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 50 

ABSTRACT 51 

 52 

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder that spans over a 53 

continuum with multiple phases including preclinical, mild cognitive impairment, and dementia. 54 

Unlike most other chronic diseases there are limited number of human studies reporting on AD 55 

gut microbiota in the literature. These published studies suggest that the gut microbiota of AD 56 

continuum patients varies considerably throughout the disease stages, raising expectations for 57 

existence of multiple microbiota community types. However, the community types of AD gut 58 

microbiota were not systematically investigated before, leaving important research gap for diet-59 

based intervention studies and recently initiated precision nutrition approaches aiming at 60 

stratifying patients into distinct dietary subgroups. Here, we comprehensively assessed the 61 

community types of gut microbiota across the AD continuum. We analyze 16S rRNA amplicon 62 

sequencing of stool samples from 27 mild cognitive patients, 47 AD, and 51 non-demented control 63 

subjects using tools compatible with compositional nature of microbiota. To characterize gut 64 

microbiota community types, we applied multiple machine learning techniques including 65 

partitioning around the medoid clustering, fitting probabilistic Dirichlet mixture model, Latent 66 

Dirichlet Allocation model, and  performed topological data analysis for population scale 67 

microbiome stratification based on Mapper algorithm. These four distinct techniques all converge 68 

on Prevotella and Bacteroides partitioning of the gut microbiota across AD continuum while some 69 

methods provided fine scale resolution in partitioning the community landscape. The Signature 70 

taxa and neuropsychometric parameters together robustly classify the heterogenous groups 71 

within the cohort. Our results provide a framework for precision nutrition approaches and diet-72 

based intervention studies targeting AD cohorts. 73 

 74 

 75 
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 3 

IMPORTANCE 76 

 77 

The prevalence of AD worldwide is estimated to reach 131 million by 2050. Most disease 78 

modifying treatments and drug trials have failed due partly to the heterogeneous and complex 79 

nature of the disease. Unlike other neurodegenerative diseases gut microbiota of AD patients is 80 

poorly studied. Recently initiated ambitious precision nutrition initiative or other diet-based 81 

interventions can potentially be more effective if the heterogeneous disease such as AD is 82 

deconstructed into multiple strata allowing for better identification of biomarkers across narrower 83 

patient population for improved results. Because gut microbiota is inherently integral part of the 84 

nutritional interventions there is unmet need for microbiota-informed stratification of AD clinical 85 

cohorts in nutritional studies. Our study fills in this gap and draws attention to the need for 86 

microbiota stratification as one of the essential steps for precision nutrition interventions. We 87 

demonstrate that while Prevotella and Bacteroides clusters are the consensus partitions the newly 88 

developed probabilistic methods can provide fine scale resolution in partitioning the AD gut 89 

microbiome landscape. 90 

 91 

Key words: Alzheimer’s Disease, Gut microbiota, Machine learning, Stratification, Dirichlet, 92 

Topological data analysis 93 

 94 

INTRODUCTION 95 

 96 

Alzheimer’s Disease (AD) is the most common form of dementia worldwide and its prevalence is 97 

estimated to reach 131 million by 2050 [1]. AD spans over a continuum starting with the non-98 

symptomatic pre-clinical stage and advancing through the spectrum of clinical stages. These 99 

stages are dashed with distinct pathophysiological states [2], namely the amyloid-tau-100 

neuroinflammation axis. The clinical continuum entails mild memory loss and/or cognitive 101 
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 4 

impairments (mild cognitive impairment, MCI due to AD) and trajectories for function leading to 102 

memory problems besides cognitive impairment (dementia phase); and finally complete loss of 103 

independent functioning towards the end stage [3]. Moreover, The Alzheimer's dementia phase 104 

is further broken down into the stages of mild, moderate and severe, thereby making AD a 105 

complex and highly heterogenous disease.  106 

 107 

Traditionally, pathogenesis of AD is attributed to extracellular aggregation of amyloid-β-peptides 108 

(Aβ) in senile plaques and intracellular depositions of hyperphosphorylated tau that forms 109 

neurofibrillary tangles [4]. Although numerous clinical trials based on the amyloid postulates have 110 

been attempted virtually all of them have failed [5]. The unsettlingly consistent failure of clinical 111 

trials targeting single target amyloid pathways prompted researchers to refine the amyloid 112 

hypothesis [6] and even extend it to periphery [7]. Recently, a group of AD researchers asserted 113 

that infectious agents reach and remain dormant in the central nervous system (CNS) and 114 

undergo reactivation during aging, sparking cascades of inflammation, induce Aβ, and ultimately 115 

neuronal degeneration [8]. Chronic inflammation in CNS mediated by microglial toxicity as well 116 

as systemic inflammation in the periphery is widely recognized in AD and linked to amyloid 117 

cascade hypothesis in animal experiments [9, 10].  None of the drugs available today for 118 

