency. Middle, CTCF ChIP-qPCR showing abrogation of CTCF binding at distal anchor B in distal clones #3 and 4 shown in **Fig. 2c** (n=2). Right, same as middle but measuring binding at distal anchor C.



Extended Data Fig.7 | **CRISPR/Cas9-mediated deletion of TSS-proximal CBS, but not distal loop anchors, at** *Azi2* leads to **uasTrx activation. a,** Genome browser tracks of CTCF ChIP-seq, PRO-seq and 4C-seq at *Azi2* locus, with uasTrx highlighted by dark blue arrow and CRISPR targeted regions indicated by scissors. Green arrows indicate CTCF motif directionality. Orange anchor shows 4C-seq viewpoint. **b,** Genotype of TSS-proximally edited clones. Predicted CTCF motif highlighted in green. **c,** Top, ChIP-qPCR confirming disruption of CTCF binding in mutants (error bar: SEM; n=3). Bottom, ChIP-qPCR at an independent locus


controlling for ChIP efficiency (error bar: SEM; n=3). **d**, Left, representative 4C-seq profiles of control/mutant clones with edited regions indicated. Genome browser tracks of bulk CTCF ChIP-seq and PRO-seq shown on top. Similar observations were made in 2-3 independent 4C-seq experiments. Orange anchor indicates 4C-seq viewpoint. Scissor indicates edited region. Middle and right, RT-qPCR of nascent antisense and sense transcripts in WT/mutant clones (error bar: SEM; n=4). **e**, Genotype of mutants with distal anchor(s) disrupted. Predicted CTCF motif highlighted in green. **f**, RT-qPCR of *Azi2* uasTrx and sense primary transcripts in control and edited clones. Transcripts were normalized to *Gapdh* (error bar: SEM; n=3-4). Prox, TSS-proximal CBS. Dist, distal anchor.

Extended Data Fig.8 | **CRISPR/Cas9-mediated deletion of TSS-proximal CBS at** *Rps3a1* **leads to uasTrx up-regulation. a,** Genome browser tracks of CTCF ChIP-seq, PRO-seq and 4C-seq at *Rps3a1* locus, with elevated uasTrx highlighted by red arrow and edited region indicated by scissor. Orange anchor indicates 4C-seq viewpoint. Magenta arrow above ChIP-seq track indicates CTCF motif directionality. b, Genotype of mutants after CRISPR/Cas9-mediated deletion of TSS-proximal CBS. Predicted CTCF motif highlighted in green. **c,** Left, ChIP-qPCR confirming disruption of CTCF binding in mutant clones (error bar: SEM; n=3). Right, ChIP-qPCR at an independent locus controlling for ChIP efficiency (error bar: SEM; n=3). **d,** RT-qPCR of nascent uasTrx and sense transcripts in control/mutant clones (error bar: SEM; n=3).

Extended Data Fig.9 | **Removal of chromatin-bound cohesin does not recapitulate CTCF-induced uasTrx changes. a,** PRO-seq MA plot of control versus Nipbl-depleted cells on uasTrx expression (-1000bp to +200 relative to annotated TSS). Differentially expressed transcripts highlighted in color. **b,** Same as **a** but of Rad21-depleted cells. **c,** Table showing the number and percentage of uasTrx and GB changes after Rad21 depletion. **d,** Scatterplot comparing log-transformed 5' PRO-seq fold changes in uasTrx and GB. *P* value was calculated by Spearman rank correlation test; r is the correlation coefficient. **e,** Boxplot showing log-transformed PRO-seq fold changes in GBs after Rad21 depletion. **f,** Left, row-linked heatmap showing CTCF occupancy at active promoters, grouped by uasTrx changes after Rad21 depletion, sorted by occupancy levels, and shown with respect to sense orientation. Right, same as left, but plotting Rad21 occupancy. Note that neither CTCF nor Rad21 is enriched at up-regulated uasTrx.

Extended Data Fig.10 | **CTCF inhibits antisense transcription initiation through precise positioning. a,** Left, row-linked CTCF heatmap at affected active promoters that harbor proximal (±100bp) CTCF binding and high-confidence CTCF motif scores (>75), centered at CTCF motifs, grouped by mean signal densities over center 200bp, and shown with respect to sense orientation. Right, same as left but at unaffected active promoters meeting the same CTCF criteria. b, 5' PRO-seq heatmap at unchanged promoters shown in **Fig. 3d** with a portion of sites (10%; "downstream proximal") manually picked from the rest ("others"), which demonstrate similar CTCF distribution relative to 5' PRO-seq signals as **Fig. 3b. c**, Related to **b**, plotting PRO-seq changes in uasTrx at unaffected promoters, grouped based on CTCF positioning relative to 5' PRO-seq signals. **d**, Related to **b**, comparing uasTrx changes and CTCF binding loss at unaffected promoters, grouped based on CTCF positioning relative to 5' PRO-seq signals. **e**, Metaplot summarizing 3' PRO-seq and CTCF signals shown in **Fig. 3f**. Solid lines and shades show bootstrapped estimates of average signals and the 12.5/87.5 percentiles, respectively. **f**, Same as **Fig. 3f**, but at unaffected promoters. **g**, Same as **e**, but summarizing **f**.

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.30.465508; this version posted October 30, 2021. The copyright holder for this preprint (which was neglective peoupties) is the author/funder. All rights reserved. No negestation at the peoupties is the author/funder. a Both Sense only Allele count **Condition** Replicate None Antisense only Sense only Both Allele number None Antisense only Condition Replicate 283 116 878 33 1310 No auxin 675 291 883 4 1853 No auxin 36 391 1258 12 391 229 1019 585 2246 No auxin 2 1675 No auxin 2 636 53 437 12 1138 No auxin 3 625 120 677 4 1426 No auxin 3 0 557 329 267 1153 4h auxin 365 209 412 161 1147 4h auxin 1 665 304 182 503 480 2 0 372 1341 4h auxin 2 592 1757 4h auxin 234 316 93 39 682 4h auxin 3 357 347 640 298 1642 4h auxin 3 Rps3a1 b Ahcyl1 No auxin 0.6 0.8 No auxin 4h auxin 4h auxin Fraction of alleles Fraction of alleles 0.6 0.4 0.4 0.2 0.2 0.0 0.0 None uasTrx Sense uasTrx None uasTrx Sense uasTrx only only +Sense only only +Sense f С е Ahcyl1 Rps3a1 **Experimental setup** Oh DRB
 4h DRB
 6h DRB oh DRB dh DRB dh DRB 0.100 Add DRB (a.030 **Burst Fraction** Burst size (a.u.) Burst Fraction Halt transcription size 0.010 0h 0.010 Burst '4h 0.00 6h 0.00 0.00 0.0 0.0 RT-qPCR + smFISH Sense Anti-sense Sense Anti-sense Sense Anti-sense Anti-sense Sense d Sense Antisense DAPI Sense Antisense DAPI Merge Merge 0h DRB 0h DRB **Ahcyl1** Rps3a1 6h DRB 6h DRB h g Ahcyl1 | 4h auxin Rps3a1 | 4h auxin Rps3a1 Ahcyl1 0.4 0.4 Normalized to *Gapdh* relative to time 0 as 1 as.1 1.5 1.5 as.2 as.2 Co-burst fraction s.2 s.3 0.3 0.3 1.0 1.0 s.3 s.4 s.5 0.2 0.2 0.5 0.5 0.0 0.0 0.1 0.1 0hr 0.5hr 1hr 2hr 4hr 0hr 0.5hr 2hr 4hr 1hr 0.0 0.0 Time in DRB/Triptolide Exp. Exp. Obs. Obs.

Extended Data Fig.11 | **CTCF inhibits antisense burst fraction; sense/antisense co-bursting is disfavored. a**, Table showing raw smFISH allele counts. **b**, Observed fractions of alleles where sense/antisense burst independently or simultaneously at *Ahcyl1* and *Rps3a1* (error bar: SEM; n=3). Biological replicates matched by dot colors. (**c**, Experimental outline for RNA half-life estimation. **d**, Representative smFISH images before and after DRB treatment at *Ahcyl1* and *Rps3a1*. **e**, Left, box plot showing antisense and sense burst fractions at *Ahcyl1* before and after DRB treatment. Right, same as left but quantifying burst sizes. n=3 biological replicates. *P* values were calculated by two-sample *t*-test. **f**, Same as (**e** but at *Rps3a1*. **g**, RT-qPCR measuring nascent sense and antisense transcript levels at *Ahcyl1* and *Rps3a1* before and after DRB treatment. Transcripts were normalized to *Gapdh* and plotted relative to time 0 (error bar: SEM; n=4). **h**, Predicted and observed co-burst fractions at *Ahcyl1* and *Rps3a1* after 4h auxin treatment (error bar: SEM; n=3). Biological replicates matched by dot colors.