Alzheimer's dementia slow or stop the damage and destruction of neurons [11]. Intervention at 119 

different points along the Alzheimer’s continuum should therefore be multimodal and involve 120 

targeting neuropathology in brain, systemic inflammation in the body, and metabolic processes in 121 

the periphery that escalate the disease in brain [12]. Non-pharmacologic, targeted, personalized, 122 

and multimodal disease modifying interventions in AD, including diet and lifestyle changes to 123 

optimize metabolic parameters has recently been under investigation [13-16].  124 

 125 

A growing body of evidence suggest that human gut microbiota is strongly associated with human 126 

metabolic processes in all organs including brain [17] and implicated in neuroinflammation via 127 
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brain-gut axis [18]. Gut microbes across animal models influence CNS by modulation of 128 

neuroimmune function, sensory neuronal signaling, and metabolic activity [19].  Several studies 129 

using transgenic animal model of AD  reported gut microbiota alterations (see [19]) but these 130 

animal models poorly mirror human AD. Unexpectedly, only a few human clinical studies on AD 131 

were reported in the literature [20-28]. Of these studies, gut microbiota associated metabolites 132 

such elevated Trimethylamine N-oxide (TMAO) in CSF [26] and altered bile acids profile [28]  were 133 

directly implicated in AD dementia. Importantly, dietary pattern of AD patients is at the center of 134 

the precision medicine approaches [29]. Also, diet is one of the most important factors modulating 135 

gut microbiota-based active metabolites. Disease modifying approaches involving diet should 136 

therefore consider microbiota in AD. Indeed, a recent study [23] tested the impact of a modified 137 

Mediterranean ketogenic diet on gut microbiome composition and demonstrated that the diet can 138 

modulate the gut microbiome and metabolites in association with improved AD biomarkers in 139 

CSF. These published studies, however, did not comprehensively investigate AD microbiota 140 

subclusters across the disease continuum, leaving important gap in our understanding of human 141 

microbiota in a highly heterogenous disease. Recently initiated ambitious precision nutrition 142 

approaches [30-33] cannot be applied on a highly heterogenous disease before deconstructing 143 

the disease into multiple strata and tailoring therapies accordingly. 144 

 145 

In the present study, we postulated that gut microbiota dysbiosis along the AD continuum should 146 

reflect an overlapping yet distinct community types. We show that AD gut microbiota includes 147 

distinct community types and the cognitive impairments in AD continuum is associated with 148 

unique gut microbiota signatures. Elucidating the diversity and community types of gut microbiota 149 

would facilitate identification of stratification biomarkers thereby contributing to precision nutrition 150 

approaches in AD.   151 

 152 

 153 
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 6 

RESULTS 154 

 155 

Study Design and Participant Characteristics. 156 

 157 

The study cohort consisted of 47 AD, 27 MCI (all amnestic), and 51 subjects non-demented 158 

controls (N=125). To minimize dietary confounding effect on the microbiome, we included healthy 159 

co-habiting spouses of the patients sharing the same diet as controls. The control group therefore 160 

largely (n=27) comprised partners of the patients. Participants were recruited in two health centers 161 

located in different cities. The cohort groups were statistically not different in terms of sex, but age 162 

and education factors were significantly different  (Table 1), therefore statistically adjusted in 163 

analyses. Expectedly, the groups were also different in cognitive tests including the Mini-Mental 164 

State Exam (MMSE), and the Clinical Dementia rating (CDR). Most AD participants had very mild 165 

or mild dementia, with clinical dementia rating (CDR) scores ranging from 0.5–3 (median CDR 1 166 

for AD; 0.5 for MCI and 0 for the control group). The median MMSE scores were significantly 167 

higher in control (MMSE=27) and MCI (MMSE=26) groups than AD (MMSE=16). A subset of AD 168 

patients (n=12) was clinically asked to undergo lumbar puncture to ascertain diagnosis using CSF 169 

biomarkers including Aβ42/Aβ40 ratio, phosphorylated tau (p-tau), and the p-tau/Aβ42 ratio 170 

(Supplementary Table S1). We collected medication information from the patient’s registry.  171 

 172 

Microbiome composition is associated with disease status along the AD continuum  173 

 174 

The gut microbiota was profiled using the V3-V4 hypervariable region of the 16S rRNA gene; The 175 

Nephele automatic pipeline denoised the paired-end sequences and assigned amplicon 176 

sequence variants (ASVs) according to DADA2 [34]. The Nephele produced both unrarefied and 177 

the rarefied ASV tables. The rarefied table included a total of 3486 ASVs in the table (10769 178 

sequences/sample) for downstream analyses.   179 
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 7 

The phylum level taxonomic analysis showed typical human gut microbiota profile in terms of 180 

over-abundance of Firmicutes, Bacteroidetes, and Proteobacteria (Figure 1a). Together with 181 

Verrucomicrobia, and Actinobacteria the five phyla comprised 99% of all reads but Proteobacteria 182 

was overrepresented in AD patient samples. Notably, the genus level relative abundance 183 

distributions across samples showed Prevotella_9 and Bacteroides were the most abundant of 184 

top30 genera across the samples (Figure 1b). To perform differential abundance analysis 185 

between samples we sought concordance analysis among multiple tools. ANCOM-BC or 186 

ALDEx2, when used covariates in their models, both agreed that only Ruminoccus_unclassified 187 

is significantly differentially abundant among the groups (data not shown). Nevertheless, when 188 

we employed limma-voom R package (age and sex adjusted, FDR<0.05) we found that 189 

Prevotella_9, Bacteroides and members of Ruminococcaceae family were among the top most 190 

significant differentially abundant taxa (ASV) between the cohort groups (Supplementary Tables 191 

S2-5 ). A comprehensive comparative statistical assessment of multivariate and compositional 192 

methods [35] demonstrated ALDEx2 or alike tools suffer from low power while limma-voom and 193 

songbird in their own class were the best performers.  194 

 195 

Alpha diversity indices (Shannon, Inverse Simpson) did not show significant differences after 196 

multiple testing corrections (Kruskal-Wallis, Supplementary Figure S1 (a-d), FDR>0.05) but 197 

richness index, Chao1, showed significant difference between MCI and the control group 198 

(pairwise Wilcoxon rank sum test, p=0.008074). 199 

 200 

We employed both relative abundances based and recently developed compositionally aware 201 

tools, namely DEICODE [36] and Songbird [37] to compare the composition and structure of 202 

bacterial communities in samples using multiple beta diversity indices (Bray-Curtis, Jaccard, and 203 

Aitchison). The principal coordinates analysis showed separation of the three groups by both 204 

Bray-Curtis and Jaccard indices (Figure 2a-b). We used adonis2 function in qiime2 plugin (q2-205 
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 8 

diversity) to perform PERMONAVA analysis with 999 permutations and included interaction terms 206 

(Supplementary Table S6) and seperation of the groups were highly significant (P=0.0001). Age 207 

and Sex also significantly contributed to the total variance (P<0.001) but the interaction terms 208 

were not significant. Furthermore, dispersion between groups tests (PERMDISP) indicated only 209 

the dispersion MCI group is significantly heteregenous (pairwise comparisons p=0.033 for AD-210 

MCI; p=0.024 for C-MCI; p=0.672 for AD-C), which may be attributed to unbalanced design. We 211 

added further support for the seperation of the three groups from other ordinations. The Canonical 212 

Analysis of Principal Coordinates (CAP) analysis unambigiously showed the three groups are 213 

distinct (Figure 2c, trace statistic = 0.86855, p=0.001, 999 permutations). The final support in beta 214 

diversity was provided by the DEICODE analysis (robust Aitchison PCA) (Figure 2d, 215 

PERMANOVA p=0.02), which indicated that the three groups are distinct, and the community 216 

clusters are largely driven by a subset of ASVs with taxonomic assignment Prevotella_9, 217 

Bacteroides, a unclassified genus within Ruminococcaceae family 218 

(Ruminococcaceae_unclassified), and Escherichia/Shigella. Moreover, the co-occurrence 219 

analysis using SparCC showed that Prevotella_9 and Bacteroides were negatively correlated 220 

(Correlation=-0.4445, FDR =0.09355).  Moreover, the genus level PCoAs showed partially 221 

overlapping clusters of these two taxa while the groups overall were also significantly separated 222 

(PERMANOVA, p <0.0001, Supplementary Figures S2 (a-c)). We therefore placed particular 223 

attention to these two taxa in the rest of the downstream analyses.  224 

 225 

Enrichment analysis by multinomial regression embedded in the songbird tool with regard to 226 

covariates (formula: Age+Sex+Edu+MMSE+CDR+Groups(levels=(“C”, “MCI”,”AD”)) indicated 227 

that the natural log ratio of Prevotella_9 to Bacteroides and Prevotella_9 to Escherichia/Shigella 228 

significantly separated AD group from the control group (Welch’s t-test, FDR adjusted p=0.04)  229 

but not from the MCI group (Figure 3a-d). Importantly, the songbird excluded 25 samples from 230 

this analysis due to zero-rich abundances that do not allow for center-log ratio calculations. We 231 
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 9 

therefore tested the natural log ratio of top 25% allowing to include all samples in the analysis 232 

(“Set1” in Supplementary Table S7) to the bottom 25% (“Set2”, Supplementary Table S8) of the 233 

ranked ASVs associated with the AD relative to the control group; also, same ratios for MCI 234 

relative to the control group (“Set3” and “Set4”, Supplementary Table S8 ) and the ASVs 235 

enriched in each group were visualized with Qurro [38]. Both sets of ranked log ratios revealed 236 

significant differences (Graph Pad Prism) between the log ratios of features differentiating groups 237 