Extended Data Table 1. Top gene ontology terms.

GO biological process	# Reference	# Dataset	Expected	Fold Enrichment	+/-	raw <i>P</i> value	FDR
Developmental process	5554	54	26.02	2.08	+	4.36E-09	6.86E-05
Negative regulation of biological process	5264	46	24.66	1.87	+	4.34E-06	1.37E-02
Regulation of multicellular organismal process	2787	31	13.06	2.37	+	3.55E-06	1.40E-02
Multicellular organism development	4788	44	22.43	1.96	+	1.96E-06	1.54E-02
Anatomical structure development	5166	46	24.2	1.9	+	3.37E-06	1.77E-02
System development	4176	39	19.56	1.99	+	7.42E-06	1.95E-02
Regulation of developmental process	2521	28	11.81	2.37	+	1.35E-05	2.36E-02
Cell differentiation	3560	35	16.68	2.1	+	1.06E-05	2.38E-02
Cellular developmental process	3611	35	16.92	2.07	+	1.31E-05	2.58E-02
Positive regulation of gene expression, epigenetic	29	4	0.14	29.44	+	1.64E-05	2.59E-02

Extended Data Table 2. Oligos for sgRNAs.

Name	Sequence - Forward	Sequence - Reverse
Ahcyl1 proximal CBS guide	CACCGAACCTTGTCTGCCGCCAGG	AAACCCTGGCGGCAGACAAGGTTC
Ahcyl1 distal anchor A guide 1	CACCGCACATCTAATGTCCTATGAG	AAACCTCATAGGACATTAGATGTGC
Ahcyl1 distal anchor A guide 2	CACCGAAAGGGTAGTTCCCAGGAG	AAACCTCCTGGGAACTACCCTTTC
Ahcyl1 distal anchor B guide	CACCGAAGTAAGGCGAAATAAGTGA	AAACTCACTTATTTCGCCTTACTTC
Ahcyl1 distal anchor C guide	CACCGTATCTTCATATGCCAGAAGA	AAACTCTTCTGGCATATGAAGATAC
Azi2 proximal CBS guide	CACCGTAGTACGTACGCCCCGCCG	AAACCGGCGGGGGCGTACGTACTAC
Azi2 distal anchor A guide 1	CACCGAGGTGTGTGAGGTTCCCCCG	AAACCGGGGGGAACCTCACACACCTC
Azi2 distal anchor A guide 2	CACCGTCTAGCAAAAATAACCAATG	AAACCATTGGTTATTTTTGCTAGAC
Rps3a1 proximal CBS guide	CACCGCGCGACCTCCCGACACACGA	AAACTCGTGTGTCGGGGAGGTCGCGC
<i>Rps3a1</i> proximal CBS ssODN		GCCCGCGGCCCGCTGCGCGACCTCCCGAC GGAAACGAGCCGCCAGCTAGTGTCGCGA

Target **Sequence - Forward Sequence - Revere Coordinates (mm9)** Ahcyl1.as1 CAGGGTGAGTAGTTGAACCTTG AGACCCTTAGTCTTGTGGCATC chr3:107499644-107499741 Ahcyl1.as2 GTTAAATCCTGTGGCAGAGTCC TGGATTGATGAGGAGCTGAG chr3:107526394-107526469 Ahcvl1.as3 CCACTGGACATGATGATAGGC CCTTTGGCTTGAGTCTTTGC chr3:107526049-107526144 Ahcvl1.s1 GCTCTGATTTCACTCAGGAAACG GTGCGTACAGCCCACTATTTTA chr3:107476944-107477018 Ahcvl1.s2 AATAGTGGGCTGTACGCACAT GCAGCTACTTCATTCTGAGTTGA chr3:107476371-107476962 Ahcvl1.s3 GCTTTCTGTCGAACCTTTGC AGCCTTGGGGGATTAACTGCT chr3:107498014-107498211 Ahcvl1.s4 GCTTGTTGTGCTGGACTTGA CCCCTCCAGGATTTGTTTTT chr3:107493421-107493619 Ahcvl1.s5 CAGGACCTCTGGGAGATCAG TTCCTAAAATTCGGCGTCAC chr3:107480993-107481144 Azi2.as1 TCATCGGCTTCCTGGAATAG ATGGCTCATGGTTCTGAAGG chr9:117813405-117813511 Azi2.as2 TCACGGAATCCCAGTTGC CGGAGTGGAGCTGAGACAG chr9:117949338-117949447 Azi2.s1 AGGCACATGAGAAACACAGC TATTCCTCACATGCCCACAC chr9:117952938-117953015 Azi2.s2 CAGCGTGCTGTCTTCATTTG CCAGAGGGATGGTTTTCAAAG chr9:117955664-117955734 Azi2.s3 TGCTGTGTTGCCTCTGAAAG TGTGAGCAGGGGAAGAAAAG chr9:117956408-117956493 AAGCTAGCTGGCTGGTTTTG TGAATTCCACGTAGCCTTGG Azi2.s4 chr9:117954728-117954806 Gapdh AGGTTGTCTCCTGCGACTTCA CCAGGAAATGAGCTTGACAAAG chr6:125112229-125112329 GCTGGCTAGGCTGTGCAT CGGAAACCACAAGAAACCTG chr3:85946693-85946767 Rps3a1.as1 CTCGTGTGTCGGGGAGGTC GAAGTGGGTTGAGCATCTCTG Rps3a1.as2 chr3:85946659-85946748 CAAGAACAAGCGCCTGACGA Rps3a1.s1 CCGCGCGATCCGCCA chr3:85946410-85946480 AATGGATCGACCCTGGATGG AAAGTGGTCGGGAGTGTTGTT chr3:85945712-85945786 Rps3a1.s2 Rps3a1.s3 GAGCAAATACCCATCGGTCG CCCCAAAACCATTATGAGCTG chr3:85943120-85943212

Extended Data Table 3. RT-qPCR primers.

Target	Sequence - Forward	Sequence - Revere	Coordinates (mm9)
Ahcyl1 TSS-proximal CBS	TAAGGGTAGAGGGCGGAGAC	GGAGTCACACTCGGCTCAAT	chr3:107499485-107499713
Ahcyl1 distal anchor A	TTTGCCAACTGGTCCTTTTC	TCCAATTTATCCAGGCCAGA	chr3:107666932-107667188
Ahcyl1 distal anchor B	ACTTGGCTAAGCATGCTCCT	GCACATTCCCCAATTAATCC	chr3:107558030-107558123
Ahcyl1 distal anchor C	ATGGTTCACAGCCACTGCTT	TGAAGGAGCTTCCTCGGGTA	chr3:107721267-107721346
Control CBS	CCACACAGGCAGTCTTGAAA	GCAAGCCCTAACGCATAGAA	chr3:107670064-107670280
Azi2 TSS-proximal CBS	TCATGGGACCTGTAGTACGC	GAAGCCGGACCTGAAGACTA	chr9:117949568-117949644
Rps3a1 TSS-proximal CBS	TTTCTTGTGGTTTCCGTTGC	AAGCCCATGGTCTAGGGAAG	chr3:85946752-85946835

Extended Data Table 4. ChIP-qPCR primers.

Extended Data Table 5. 4C primers.

Target	Sequence - Reading	Sequence - Non-reading			
Ahcyl1 promoter	TTGATATGCCATCTTCCCGA	CACAGTTTCTGGATTCTACTGTGTA			
Azi2 promoter	CATTTAAGACGATGGAGTGATC	ACAAAGTGAGACATCTTCAAGA			
Rps3a1 promoter	GGTAGGGAGGCAGAAGATC	TGTCAGATACGGGTTTTCTC			

Extended Data Table 6. smFISH primers.

Sense	Sequence cttcagtaagatccaggagg ttccaagagccatagaagga	Name mAhcyl1FirstIntron_1	chr chr3	strand	start_mm9	end_mm9
Sense	ttccaagagccatagaagga		chr3	1		
-			CIII 5	+	107498845	107498864
-		mAhcyl1FirstIntron_2	chr3	+	107498275	107498294
-	accetacaaatactgtagge	mAhcyl1FirstIntron_3	chr3	+	107498072	10749809
-	gatatttactgctgttggca	mAhcyl1FirstIntron_4	chr3	+	107497338	10749735
ſ	accaacaagccctgtaatat	mAhcyl1FirstIntron_5	chr3	+	107496531	10749655
	cacttaggggggataccaatt	mAhcyl1FirstIntron_6	chr3	+	107496467	10749648
	ggtacaatgtacacttctcc	mAhcyl1FirstIntron_7	chr3	+	107495612	10749563
	ggaggttaacaataccacca	mAhcyl1FirstIntron_8	chr3	+	107494811	10749483
	cacagttgctcaaagtctgg	mAhcyl1FirstIntron_9	chr3	+	107494736	10749475
	actgtgtgtcagaccttata	mAhcyl1FirstIntron_10	chr3	+	107494574	10749459
	gtaaggatagctctgagctg	mAhcyl1FirstIntron_11	chr3	+	107494281	10749430
	cctcaaacttgcaacaacct	mAhcyl1FirstIntron_12	chr3	+	107494144	10749416
	cagagccctaacatacattc	mAhcyl1FirstIntron_13	chr3	+	107494095	10749411
	tcccagctggcaaataagaa	mAhcyl1FirstIntron_14	chr3	+	107493335	10749335
	ctcatattccccaaatagga	mAhcyl1FirstIntron_15	chr3	+	107493137	10749315
-	aaggaacatttgggctgtgg	mAhcyl1FirstIntron_16	chr3	+	107491725	10749174
-	atgggcatggaaagttctca	mAhcyl1FirstIntron_17	chr3	+	107491665	10749168
-	ggtacatgatcatatcctct	mAhcyl1FirstIntron_18	chr3	+	107491433	10749145
-	cttttggggagtactttctg	mAhcyl1FirstIntron_19	chr3	+	107490921	10749094
-	aactaggtggggaaagcagt	mAhcyl1FirstIntron_20	chr3	+	107490693	10749071
-	caagaaagccgggaaggact	mAhcyl1FirstIntron 21	chr3	+	107489850	10748986
-	ccaagctagcttactgtatt	mAhcyl1FirstIntron 22	chr3	+	107488981	10748900
ŀ	aagtagtgtttcctggaagc	mAhcyl1FirstIntron 23	chr3	+	107488525	10748854
-	ctcagcactagtaactgtcg	mAhcyl1FirstIntron 24	chr3	+	107487251	10748727
-	tccactctcagattaacagc	mAhcyl1FirstIntron 25	chr3	+	107484728	10748474
-	aagtaccccaagtacaactc	mAhcyl1FirstIntron 26	chr3	+	107484705	10748472
-	ttactactatgtgcagtgct	mAhcyl1FirstIntron 27	chr3	+	107484125	10748414
ŀ	atatttcttcagcaaccgga	mAhcyl1FirstIntron 28	chr3	+	107484003	10748402
ŀ	agtcaagagttccttagtgg	mAhcyl1FirstIntron 29	chr3	+	107483722	10748374
ŀ	agaaagggagagcctgtttt	mAhcyl1FirstIntron 30	chr3	+	107483258	1074832
-	agacagaaacctgcgtgttt	mAhcyl1FirstIntron 31	chr3	+	107483179	10748319
-	tetggaatcaateggeagtt	mAhcyl1FirstIntron 32	chr3	+	107483017	10748303
ntisense	cggcagacaaggttcaacta	mAhcyl1Antisense 1	chr3	-	107499653	1074996
-	gtgtagaaaccagactgctc	mAhcyl1Antisense 2	chr3	-	107500001	10750002
-	ttgtaaacagacaaggccca	mAhcyl1Antisense 3	chr3	-	107500053	10750007
-	ctacactcactgagagtgga	mAhcyl1Antisense 4	chr3	-	107500226	10750024
-	cagaaactgtgcgagtccaa	mAhcyl1Antisense 5	chr3	_	107500261	10750028
-	cttattctcagcatagtggg	mAhcyl1Antisense 6	chr3	_	107500931	10750095
-	catctcctgcaagagcaaac	mAhcyl1Antisense 7	chr3	-	107501890	10750190
-	atagctttgtcacgggattg	mAhcyl1Antisense 8	chr3	_	107503157	10750317
	gagacetacagaacetgtac	mAhcyl1Antisense 9	chr3	-	107503532	10750355
	atgtcaatggtgcctctaag	mAhcyl1Antisense 10	chr3	_	107504416	10750443
F		mAhcyl1Antisense_10			107504539	1075045
F	ggaagaaccagcataagggg	mAncyl1Antisense_11 mAhcyl1Antisense 12	chr3 chr3	-	107504539	1075045:
ŀ	aaggcagagaggtccttaat			-		
ŀ	ttaagtcatcaaagccctcg	mAhcyl1Antisense_13	chr3	-	107505414	10750543
F	ctttaaaacctccagttgct gctgtggaaaattgcagctt	mAhcyl1Antisense_14 mAhcyl1Antisense_15	chr3 chr3	-	107505525 107506601	10750554 10750662