(Welch’s t-test, FDR adjusted p= 0.0002).  238 

 239 

Discrete multiple subsets of gut microbiota exist along the AD continuum  240 

 241 

Considering the preceding results, we postulated that gut microbiota profile along the AD 242 

continuum does not represent a single state, rather, distinct yet overlapping community types. We 243 

addressed this hypothesis using four unique methods: 1- Partitioning around medoid (PAM)-244 

based clustering [39], 2- Fitting Dirichlet multinomial mixture (DMM) models to partition microbial 245 

community profiles into a finite number of clusters [40] using the Laplace approximation, 3- Fitting 246 

Latent Dirichlet Allocation (LDA) [41, 42] using perplexity measure, and 4- Analyzing topological 247 

futures of data density [43] based on the Mapper algorithm to capture subtle and non-linear 248 

patterns of high-dimensional datasets and population level stratification.  249 

 250 

The PAM-based clustering identified three (k=3) distinct clusters based on Gap statistics 251 

(Supplementary Figure S3a). PCoA analysis of the sample abundances in the three clusters 252 

indicated significant separation of the clusters (Figure 4a, PERMANOVA, p=0.001) . We 253 

confirmed optimum number of clusters using both Jensen-Shannon and Bray-Curtis distance 254 

metrices (data not shown). The relative abundance of the genus Prevotella_9 dominated cluster-255 

1 while the genus Bacteroides showed the highest relative abundances in the other two clusters 256 

(Figure 4b).  257 
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 258 

Next, we employed the Dirichlet multinomial mixtures probabilistic community modeling using the 259 

DirichletMultinomial R package [40] and fitting genus level absolute abundances. Based on 260 

Laplace approximation three clusters (cluster 1, 2, and 3) represented the best model fit 261 

(Supplementary Figure 3b), which was congruent with the PAM-based clustering. The PCoA 262 

analysis of these clusters and PERMANOVA pairwise tests further supported existence of three 263 

distinct clusters within the microbial community (Figure 4c, PERMANOVA, p=0.01). The genus 264 

Bacteroides was the most abundant taxa in the first two clusters and the third cluster was 265 

dominated by Prevotella_9 (Figure 4d). Notably, cluster2 included significantly higher abundance 266 

of Bacteroides (26.3%) than cluster1 (9.9%) and cluster3 (4.7%). In addition to highly enriched 267 

Bacteroides in cluster2 the decreasing trend of Faecalibacterium abundance and elevated 268 

abundance of inflammation associated Escherchia/Shigella suggested that cluster2 can be 269 

named “Bacteroides2 (Bact2) enterotype” as recently described [44, 45]. Reportedly, abundance 270 

of Bacteroides in Bact2 enterotype can reach as high as 78% in patients with inflammatory bowel 271 

disease and is associated with systemic inflammation. These results suggest that cluster2 272 

includes patients with aggravated systemic inflammation.  273 

 274 

We also performed SIMPER analysis based on Bray-Curtis distance to identify taxa contributing 275 

most to dissimilarities between clusters (data not shown). Bacteroides, Prevotella_9, 276 

Faecalibacterium, and taxa within  Ruminococcaceae family ranked among the top ten taxa 277 

contributing most to differences between the three DMM clusters. To examine which factors were 278 

associated with the DMM clusters we analyzed distribution of clinical metadata and diversity 279 

metrics within the clusters. Alpha diversity indices (Chao1, Shannon, and Inverse Simpson) were 280 

statistically different between all three clusters after Benjamini-Hochberg FDR adjustment. 281 

However, CDR, MMSE, Age, Sex, and Education were not significant between the clusters 282 
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(Kruskal Wallis test followed by Dunn’s posthoc test, FDR<0.05 and Fisher’s Exact test was used 283 

for Sex parameter).  (Figure 5 a-h) 284 

 285 

We next tested LDA potential to stratify gut microbiota of the cohort participants. This 286 

unsupervised machine learning technique is increasingly finding acceptance in the field of 287 

microbiome [46-48] for its unique ability to reveal latent or hidden groups within the data cloud. 288 

Supplementary Figure S4 shows LDA model’s perplexity parameter and log-likelihood values to 289 

find optimal number of clusters. Both parameters continued to partition the community without 290 

reaching a clear optimum. This finding is unexpectedly consistent with recent publications using 291 

LDA in microbial ecology [46-48]. Bacteria probability distributions (ranked by probability ≥ 1% in 292 

descending order) across the subgroups are  displayed in Figure 6a. Interstingly, of the ten 293 

subgroups two subgroups were dominated by Bacteroides (topic1 and topic5) and a subgroup 294 

(topic2) dominated by Prevotella_9 with 97% probability. These subgroups therefore resemble 295 

subgroups detected by PAM and DMM in terms of prevalence of Bacteroides and Prevotella_9. 296 