beece beece <th< th=""><th></th><th>1</th><th></th><th>1 1 0</th><th></th><th>10750(741</th><th>107506760</th></th<>		1		1 1 0		10750(741	107506760
aginggecigeaganatigg mAbcyl1Antisense_18 chr3 . 107507266 107507283 gaggacactgigtettent mAbcyl1Antisense_01 chr3 . 107507328 107507742 attccaqcattricage mAbcyl1Antisense_21 chr3 . 107507738 107507742 gacagacatgitecaacta mAbcyl1Antisense_21 chr3 . 107507782 10750782 gacagacatgitecaacta mAbcyl1Antisense_21 chr3 . 107508173 107507823 gacaggacatgitecaacta mAbcyl1Antisense_26 chr3 . 107508173 107508257 tattRttettettettege mAbcyl1Antisense_26 chr3 . 107509264 107509264 107509264 107509264 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509266 107509268 107509266 107509266 107509268 107509268 107510310 107510320 attrittettettettettettettettettettettettette		agagggtaaggaaggctgac	mAhcyl1Antisense_16	chr3	-	107506741	107506760
gaggacactgtgicticata mAhcyllAntisense_19 chr3 i 107507362 107507381 attccagactatticcacgc mAhcyllAntisense_20 chr3 - 107507720 107507731 cctcattictcctatggacg mAhcyllAntisense_21 chr3 - 107507732 10750783 agacagacacatigtccacag mAhcyllAntisense_23 chr3 - 10750812 107508131 gacagacacatigtccacag mAhcyllAntisense_23 chr3 - 107508130 107508131 gacaggacactgagatgtcata mAhcyllAntisense_26 chr3 - 107509237 107509563 gacagacactgtagactgagg mAhcyllAntisense_28 chr3 - 107509248 107509563 gacagactgtatatcag mAhcyllAntisense_29 chr3 - 107510310 107510320 attigagctgtaactcaa mAhcyllAntisense_31 chr3 - 107510310 107510328 attigagctgtaactcaa mAhcyllAntisense_32 chr3 - 107510310 107510328 attagacttccaagatgact mAhcyllAntisense_32 chr3 + 85946105					-		
attccagactattcaagcc mAhcyl1Antisense_20 chr3 - 107507508 107507724 ccttatttc/tcagtgaa mAhcyl1Antisense_21 chr3 - 1075077261 1075077263 gaacagacacatgtccacag mAhcyl1Antisense_23 chr3 - 10750783 10750783 gtaacacatatgtccacag mAhcyl1Antisense_24 chr3 - 107508152 107508173 tatttructegtccaat mAhcyl1Antisense_26 chr3 - 107508286 107508256 gaacagacactgtatttructegtccaat mAhcyl1Antisense_27 chr3 - 107509764 107509266 gacagactgtattatccag mAhcyl1Antisense_20 chr3 - 107509766 107509805 acatttcctcaagttcat mAhcyl1Antisense_30 chr3 - 107509766 107509805 acatttcctcaagttcat mAhcyl1Antisense_32 chr3 - 107507784 107509766 attructtcacgttcat mAhcyl1Antisense_32 chr3 - 107507361 10750783 attructtcacgttcatag mRp3a1htrons_1 chr3 - 85945786 8594					-		
ectetatttetetetatgga mAheyll Antisense_21 chr3 - 107507722 107507724 agacagacatgtecaactca mAheyll Antisense_23 chr3 - 107507935 107507935 agtacagacatgtecaag mAheyll Antisense_23 chr3 - 107507935 107507823 actgacgtagtggteatca mAheyll Antisense_26 chr3 - 107508300 107508319 gacactgagactcagtggg mAheyll Antisense_27 chr3 - 107509373 107509237 gaactgagactcagtatgg mAheyll Antisense_27 chr3 - 107509786 107509786 gaactgagactgattacgt mAheyll Antisense_28 chr3 - 107509786 107509786 aatgtettecagatgact mAheyll Antisense_31 chr3 - 107510310 107510320 aatgtettecagatgact mAheyll Antisense_31 chr3 - 107510310 107510320 actttectacgattgact mAheyll Antisense_31 chr3 - 107510310 107510320 actttectacgattacg mRps3a1htrons_1 chr3 + 85946102			· -		-		
geattttcaagtecaactca mAhcyl1Antisense_22 chr3 - 107507783 107507802 agacagacacatgtecacag mAhcyl1Antisense_23 chr3 - 107508152 10750817 gteaaccatagtecacag mAhcyl1Antisense_23 chr3 - 107508121 10750817 tattetttectogecaact mAhcyl1Antisense_26 chr3 - 107508218 107508217 gacatgagattcagage mAhcyl1Antisense_28 chr3 - 107509237 107509237 gacatgagattgattactcace mAhcyl1Antisense_28 chr3 - 107509237 107509237 acattitectaagetead mAhcyl1Antisense_31 chr3 - 107510310 107510320 acattitectaagetad mAhcyl1Antisense_31 chr3 - 107510310 107510340 atagtettectaagetage mRps3a11trons_1 chr3 + 85946143 85946143 ccaacacagagatgatat mRps3a11trons_5 chr3 + 8594580 8594580 tatageceagetage mRps3a11trons_6 chr3 + 8594580 8594580 <t< td=""><td></td><td>attccagactatttcaagcc</td><td></td><td></td><td>-</td><td></td><td></td></t<>		attccagactatttcaagcc			-		
agacagacacatgiccaag mAhcyl1Antisens_23 chr3 107507935 107507935 gtcaaccatgiggtagtacta mAhcyl1Antisens_24 chr3 - 107508120 107508120 taattittettetgecaat mAhcyl1Antisens_26 chr3 - 107508238 107508237 gacatgagatcagatgg mAhcyl1Antisens_26 chr3 - 107509199 107509218 gagattggttatecitagg mAhcyl1Antisens_29 chr3 - 107509786 107509663 acatgacetgtataticagt mAhcyl1Antisens_20 chr3 - 107510310 107510329 acatttectcagagtact mAhcyl1Antisens_31 chr3 - 107510310 107510329 attagtetteccagattgact mAhcyl1Antisens_32 chr3 - 107510310 107510329 actacacagatgact mAhcyl1Antisense_31 chr3 + 85946148 85946162 ccacacacaagtgacta mRps3a1Introns_1 chr3 + 85946086 85946106 ccacacacaggtgact mRps3a1Introns_6 chr3 + 85945978 8594510 tc		cctctatttctctcatggaa			-		
gtcaaccatatggettaage mAhcyl1Antisense_24 chr3 - 107508152 107508171 actgacgtgriggtactca mAhcyl1Antisense_25 chr3 - 107508310 107508310 107508310 107508310 107508310 107508310 107508310 107509236 gacadtgagactcagatatg mAhcyl1Antisense_27 chr3 - 107509438 107509236 gtagagttggttacgtagg mAhcyl1Antisense_29 chr3 - 107509786 10750986 acttattectacagettcat mAhcyl1Antisense_30 chr3 - 107510310 107510329 aatagtettectagettaat mAhcyl1Antisense_31 chr3 - 107510310 107510329 aatagtettectaggetta mAhcyl1Antisense_31 chr3 - 107510310 107510329 aatagtettectaggetta mRby3al1ntrons_1 chr3 + 85946162 ccaccacacagagtgatat mRby3al1ntrons_3 chr3 + 85945598 85945977 tgcacttaacacaggagtgat mRps3al1ntrons_4 chr3 + 85945584 85945594 tatatageacatgtacadegtmeacege		gcattttcaagtccaactca		chr3	-		
actgacgtgatggteatta mAhcyl1Antisense_25 chr3 - 107508238 107508237 tatttetttectgecaaet mAhcyl1Antisense_26 chr3 - 107508219 gacaettggatectagatggg mAhcyl1Antisense_27 chr3 - 107509237 107509237 gatagtggtttagttatectace mAhcyl1Antisense_28 chr3 - 107509248 107509256 gataggetgtatatetcagt mAhcyl1Antisense_30 chr3 - 107510310 107510320 acattletcetaagtget mAhcyl1Antisense_32 chr3 - 107510310 107510320 atagtetteccaagtget mAhcyl1Antisense_32 chr3 - 107510310 107510320 atagtetteccaagtget mAhcyl1Antisense_32 chr3 - 107510310 107510380 geggtgttaaanagtgecac mRps3a1Introns_1 chr3 + 85946142 85946162 cacgacacaaggeagtactat mRps3a1Introns_5 chr3 + 85945863 85945813 tactacacacaggeagtactatt mRps3a1Introns_6 chr3 + 859454514 85945843 <t< td=""><td></td><td>agacagacacatgtccacag</td><td>mAhcyl1Antisense_23</td><td>chr3</td><td>-</td><td>107507935</td><td>107507954</td></t<>		agacagacacatgtccacag	mAhcyl1Antisense_23	chr3	-	107507935	107507954
taatitetiteetgecaact mAheyl1Antisense_26 chr3 - 107508300 107508319 gaaagtggttagttaggtaggg mAheyl1Antisense_27 chr3 - 107509237 107509237 gaagtggttagttaggtaggg mAheyl1Antisense_28 chr3 - 107509648 107509667 agcagcactgtatatteagt mAheyl1Antisense_30 chr3 - 107510310 107510329 aatagtettecaggetteat mAheyl1Antisense_31 chr3 - 107510310 107510329 aatagtettecaggatgaet mAheyl1Antisense_32 chr3 - 107510310 107510380 ccaccacagatgacagt mRpSallhtrons_1 chr3 + 85946108 8594517 ccaccacacagagtgacatg mRpSallhtrons_3 chr3 + 85945978 85945977 tgcaettaacacegacgeg mRpSallhtrons_5 chr3 + 85945986 85945977 tgcaectacaggatgactta mRpSallhtrons_7 chr3 + 85945977 85945977 tgcaectacaggacatta mRpSallhtrons_7 chr3 + 85945518 85945588		gtcaaccatatggcttaagc	mAhcyl1Antisense_24	chr3	-	107508152	107508171