Unlike DMM and PAM, however, LDA detected a distinct subgroup (topic10) with top ranking 297 

genus was Escherichia/Shigella, which also included putatively opportunistic bacteria such as 298 

Entercoccus and Klebsiella. Subgroups 4, 6, and 9 were conspicious with the genera known to 299 

produce butyrate and acetate or is mucinphilic. Even though we present first ten subgroups 300 

(topics) here we also examined higher order subgroups and observe that the ten subgroups are 301 

further partitioned into additional subgroups such as subgroups with topranking probability of 302 

Lactobacillus and Akkermansia emerge. Finally, we plotted Quetelet index by subgroups to infer 303 

associations between subgroups and the cohort groups (Figure 6b). Quetelet index estimates the 304 

relative change of the occurence frequency of a latent subgroup among all the samples compared 305 

to that among the samples of the cohort groups. The index showed subgroups 1, 8,9, 10 are 306 

positively associated with AD group. The subgroup 9 is enriched by the members of 307 

Ruminococcaceae family. The top ranking Ruminococcaceae_UCG_002 and Akkermansia are 308 
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more abundant in AD group than the control group according to limma-voom analysis. 309 

Akkermansia overabundance in AD gut microbiota is counterintutive but was previously reported 310 

by others [25] and this genus is more abundant in the gut microbiota of Parkinson’s patients, also 311 

[49]. The subgroup 10, where Escherichia/Shigella is the top ranking genus, is strongly associated 312 

with AD group but negatively associated with other groups. Conversely, subgroups 2,4, and 7, 313 

which are enriched by short chain fatty acid producers, are positively associated with the control 314 

and MCI groups but negatively associated with AD.  315 

 316 

Another and last method we employed to stratify gut microbiota was topological data analysis 317 

(TDA), based on the Mapper algorithm [50] embedded in recently developed tmap tool [43]. The 318 

tmap tool was developed for network representation for stratification and association study of 319 

high-dimensional microbiome data. After constructing TDA microbiome network using Mapper 320 

algorithm (ordination, covering, and DBSCAN clustering) the workflow in the second step includes 321 

computation of a modified version of the spatial analysis of functional enrichment (SAFE) scores 322 

to map both the metadata and microbiome features into the TDA network to generate their vectors 323 

of SAFE scores. Vectors of SAFE scores are then used to perform ranking and ordination, and 324 

co-enrichment relations to delineate relationship between metadata and microbiome features. To 325 

construct TDA network we first applied dimension reduction (filtering) in PCoA using Bray-Curtis 326 

distance, followed the above algorithm and also repeated the entire analysis using Jensen-327 

Shannon distance to reveal effect of distance metric, if any. To understand how driver taxa relate 328 

to each other and with the clinical metadata we performed Principal Component Analysis (PCA) 329 

of SAFE scores. Figure (7a) shows the TDA network and PCA (Bray-Curtis distance) of taxa-330 

metadata based on SAFE scores (Supplementary Table S9), respectively. We obtained similar 331 

TDA network profile using Jensen-Shannon distance (Figures 7b) and SAFE scores 332 

Supplementary Table S10). Size of each marker is scaled according to the SAFE score and only 333 

top30 bacteria species are shown in PCA figures for clarity. A node in the network represents a 334 
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group of samples sharing similar bacteria genus profiles. Two given nodes are linked when 335 

common samples are shared between the two nodes. The TDA analysis using both distance 336 

indices resulted in very similar stratification profile with the top ten SAFE scoring genera included 337 

Prevotella_9, Bacteroides, Rumunococaceae_unclassified, species of Lachnospiraceae, and 338 

GCA90006675. Unsurprisingly, a few taxa ranking differed between the two profiles such as 339 

Caprococcus_2, Mollicutes_RF39_unclassified.  340 

 341 

Furthermore, Figures (8a and 8b) show taxa and host covariates based on Bray-Curtis and 342 

Jensen-Shannon distances, respectively. Regardless of the distance metric, all three groups were 343 

clearly separated. The drivers of microbiome stratification (Prevotella_9, Bacteroides, 344 

Ruminococcus_unclassified) are placed near the control, AD and MCI groups, respectively in both 345 

PCA figures. Of the clinical metadata, MMSE, sex, and education were grouped with the control 346 

group and co-enriched with Prevotella_9 but also with Prevotella_2, and Haemophilus, and 347 

Lachnospiraceae_NK4B4_group. Conversely, CDR, age, and AD group were clustered together 348 

and co-enriched with taxa such as Subdoligranulum, Odoribacter, Bilophila, Alistipes. The MCI 349 

group was co-enriched with Ruminocoaceae_unclassified, Mollicutes_RF39_unclassified, 350 

Ruminocoaceae_UCG_005, Lachnospiraceae_unclassified. However, some taxa such as 351 