gacactgagactcagatggg mAhcyl1Antisense_27 chr3 - 107509199 107509218 ggaagtggttagategg mAhcyl1Antisense_28 chr3 - 107509237 107509265 gacgacatgtatattcagt mAhcyl1Antisense_30 chr3 - 107509486 107509805 acattticctacagtettattcagt mAhcyl1Antisense_30 chr3 - 107510310 107510329 aatagtetticccagatgact mAhcyl1Antisense_31 chr3 - 107510361 107510329 aatagtetticccagatgact mAhcyl1Antisense_31 chr3 - 107510361 107510380 Sense gcggtgttaaaagtgcac mRps3a1Introns_1 chr3 + 8594686 85946162 cacgacacagtgatatt mRps3a1Introns_3 chr3 + 85945784 85945977 tigacattaacacagtgcagg mRps3a1Introns_5 chr3 + 85945586 8594584 catgggcgtacatgactgat mRps3a1Introns_7 chr3 + 85945618 8594584 catggcgcgtacatageatgeate mRps3a1Introns_11 chr3 + 8594566		actgacgtgatggtcatcta	mAhcyl1Antisense_25	chr3	-	107508238	107508257
ggaagtiggittacigagg mAhcyl1Antisense_28 chr3 - 107509237 107509256 gtagagctgitaticagi mAhcyl1Antisense_29 chr3 - 107509648 107509805 acagcactgitaticagit mAhcyl1Antisense_30 chr3 - 107510310 107510329 aatagtetteccagatgaet mAhcyl1Antisense_32 chr3 - 107510310 107510329 atagtetteccagatgaet mAhcyl1Antisense_32 chr3 - 107510326 107510329 cageacacagtigacati mAhcyl1Antisense_32 chr3 + 85945143 85945162 cacacacaggcagtactat mRps3a1Introns_1 chr3 + 8594580 859458177 tgcaettacecaggacg mRps3a1Introns_5 chr3 + 8594580 85945817 tatatgcacatgcacage mRps3a1Introns_6 chr3 + 85945810 85945810 tatatgcacatgcacacage mRps3a1Introns_7 chr3 + 85945410 85945420 tegcacacategitgacatacage mRps3a1Introns_10 chr3 + 85945410 85944520		taatttettteetgecaact	mAhcyl1Antisense_26	chr3	-	107508300	107508319
gtatgagetgtaatctaac mAhcyl1Antisense_30 chr3 - 107509648 107509667 agcagcactgtatatcagt mAhcyl1Antisense_31 chr3 - 107510310 107510329 aatagtettecagattgact mAhcyl1Antisense_31 chr3 - 107510361 107510380 aatagtettecagattgact mAhcyl1Antisense_32 chr3 - 107510361 107510380 Rps3a1 chr3 + 85946143 85946162 ccagcacacaagttgacatg mRps3a1Introns_1 chr3 + 85946086 85946105 catcacacaggeagtactat mRps3a1Introns_5 chr3 + 8594556 85945797 tgcacttaacacaggeagtactat mRps3a1Introns_6 chr3 + 85945565 8594584 tatatgcacatgcacacagt mRps3a1Introns_7 chr3 + 8594561 8594581 tatatgcacatgtactataa mRps3a1Introns_9 chr3 + 8594563 8594480 tactgccacacctagtactatacage mRps3a1Introns_12 chr3 + 85944561 85944483 tatatgcacaga		gacactgagactcagatggg	mAhcyl1Antisense_27	chr3	-	107509199	107509218
agcagcactgtatattcagt mAhcyllAntisense_30 chr3 - 107509786 107509805 acattticctacagcticat mAhcyllAntisense_31 chr3 - 107510310 107510329 atagteticccagatgact mAhcyllAntisense_32 chr3 - 107510361 107510380 Rps3a Chr3 + 85946143 85946162 ccagcacacagtggactat mRps3a1Introns_1 chr3 + 85945958 85945977 tgcacttacacaggcgacg mRps3a1Introns_4 chr3 + 85945958 85945917 tgcacttacacaggcgacg mRps3a1Introns_6 chr3 + 85945958 85945813 tatattgcacatgcacaage mRps3a1Introns_6 chr3 + 85945565 85945540 catgggctgacatteaat mRps3a1Introns_10 chr3 + 8594511 85945429 ctccatcatgtgacaatteaag mRps3a1Introns_11 chr3 + 85944506 85945482 tatatgcacacttgaacaatcaag mRps3a1Introns_12 chr3 + 85944506 85945482		ggaagttggtttacgtaggg	mAhcyl1Antisense_28	chr3	-	107509237	107509256
acatiticcia.agcitcat mAhcyl1Antisense_31 chr3 - 107510310 107510329 atagtettcccagatgact mAhcyl1Antisense_32 chr3 - 107510361 107510380 Rps3a1 kme - 107510361 107510380 Sequence Name chr3 + 85946143 85946162 ccagacacaagtgacatg mRps3a1Introns_1 chr3 + 85945958 85945977 tgcacttaacacagcgagacg mRps3a1Introns_5 chr3 + 85945958 8594594 ttatategcacatgccacage mRps3a1Introns_6 chr3 + 8594514 85945530 ttatategcacatgcacage mRps3a1Introns_7 chr3 + 8594511 85945420 ttactgccaacactagag mRps3a1Introns_10 chr3 + 85945410 85945429 ttactgccaacactagag mRps3a1Introns_11 chr3 + 85944504 85945429 ttactgccaacactagag mRps3a1Introns_13 chr3 + 85944504 85944504 <td></td> <td>gtatgagctgtaatctcacc</td> <td>mAhcyl1Antisense_29</td> <td>chr3</td> <td>-</td> <td>107509648</td> <td>107509667</td>		gtatgagctgtaatctcacc	mAhcyl1Antisense_29	chr3	-	107509648	107509667
atatgtetteccagatgact mAlcyl1Antisens_32 chr3 - 107510361 107510380 Rps3a1 Sense gcggtgttaaaaagtgccac mRps3a1Introns_1 chr3 + 85946143 85946162 ccaccacaagcagttgacatg mRps3a1Introns_2 chr3 + 85946143 85946162 catacacaggcagtactat mRps3a1Introns_4 chr3 + 85945958 85945957 tgcacttaacacagcaggacg mRps3a1Introns_5 chr3 + 85945958 85945869 ttcttacetteagactet mRps3a1Introns_6 chr3 + 85945510 85945869 ttcttacetteagactet mRps3a1Introns_7 chr3 + 85945511 85945420 catgggctgacatteaaga mRps3a1Introns_9 chr3 + 85945461 85945429 ctcatacacagtatgag mRps3a1Introns_10 chr3 + 859445063 85945429 ttadgccaatacatata mRps3a1Introns_11 chr3 + 85944542 85944542 ttaggacacatttectate mRps3a1Introns_15 chr3 +		agcagcactgtatattcagt	mAhcyl1Antisense_30	chr3	-	107509786	107509805
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		acattttcctacagcttcat	mAhcyl1Antisense_31	chr3	-	107510310	107510329
Sequence Name chr strand start end Sense gcggtgttaaaagtgccac mRps3allntrons_1 chr3 + 85946143 85946162 ccagcacacagtgtgactg mRps3allntrons_2 chr3 + 85945958 85945075 cactacacaggcagtactat mRps3allntrons_4 chr3 + 85945850 85945874 ttettatcottcagacttct mRps3allntrons_6 chr3 + 85945850 85945874 ttatatgcacatgccacage mRps3allntrons_7 chr3 + 85945811 85945810 categcacacactaacagt mRps3allntrons_9 chr3 + 85945410 85945480 tactgccaacacacagacatac mRps3allntrons_11 chr3 + 85945410 85945480 tactgccaacacataacgt mRps3allntrons_10 chr3 + 85945063 859458420 gtggcgtgacatttcata mRps3allntrons_11 chr3 + 85944843 85944845 tactgccaacacagaag mRps3allntrons_13 chr3 + 85944648 85944796 atteca		aatagtcttcccagatgact	mAhcyl1Antisense_32	chr3	-	107510361	107510380
Sequence Name chr strand start end Sense gcggtgttaaaaagtgccac mRps3alIntrons_1 chr3 + 85946143 85946162 ccagcacacaagtgcatgt mRps3alIntrons_2 chr3 + 85945958 85945075 caccacaggcagtactat mRps3alIntrons_4 chr3 + 85945958 85945974 ttettatcettcagacttet mRps3alIntrons_6 chr3 + 85945850 85945864 ttettatcettcagacttet mRps3alIntrons_6 chr3 + 85945511 85945813 taatatgcacatgcacage mRps3alIntrons_7 chr3 + 85945810 85945840 cactgggctgacattteata mRps3alIntrons_10 chr3 + 85945410 85945480 tactgccaacactaaacgt mRps3alIntrons_11 chr3 + 85945063 85945842 tactgccaacactgagacagacatac mRps3alIntrons_11 chr3 + 85944843 85944845 taggacactttettetat mRps3alIntrons_13 chr3 + 85944648 85944796 a			Rps3a1				
$ \begin{array}{c} cagcacacaagttgacatg mRps3a1Intron_2 chr3 + 85946086 85946105 \\ catcacacaggcagtactat mRps3a1Introns_3 chr3 + 85945958 85945977 \\ tgcacttaacacgacggacg mRps3a1Introns_4 chr3 + 85945958 85945977 \\ tgcacttacacagactt mRps3a1Introns_5 chr3 + 85945850 85945869 \\ ttcttacctrcagacttc mRps3a1Introns_6 chr3 + 85945794 85945810 \\ catgggctgacattcaat mRps3a1Introns_6 chr3 + 85945511 85945584 \\ catgggctgacattcaat mRps3a1Introns_7 chr3 + 85945410 85945429 \\ ctcacatctgactagacg mRps3a1Introns_10 chr3 + 85945410 85945429 \\ ctcacatcatgtttgata mRps3a1Introns_11 chr3 + 85945410 85945429 \\ ctcacatcatgtttgata mRps3a1Introns_11 chr3 + 85945410 85945429 \\ ctcactgtacacagcaatac mRps3a1Introns_11 chr3 + 85944926 85944945 \\ taggacacatggacgtacaatgag mRps3a1Introns_13 chr3 + 85944841 85944843 \\ aggacagagggacgaa mRps3a1Introns_15 chr3 + 85944642 85944451 \\ tacatgtcatagtcatttc mRps3a1Introns_16 chr3 + 85944694 85944713 \\ tgaacactttccttgat mRps3a1Introns_16 chr3 + 85944694 85944713 \\ tgaacagattcccttgaat mRps3a1Introns_17 chr3 + 85944694 85944451 \\ tcatcatcattccctatta mRps3a1Introns_18 chr3 + 85944604 85944451 \\ tcatcattagtcatttc mRps3a1Introns_18 chr3 + 85944604 85944451 \\ ccggaaacaaatactggca mRps3a1Introns_19 chr3 + 85944402 85944451 \\ gctgaacaattcccttgaa mRps3a1Introns_19 chr3 + 85944664 85944459 \\ gaccattttgtgaaagg mRps3a1Introns_20 chr3 + 85944302 85944451 \\ gctgaacaatatccteca mRps3a1Introns_21 chr3 + 85943363 85943853 \\ tagttcagtaccagaca mRps3a1Introns_22 chr3 + 8594358 8594377 \\ ctttatggcaatatcca mRps3a1Introns_22 chr3 + 8594358 8594377 \\ ctttatggcaattcctta mRps3a1Introns_22 chr3 + 8594358 8594358 \\ tagttcagtactccta mRps3a1Introns_22 chr3 + 8594366 8594382 \\ taagcaccttettata mRps3a1Introns_22 chr3 + 8594366 8594382 \\ taagcacctettettaa mRps3a1Introns_22 chr3 + 8594366 8594382 \\ taagcacettettetta$		Sequence	-	chr	strand	start	end