Odoribacter was placed near the control group in Jensen-Shannon distance PCA Figure (8b), 352 

suggesting co-enrichment of certain taxa can be somewhat influenced by the preferred distance 353 

metric.  354 

Identification of signature taxa for AD continuum and association with metadata 355 

 356 

We constructed Random Forest (RF) model on selected features of gut microbiota and 357 

psychometric test scores (MMSE and CDR) that are typically used as proxy in clinical diagnosis. 358 

Using songbird, we selected 300 ASV (Top 25%) that differentiates between the healthy (control) 359 

and the disease groups (MCI and AD). We then plotted the ASVs with the first 20 highest mean 360 
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decrease Gini values (Figure 9a) and included ASVs with mean decrease Gini values above the 361 

breakpoint curve in the RF analysis. We identified the following 9 ASVs above the breakpoint: 362 

Faecalibacterium (ASV45), Sutterella(ASV607), Coprobacter(ASV531), Bacteroides (ASV81), 363 

Anaerostipes(ASV364), Ruminoccocaceae_unclassified(ASV203), Lactobacillus (ASV65), 364 

Clostridium_sensu_stricto_1 (ASV118), Ruminococcus_1 (ASV59). Notably, ASVs beyond the 365 

breakpoint line are largely the bacterial species responsible for the stratification of gut microbiota 366 

in the samples such as Faecalibacterium, Bacteroides, and Ruminococcus_unclassified.  We next 367 

calculated diagnostic accuracy of the RF model by plotting receiver operating characteristics 368 

curve (ROC) for the above 9 taxa, MMSE, and CDR separately and in combination for each cohort 369 

group (Figure 9b). The ROC value for these selected nine taxa were moderately accurate (AUC 370 

63%, FIg 8a) but when we included MMSE and/or CDR, we found that the RF model robustly 371 

classify all three groups (groupwise AUC range 0.74-1.0, Figures 9b).  372 

 373 

Taxa association with clinical parameters  374 

 375 

We used multivariate association with linear models (MaAsLin2) to assess association between 376 

individual taxa and clinical metadata including patients drugs (q ≤ 0.25). This analysis showed 377 

that Roseburia, Lactobacillus, Fusicatenibacter were negatively associated with AD 378 

(Supplementary Figure S5). Of the medication categories there are several taxa found to be 379 

positively associated with anti-depression and statin. Blautia, Caprococcus, Butyricoccus, Dorea, 380 

Lachnospiraceae family members, some Ruminoclostridium and Ruminococaceae, known to be 381 

butyrate producers are all positively associated with antidepression drugs. Unexpectedly, we 382 

found that several taxa were significantly associated with Statin medication and, of these taxa, 383 

Streptococcus and unclassified member of Erysipelotrichaceae were highly significantly 384 

associated with statin medication. We also observed the following taxa positively associated with 385 

statin medication; unclassified members of Ruminococaceae and Lachnospiraceae, 386 
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Phascolarctobacterium, Desulfovibrio, Caprobacter, Bifidobacterium, Butyricoccus, Blautia, 387 

Barnesiella. 388 

DISCUSSION 389 

 390 

In this study, we demonstrate that gut microbiota across AD continuum not only differentiates 391 

between cognitive states but also comprise subgroups delineated by locally dominant co-392 

occurring bacteria. Stratification of the gut microbiota along the AD continuum is major unmet 393 

need for diet-based and precision nutrition interventions in AD cohorts and here we present proof-394 

of-concept data that can be insighful for the emerging dietary and precision medicine/nutrition 395 

initiatives involving AD patients.  A key finding in this study is that these approaches all converge 396 

on Prevotella and Bacteroides stratification, which are also robustly supported by enrichment and 397 

ordination analyses that these two species are the drivers of community diversity and 398 

composition. Rather than focusing on a single gut microbiota stratification method we have 399 

exercised the best practice of implementing multiple methods to compare, contrast, and sought 400 

support from alternative analyses. Also, all methods ranked the following taxa among the Top10 401 

bacteria contributing to seperation of the groups; Escherchia/Shigella, Faecalibacterium, Blautia, 402 

Ruminococcaceae_unclassified, Ruminococcaceae_UCG-002, Lachnospiraceae_unclassified, 403 

Parabacteroides, suggesting these taxa play significant role in the observed community structure 404 

of the gut microbiota of the patients in this study.  405 

 406 

PAM clustering and DMM concordantly showed three distinct clusters, one of which is consistent 407 

with the recently described Bact2 group [44]. The subjects in this group are likely to have 408 

aggravated dysbiosis as manifested from increased abundance of opportunistic pathogens 409 

Escherichia/Shigella and some species of Bacteroides species and lower abundance of 410 

Faecalibacterium and other SCFA producers. Notably, LDA analysis shuffles similar set of taxa 411 
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as the number of subgroups increase but Bacteroides and Prevotella_9 are predominantly the 412 

most abundant taxa in many of these clusters. Strikingly, Escherichia/Shigella dominates one of 413 

the subgroups in LDA analysis together with opportunistic Klebsiella and Enterococcus, 414 

suggesting dysbiotic community type may be enriched in this subgroup.  415 

 416 

Topological data analysis (TDA) we used to stratify gut microbiota in this study deserves a 417 

particular attention among others. TDA, based on the Mapper algorithm [50], represents the 418 

underlying distribution of data in a metric space by dividing the data into overlapping similar 419 

subsets according to a filter function, local clustering on each subset and representing the results 420 

in an undirected network. A node in the network represents a group of samples with similar 421 

microbiome profiles, and if common samples between nodes are shared then the nodes are 422 

linked. Next, a modified special analysis of functional enrichment (SAFE) algorithm maps the 423 

metadata and taxa into the network. Finally, vectors of SAFE scores can be used in ordination to 424 

rank the driver taxa and their relationship with the metadata, all these algorithms are integrated 425 

into tmap [43]. The SAFE scores we obtain following these algorithms allowed us to identify the 426 

driver species that are responsible for community structure and showed their relationship with the 427 

metadata. We employed Bray-Curtis and Jensen-Shannon to check the variation resulting from 428 

distance metric. Prevotella_9, Bacteroides, and Ruminoccus_unclassified were ranked among 429 

the top10 taxa with high SAFE scores, albeit in different order, suggesting TDA is robust and 430 

consistent even with different distance metrics. In addition to these three taxa unclassified 431 

members of again other taxa within Ruminoccus family and Lachnospiraceae were congruent 432 

with other three methods we tested. Interestingly, this analysis identified GCA-900066575 taxa 433 

(Uncultured human intestinal bacterium) as one of the subclusters in contrast with other methods 434 

we used. This genus is taxonomically in the family of Lachnospiraceae, which includes members 435 

of SCFA producers [51], still some other members were associated with metabolic diseases such 436 

as obesity [52]. Indeed, another related member of this family GCA-900066225 ranked among 437 
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the top10 taxa when Bray-Curtis distance was used but enriched around AD. It is therefore 438 

important to note that TDA, unlike clustering or probabilistic partitioning methods, provided fine 439 

resolution in terms of stratification of the gut microbiota composition. Conversely, TDA did not 440 

rank Escherchia/Shigella subnetwork among top ten taxa, neither the ordination showed clear 441 

association with the disease. Together, bioinformatic tools developed in the field of microbiome 442 

have all their strengths and drawbacks and therefore overlaps in bioinformatic analyses should 443 

be pursued.  444 

 445 

Several lines of evidence showed human cohorts in microbiome studies can be phenotypically 446 

partitioned along Prevotella and Bacteroides stratification [53-58]. A recent comprehensive report 447 

[59] provided evidence that Mediterranean diet-based intervention is associated with specific 448 

functional and taxonomic components of the gut microbiome, and its effect is a function of 449 

microbial composition. Notably, absence of Prevotella copri in the gut microbiomes of a subgroup 450 

of participants was associated with the protective health benefits of the dietary intervention, 451 

emphasizing the premise that microbiome-informed stratified dietary intervention would be quite 452 

effective. Nevertheless, P. copri is ambivalently associated with both heath and diseases 453 

depending on the strain and geography [60], which prompts us to further consider its role in AD.  454 

 455 

Taxonomically, the genus Prevotella_9 is predicted to belong to Prevotella copri complex [61]. 456 

Comparative genome analysis of the strains of P.copri complex, however, show that some strains 457 

qualify to be assigned to even a separate species of Prevotella due to low genomic similarities 458 

[62, 63]. Some P. copri strains are associated with disease states such as rheumatoid arthritis 459 

[64], while some other strains are associated with habitual diet and life style [54] and 460 

underrepresented in Westernized populations. Thus, strain level resolution of Prevotella_9 is 461 

needed to draw inferences. Expectedly, multiple strains of P. copri are likely to be part of the 462 

bacterial community in the samples. Even though we found Prevotella_9 to be associated with 463 
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the control group the enrichment analysis using songbird ranked some ASVs belong to 464 

Prevotella_9 (species level) at the top and few other ASVs at the bottom of the log ratio 465 

differentials, suggesting analysis beyond species taxonomic hierarchy would provide better 466 

resolution in terms of their associations with human phenotypes. Oligotypes of these two genera 467 

in an earlier work were found to be differentially associated with plant based or some others were 468 

associated with animal-based diet [55]. A recent report provided evidence that Bacteroides 469 

cellulosilyticus predicted weight gain more precisely than the ratio of Prevotella and Bacteroides 470 

genus. Together, our differential enrichment analysis results are in line with these reports that 471 

species or even strain level resolution of these two genera could provide better predictive 472 

biomarker power for diet-based intervention studies.  473 

 474 

One limitation of our study was that although we were able control drug induced confounding, we 475 

did not control other potential confounders such as diet, BMI, stool consistency. We largely 476 

recruited cohabiting spouses as non-demented controls sharing the same diet patterns with the 477 

patients and carnivory is rare due to the high cost of meat in the country. We therefore did not 478 

predict diet can strongly impact our results.  479 

 480 

In conclusion, we demonstrate in this study that gut microbiota along the Alzheimer’s Disease 481 

continuum comprises stratified community structure dashed primarily by Prevotella and 482 