$\begin{array}{c} ccagcacacagttgacatg mRps3a1Introns_2 chr3 + 85946086 85946105 \\ catcacacaggcagtactat mRps3a1Introns_3 chr3 + 85945958 85945977 \\ tgcacttaacacgacggacg mRps3a1Introns_4 chr3 + 85945958 85945977 \\ tgcactaacaggacg mRps3a1Introns_5 chr3 + 8594580 85945861 \\ tatatgcacatgcacagc mRps3a1Introns_6 chr3 + 85945794 85945813 \\ taatagcacatgcacagc mRps3a1Introns_6 chr3 + 85945511 85945584 \\ cactgggctgacattcaat mRps3a1Introns_8 chr3 + 85945410 85945429 \\ ctgcacactctgtactaaga mRps3a1Introns_10 chr3 + 85945410 85945429 \\ ctccattccatgttitgata mRps3a1Introns_11 chr3 + 85945410 85945429 \\ ctccattccatgttitgata mRps3a1Introns_12 chr3 + 85945410 85945429 \\ ctccattgcacatcgacagc mRps3a1Introns_11 chr3 + 85944926 85944945 \\ taggacagatggacgaa mRps3a1Introns_13 chr3 + 85944843 85944843 \\ aggacagaggggacgaa mRps3a1Introns_14 chr3 + 859444814 85944843 \\ attccctacatgtcattc mRps3a1Introns_15 chr3 + 85944694 85944713 \\ tgaacacattgccattac mRps3a1Introns_16 chr3 + 85944694 85944713 \\ tgaacagattcccttgaat mRps3a1Introns_17 chr3 + 85944694 85944713 \\ tgaacagattcccttgaat mRps3a1Introns_18 chr3 + 85944694 85944459 \\ gaccattttgtgaagacg mRps3a1Introns_18 chr3 + 85944694 85944459 \\ gaccattttgtgaagac mRps3a1Introns_18 chr3 + 85944402 85944459 \\ gaccattttgtgaagacg mRps3a1Introns_18 chr3 + 85944302 85944459 \\ gaccattttgtgaagagg mRps3a1Introns_20 chr3 + 85943868 \\ tagttcaqtaccaga mRps3a1Introns_21 chr3 + 85943868 85943885 \\ tagttcaqtaccaga mRps3a1Introns_22 chr3 + 85943868 85943858 \\ tagttcaqtaccaga mRps3a1Introns_22 chr3 + 85943363 85943825 \\ tagttcaqtaccaga mRps3a1Introns_22 chr3 + 85943363 85943825 \\ tagttcaqtactccta mRps3a1Introns_20 chr3 + 85943564 85943828 \\ tagtcaqtatggg mRps3a1Introns_20 chr3 + 85943648 85943359 \\ adccacctgtaatatg mRps3a1Introns_20 chr3 + 85943668 85943825 \\ tagttcaqtaccaga mRps3a1Introns_20 chr3 + 85943668 85943825 \\ tagttcaqtactcata mRps3a1Introns_20 chr3 + 85943668 85943825 \\ tagtcatatggtactaga mRps3a1Introns_20 chr3 + 85943664 85943826 \\ taacacctgtaatatggtac mRps3a1Introns_20 chr3 + 85943660 85943369 \\ aacaccetttattaa mRps3$	Sense	gcggtgttaaaaagtgccac	mRps3a1Introns 1	chr3	+	85946143	85946162
$ \begin{array}{c} catcacacagcagtactat & mRps3a1Introns_3 & chr3 & + & 85945958 & 85945977 \\ tgcacttaacacgacagag & mRps3a1Introns_4 & chr3 & + & 85945850 & 85945869 \\ ttcttatcctcagacttet & mRps3a1Introns_5 & chr3 & + & 85945850 & 85945843 \\ taatagcacatgcacagc & mRps3a1Introns_6 & chr3 & + & 85945555 & 85945584 \\ cactgggetgacattteaat & mRps3a1Introns_7 & chr3 & + & 85945411 & 85945530 \\ tgccacatctgactaaga & mRps3a1Introns_8 & chr3 & + & 85945410 & 85945429 \\ ctccattccatgttttgata & mRps3a1Introns_9 & chr3 & + & 85945410 & 85945429 \\ ctccattccatgttttgata & mRps3a1Introns_10 & chr3 & + & 85945410 & 85945429 \\ ctccattccatgttttgata & mRps3a1Introns_11 & chr3 & + & 85945410 & 85944945 \\ tagagcacattgacacatgag & mRps3a1Introns_11 & chr3 & + & 85944926 & 85944945 \\ tagagcacattgacacatgag & mRps3a1Introns_11 & chr3 & + & 85944713 & 85944862 \\ tccactgtcagacacagga & mRps3a1Introns_14 & chr3 & + & 85944778 & 85944796 \\ attcccatcatttcc & mRps3a1Introns_15 & chr3 & + & 85944694 & 85944713 \\ tgaacagettcccttgaat & mRps3a1Introns_16 & chr3 & + & 85944694 & 85944618 \\ ccggaaacaaaatcctggca & mRps3a1Introns_16 & chr3 & + & 85944694 & 85944618 \\ ccggaaacaaatcctggca & mRps3a1Introns_18 & chr3 & + & 85944302 & 85944618 \\ ccggaaacaaatcctggca & mRps3a1Introns_19 & chr3 & + & 85944302 & 85944618 \\ ccggaaacaaatcctggca & mRps3a1Introns_20 & chr3 & + & 85943783 & 85943803 \\ atttatgtcaactcccta & mRps3a1Introns_22 & chr3 & + & 85943786 & 85943885 \\ tagttcagtactccatga & mRps3a1Introns_22 & chr3 & + & 85943784 & 85943865 \\ tadacccctgtaatatgem & mRps3a1Introns_22 & chr3 & + & 85943783 & 85943777 \\ cgtttatggcacatcat & mRps3a1Introns_22 & chr3 & + & 85943783 & 85943772 \\ cgttatatggcactectaa & mRps3a1Introns_22 & chr3 & + & 85943784 & 85943794 \\ accaccctgtaacagtact & mRps3a1Introns_22 & chr3 & + & 85943784 & 85943772 \\ cgttatatggcacttetma & mRps3a1Introns_22 & chr3 & + & 85943784 & 85943792 \\ acccacctgtgacagatat & mRps3a1Introns_27 & chr3 & + & 85943784 & 85943792 \\ acccacctgtaactgea & mRps3a1Introns_29 & chr3 & + & 85942709 \\ tacctatgtatactgtggcat & mRps3a1Int$				chr3	+	85946086	85946105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· _		+		
ItettatectteagactietmRps3a1Introns_5chr3+8594579485945813IaatatgcacatgccacagcmRps3a1Introns_6chr3+8594555585945584cactgggctgacattcaatmRps3a1Introns_7chr3+8594551185945530ctgccacatctgtactaagamRps3a1Introns_9chr3+8594546185945429ctccattcatgtittgatamRps3a1Introns_10chr3+859450385945082gtggccgtaacaagcaatacmRps3a1Introns_11chr3+8594492685944961tagagcactttictctatcmRps3a1Introns_12chr3+8594484385944863tagagcactttictctatcmRps3a1Introns_13chr3+8594496485944796atttecctacatgtatticmRps3a1Introns_14chr3+8594469485944713tgaacacttticctgaatmRps3a1Introns_15chr3+8594469485944618ccggaaacaaaatectggcamRps3a1Introns_16chr3+8594446185944459gaccatttitgtgacaagcmRps3a1Introns_19chr3+8594430285944321accttettgaaaggggmRps3a1Introns_19chr3+8594438585944321accttettgaaaggggmRps3a1Introns_20chr3+8594336385943382tagttcaatcecaagamRps3a1Introns_22chr3+8594336385943382tagttcaatagcattectaamRps3a1Introns_23chr3+8594346885943363attatgtcaacactcctaamRps3a1Introns_24chr3+8594336385943382 <t< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td></t<>					+		
$ \begin{array}{ccccc} \mbox{tatatgcacatgc} mRps3a1Introns_6 & chr3 & + & 85945565 & 85945584 \\ \mbox{catgggctgacattcaat} & mRps3a1Introns_7 & chr3 & + & 85945511 & 85945530 \\ \mbox{ctgccacatctgtactaaga} & mRps3a1Introns_8 & chr3 & + & 85945461 & 85945480 \\ \mbox{tatgccacacccaaacgt} & mRps3a1Introns_9 & chr3 & + & 85945410 & 85945429 \\ \mbox{ctccattcatgttttgata} & mRps3a1Introns_10 & chr3 & + & 85945063 & 85945082 \\ \mbox{gtggccgtaacaagcaatac} & mRps3a1Introns_11 & chr3 & + & 85944926 & 85944945 \\ \mbox{taggacactttctctatc} & mRps3a1Introns_12 & chr3 & + & 85944814 & 85944862 \\ \mbox{tccactgtcagacaactgag} & mRps3a1Introns_13 & chr3 & + & 85944814 & 85944813 \\ \mbox{aaggacagaggggaccgaa} & mRps3a1Introns_16 & chr3 & + & 85944777 & 85944796 \\ \mbox{attcccatgtcattc} & mRps3a1Introns_16 & chr3 & + & 85944694 & 85944413 \\ \mbox{tggacactttcttgata} & mRps3a1Introns_16 & chr3 & + & 85944694 & 859444618 \\ \mbox{ccggaaacaaaacactggca} & mRps3a1Introns_18 & chr3 & + & 85944599 & 85944618 \\ \mbox{ccggaaacaaaacactggca} & mRps3a1Introns_19 & chr3 & + & 85944302 & 85944321 \\ \mbox{attcctttgtagaaggggc} & mRps3a1Introns_20 & chr3 & + & 85944302 & 85943865 \\ \mbox{tattggcaatgccacattag} & mRps3a1Introns_21 & chr3 & + & 85944388 & 85943803 \\ \mbox{atttatgtccacagca} & mRps3a1Introns_22 & chr3 & + & 85943866 & 85943885 \\ \mbox{tattggcacattccttaa} & mRps3a1Introns_22 & chr3 & + & 85943363 & 85943821 \\ \mbox{accacctgtgacaaata} & mRps3a1Introns_24 & chr3 & + & 85943363 & 85943821 \\ \mbox{accaccttttaa} & mRps3a1Introns_26 & chr3 & + & 85943363 & 85943321 \\ \mbox{accacctttttaa} & mRps3a1Introns_26 & chr3 & + & 85943193 & 85943290 \\ \mbox{attatggcacttcattag} & mRps3a1Introns_27 & chr3 & + & 85943268 & 85943362 \\ \mbox{attatggtcact} & mRps3a1Introns_26 & chr3 & + & 85943193 & 85943212 \\ \mbox{accaccttgtatacgtgcca} & mRps3a1Introns_27 & chr3 & + & 85943268 & 85943200 \\ \mbox{attatggtcattctttaa} & mRps3a1Introns_29 & chr3 & + & 85942600 & 85942700 \\ \mbox{tccttatgctittgtc} & mRps3a1Introns_29 & chr3 & + & 8594260 & 85942700 \\ \mbox{tccttatgctitttgtci} & m$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			+		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c} ctccattccatgttttgaa mRps3a1Introns_10 & chr3 & + 85945063 & 85945082 \\ gtggccgtaacaagcaatac mRps3a1Introns_11 & chr3 & + 85944926 & 85944945 \\ tagagcacttttctctatc mRps3a1Introns_12 & chr3 & + 85944843 & 85944862 \\ tccactgtcagacaactgag mRps3a1Introns_13 & chr3 & + 85944814 & 85944833 \\ aaggacagaaggggaccgaa mRps3a1Introns_14 & chr3 & + 85944814 & 85944813 \\ tccactgtcatgtcattc mRps3a1Introns_15 & chr3 & + 85944694 & 85944713 \\ tgaacagctttcccttgaat mRps3a1Introns_16 & chr3 & + 85944642 & 85944618 \\ ccggaaacaaaatcctggca mRps3a1Introns_17 & chr3 & + 85944400 & 85944459 \\ gaccatttttgtggcaaagc mRps3a1Introns_18 & chr3 & + 85944400 & 85944459 \\ gaccatttttgtggcaaagc mRps3a1Introns_19 & chr3 & + 85944400 & 85944321 \\ atcctttcttgaaagagggc mRps3a1Introns_20 & chr3 & + 85944302 & 85943211 \\ atcctttcttgaaagaggc mRps3a1Introns_21 & chr3 & + 85943866 & 85943885 \\ tagttcagtactccaagca mRps3a1Introns_22 & chr3 & + 85943784 & 85943803 \\ atttagtcacactectca mRps3a1Introns_23 & chr3 & + 85943458 & 8594377 \\ cgtttatggcaatata mRps3a1Introns_26 & chr3 & + 85943363 & 85943382 \\ tcaageccacgtgacaaata mRps3a1Introns_27 & chr3 & + 85943193 & 85943212 \\ acctcatatggtgg mRps3a1Introns_26 & chr3 & + 85943193 & 85943212 \\ acctacatgttttgggg mRps3a1Introns_27 & chr3 & + 85943193 & 85943212 \\ acctcactcttctttaa mRps3a1Introns_28 & chr3 & + 85943193 & 85943212 \\ accaccctgtatatgggg mRps3a1Introns_29 & chr3 & + 8594262 & 85942709 \\ ttccttatgctttttgtct mRps3a1Introns_29 & chr3 & + 85942662 & 85942709 \\ ttccttatgctttttgtct mRps3a1Introns_20 & chr3 & + 85942662 & 85942709 \\ ttccttatgctttttgtct mRps3a1Introns_29 & chr3 & + 85942662 & 85942681 \\ aaaaccacgtacttggttcc mRps3a1Introns_30 & chr3 & + 85942347 & 85942347 \\ seguttatggttcc mRps3a1Introns_31 & chr3 & + 85942347 & 85942366 \\ taaaccacgtacttggttcc mRps3a1Introns_31 & chr3 & + 85942347 & 85942366 \\ taaaccacgtacttggttcc mRps3a1Introns_31 & chr3 & + 85942347 & 85942366 \\ taaaccacgtacttggttcc mRps3a1Introns_31 & chr3 & + 85942347 & 85942366 \\ taaaccacgtacttggttcc mRps3a1Introns_31 & chr3 & + 85942347 $			1 <u>–</u>				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 –				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
tgaacagetttecettgaatmRps3a1Introns_16chr3+ 85944642 85944661 teateactectectectatamRps3a1Introns_17chr3+ 85944642 85944618 ceggaaacaaaateetggeamRps3a1Introns_18chr3+ 85944440 85944459 gaccatttttgtggeaaagemRps3a1Introns_19chr3+ 85944302 85944321 ateettettgaaagagggemRps3a1Introns_20chr3+ 85944138 85944157 getgtacatgacagatgtetmRps3a1Introns_21chr3+ 85943866 85943885 tagttteagtactecaageamRps3a1Introns_22chr3+ 85943458 85943803 atttatgteaacateeteamRps3a1Introns_23chr3+ 8594363 85943382 teageceacgtgacaaatamRps3a1Introns_24chr3+ 85943340 85943359 ageteatataggttttggggmRps3a1Introns_26chr3+ 85943193 85943212 aactecacettetttaacmRps3a1Introns_27chr3+ 85942900 85942727 85942709 tteattagtgtactedmRps3a1Introns_29chr3+ 85942600 85942709 tteettagetttttgtetmRps3a1Introns_30chr3+ 85942662 85942661 aaaaccacgtacttggtteemRps3a1Introns_31chr3+ 85942347 85942347			. =				
$c_{catcatcattcccatata}$ $mRps3a1Introns_17$ $chr3$ + 85944599 85944618 $ccggaaacaaatcctggca$ $mRps3a1Introns_18$ $chr3$ + 85944440 85944459 $gaccatttttgtggcaaagc$ $mRps3a1Introns_19$ $chr3$ + 85944302 85944321 $atcctttcttgaaagagggc$ $mRps3a1Introns_20$ $chr3$ + 85944302 85944321 $atcctttcttgaaagagggc$ $mRps3a1Introns_20$ $chr3$ + 85944138 85944157 $gctgtacatgacagatgtct$ $mRps3a1Introns_21$ $chr3$ + 85943866 85943885 $tagtttcagtactccaagca$ $mRps3a1Introns_22$ $chr3$ + 85943458 85943803 $atttatgtcaacatccctca$ $mRps3a1Introns_23$ $chr3$ + 85943458 85943823 $tcaagcccacgtgacaaata$ $mRps3a1Introns_24$ $chr3$ + 85943458 859433212 $actccacctgtgacaaata$ $mRps3a1Introns_26$ $chr3$ + 85943193 85943212 $actccacctcttctttaac$ $mRps3a1Introns_27$ $chr3$ + 85942881 85942900 $gtatgttatcagtggccat$ $mRps3a1Introns_28$ $chr3$ + 85942690 85942709 $ttccttagctttttgtct$ $mRps3a1Introns_29$ $chr3$ + 85942690 85942709 $ttccttagctttttgtct$ $mRps3a1Introns_31$ $chr3$ + 85942662 85942661		-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1 =				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 <u>–</u>				
tagttcagtactccaagcamRps3a1Introns_22chr3+ 85943784 85943803 atttatgtcaacatccctcamRps3a1Introns_23chr3+ 85943458 85943477 cgtttatggcacttccttaamRps3a1Introns_24chr3+ 85943363 85943382 tcaagcccacgtgacaaatamRps3a1Introns_25chr3+ 85943340 85943359 agctcataatggttttggggmRps3a1Introns_26chr3+ 85943193 85943212 aactccacctcttctttaacmRps3a1Introns_27chr3+ 85942881 85942900 gtaatgttatcagtggccatmRps3a1Introns_28chr3+ 85942727 85942746 taaccacctgtaactgcatmRps3a1Introns_29chr3+ 85942690 85942709 ttccttatgctttttgtctmRps3a1Introns_30chr3+ 85942662 85942681 aaaaccacgtacttggttccmRps3a1Introns_31chr3+ 85942347 85942366							
atttatgtcaacatccetcamRps3a1Introns_23chr3+ 85943458 85943477 cgtttatggcacttcettaamRps3a1Introns_24chr3+ 85943458 85943477 cgtttatggcactteettaamRps3a1Introns_24chr3+ 85943363 85943382 teaageceacgtgacaaatamRps3a1Introns_25chr3+ 85943340 85943359 ageteatatggttttggggmRps3a1Introns_26chr3+ 85943193 85943212 aacteceacetettetttaacmRps3a1Introns_27chr3+ 85942881 85942900 gtaatgttateagtggccatmRps3a1Introns_28chr3+ 85942727 85942746 taaceacetgtataetgeatmRps3a1Introns_29chr3+ 85942690 85942709 tteettatgetttttgtetmRps3a1Introns_30chr3+ 85942662 85942681 aaaaccaegtacttggtteemRps3a1Introns_31chr3+ 85942347 85942366							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
tcaagcccacgtgacaaatamRps3a1Introns_25chr3+ 85943340 85943359 agctcataatggttttggggmRps3a1Introns_26chr3+ 85943193 85943212 aactccacctcttctttaacmRps3a1Introns_27chr3+ 85942881 85942900 gtaatgttatcagtggccatmRps3a1Introns_28chr3+ 85942727 85942746 taaccacctgtatactgcatmRps3a1Introns_29chr3+ 85942690 85942709 ttccttatgctttttgtctmRps3a1Introns_30chr3+ 85942662 85942681 aaaaccacgtacttggttccmRps3a1Introns_31chr3+ 85942347 85942366			1 _				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
aactccacctcttctttaacmRps3a1Introns_27chr3+ 85942881 85942900 gtaatgttatcagtggccatmRps3a1Introns_28chr3+ 85942727 85942746 taaccacctgtatactgcatmRps3a1Introns_29chr3+ 85942690 85942709 ttccttatgctttttgtctmRps3a1Introns_30chr3+ 85942662 85942681 aaaaccacgtacttggttccmRps3a1Introns_31chr3+ 85942347 85942366							
gtaatgttatcagtggccat mRps3a1Introns_28 chr3 + 85942727 85942746 taaccacctgtatactgcat mRps3a1Introns_29 chr3 + 85942690 85942709 ttccttatgctttttgtct mRps3a1Introns_30 chr3 + 85942662 85942681 aaaaccacgtacttggttcc mRps3a1Introns_31 chr3 + 85942347 85942366							
taaccacctgtatactgcatmRps3a1Introns_29chr3+8594269085942709ttccttatgcttttttgtctmRps3a1Introns_30chr3+8594266285942681aaaaccacgtacttggttccmRps3a1Introns_31chr3+8594234785942366							
ttccttatgctttttgtctmRps3a1Introns_30chr3+8594266285942681aaaaccacgtacttggttccmRps3a1Introns_31chr3+8594234785942366							
aaaaccacgtacttggttcc mRps3a1Introns_31 chr3 + 85942347 85942366			. =				
aacctaaactacagcccgaa mRps3a1Introns_32 chr3 + 85942076 85942095							
		aacctaaactacagcccgaa	mRps3a1Introns_32	chr3	+	85942076	85942095

Antisense	catctctgacaatctgcagg	mRps3a1asHT1_1	chr3	-	85946716	85946735
	ccacaagaaacctgaagtgg	mRps3a1asHT1_2	chr3	-	85946742	85946761
	gagtagtcagcacgtgaaca	mRps3a1asHT2_1	chr3	-	85946995	85947014
	agttcacaacacagccaagc	mRps3a1asHT2_2	chr3	-	85947019	85947038
	gctaagcctcttttttcatg	mRps3a1asHT2_3	chr3	-	85947041	85947060
	caaagaaaagccccgagggc	mRps3a1asHT3_1	chr3	-	85949274	85949293
	actaccaagaagagcctgag	mRps3a1asHT3_2	chr3	-	85949296	85949315
	gagggtttggtgggacttaa	mRps3a1asHT3_3	chr3	-	85949318	85949337
	atggaagctatgctgtagct	mRps3a1asHT3_4	chr3	-	85949340	85949359
	ttaagagttaaaggcttgcc	mRps3a1asHT3_5	chr3	-	85949362	85949381
	ggtaggaggactaggaggga	mRps3a1asHT3_6	chr3	-	85949384	85949403
	agggagattggctcagaggg	mRps3a1asHT3_7	chr3	-	85949408	85949427
	ttttgggtgggactaaaggg	mRps3a1asHT3_8	chr3	-	85949430	85949449
	atttgtggagttactgagga	mRps3a1asHT3_9	chr3	-	85949452	85949471
	ggagacatgacagacaactg	mRps3a1asHT3_10	chr3	-	85949474	85949493
	atagagtcacacagtaagga	mRps3a1asHT3_11	chr3	-	85949496	85949515
	gaggatacacttgggtagtt	mRps3a1asHT3_12	chr3	-	85949520	85949539
	caggcctcatcttaacgatc	mRps3a1asHT3_13	chr3	-	85949543	85949562
	atctctatcacttacttaca	mRps3a1asHT3_14	chr3	-	85949566	85949585
	gatctattttcagattacct	mRps3a1asHT3_15	chr3	-	85949663	85949682
	gtttctgtcttctgaattgt	mRps3a1asHT3_16	chr3	-	85949697	85949716
	tacaagggattctacgccac	mRps3a1asHT4_1	chr3	-	85953429	85953448
	agattggacctacggtcttg	mRps3a1asHT4_2	chr3	-	85953458	85953477
	cagtgcaatgttgctgtgcg	mRps3a1asHT4_3	chr3	-	85953480	85953499
	tctgagcactctcagctaag	mRps3a1asHT4_4	chr3	-	85953508	85953527
	atggtggagaacaacagtga	mRps3a1asHT4_5	chr3	-	85953535	85953554
	attattttgtaggagtccag	mRps3a1asHT4_6	chr3	-	85953557	85953576
	cttcaggggaatgtaagtaa	mRps3a1asHT4_7	chr3	-	85953598	85953617
	tgtaagcaagggaatcgtat	mRps3a1asHT4_8	chr3	-	85953620	85953639
	cagctaaggagggtgaggga	mRps3a1asHT4_9	chr3	-	85953642	85953661
	ggaccggcttcatattgaaa	mRps3a1asHT4_10	chr3	-	85953699	85953718
	gctaacaaggtcttcgggaa	mRps3a1asHT4_11	chr3	-	85953749	85953768
	agatgggaaaaaggccacgg	mRps3a1asHT4_12	chr3	-	85953825	85953844
	ctatgttctgagagatgggg	mRps3a1asHT4_13	chr3	_	85953848	85953867
	ctgatgtcttctaaccttct	mRps3a1asHT4_14	chr3	-	85953899	85953918
	ctgggctgattcacagataa	mRps3a1asHT4_15	chr3	-	85953926	85953945
	gctcctaagattattctgat	mRps3a1asHT4_16	chr3	_	85953948	85953967
	cttaatacttgttgtcttgt	mRps3a1asHT4_17	chr3	_	85953970	85953989
	aactacacttttatcagggg	mRps3a1asHT4_18	chr3	-	85954093	85954112