Bacteroides but also subnetworks of other taxa exist in the community. The signature taxa when 483 

used together with MMSE and CDR robustly classify heterogenous groups hence posing potential 484 

biomarker value. The study adds to limited number of clinical studies profiling gut microbiota of 485 

AD continuum patients.  486 

 487 

 488 

 489 
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MATERIALS AND METHODS 490 

 491 

Subject Recruitment and Study Design: The Istanbul Medipol University and Erciyes University 492 

Ethical Review Boards approved this study (Approval numbers: 186/16.4.2015 and 85/ 493 

20.02.2015, respectively). All participants were informed of the objectives of this study and signed 494 

a written consent form prior to their participation. The diagnosis of dementia and MCI due to AD 495 

were based on the criteria of the National Institute on Aging-Alzheimer's Association workgroups 496 

on diagnostic guidelines for Alzheimer's disease [65, 66]. Exclusion criteria for this study included 497 

history of substance abuse, any significant neurologic disease, major psychiatric disorders 498 

including major depression. Also, individuals who used commercial probiotics or antibiotics during 499 

the study period or within 1-month prior to providing stool sample, or who major GI tract surgery 500 

in past 5 years. Both health centers followed the same protocols in recruiting cohorts and used 501 

kits from the same manufacturers to minimize the variations in wet lab procedures.  502 

 503 

Lumbar puncture, CSF biomarkers assays: Cerebro Spinal Fluid (CSF) samples were included 504 

in the analyses from a subset of AD patients if the patient was requested to donate CSF sample 505 

as part of the clinically mendated diagnostic protocol. CSF samples were collected in the morning 506 

after overnight fasting using spinal needles (22 gauge) and syringes at the L3/4 or L4/5 interspace. 507 

CSF was then aliquoted into 0.5 mL non-adsorbing polypropylene tubes and stored at −80 °C 508 

until assay. Biomarker molecules in CSF (Aβ42, phosphorylated tau (p-tau), and the p-tau/Aβ42 509 

ratio) were measured consistent with the Alzheimer’s Association flowchart for lumbar puncture 510 

and CSF sample processing and the biomarker levels were determined as previously described 511 

[67]. Single 96-well ELISA kits (Innogenetics, Ghent, Belgium) were used in quantitation.  512 

 513 

Sample collection and DNA extraction: Stool samples from all participants were collected in 514 

the neurology clinics of the university training hospitals. The participants were given a collection 515 
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kit included a sterile tube and provided a brief instruction for collection. Self-collected samples 516 

were placed within approximately 30 mins of collection in -80 freezers and kept frozen until DNA 517 

extraction.  518 

 519 

16S rRNA gene sequencing and PCR were performed as previously described [68] with minor 520 

modifications. Briefly, genomic DNA was extracted from 220 mg fecal samples using QiaAmp 521 

DNA Stool Mini Kit (Qiagen, Germany) per manufacturer's instructions with the addition of bead 522 

beating (0.1 mm zirconium-beads) and lysozyme and RNAse A incubation steps.  523 

 524 

PCR and amplicon sequencing: To amplify the variable V3-V4 regions of the 16S rRNA gene, 525 

the primers 341 F (5′-CCTACGGGNGGCWGCAG-3′) and 805 R (5′-526 

GACTACHVGGGTATCTAATCC-3′) were used. MiSeq sequencing adaptor sequences were 527 

added to the 5′ ends of forward and reverse primers. Approximately 12.5 ng of purified DNA from 528 

each sample was used as a template for PCR amplification in 25 μl reaction mixture by using 2 × 529 

KAPA HiFi Hot Start Ready Mix (Kapa Biosystems, MA, USA). For PCR amplification, the 530 

following conditions were followed: denaturation at 95 °C for 3 min., followed by 25 cycles of 531 

denaturation at 95 °C for 30 sec., annealing at 55 °C for 30 sec. and extension at 72 °C for 30 532 

sec., with a final extension at 72 °C for 5 min. Amplified PCR products were purified with 533 

Agencourt AMPure XP purification system (Beckman Coulter) and Nextera PCR was performed 534 

by using sample-specific barcodes. The constructed Nextera libraries were then sequenced by 535 

Illumina MiSeq platform using MiSeq Reagent Kit v2 chemistry. 536 

 537 

Sequence processing and taxonomic assignment: The pair-end 16S rRNA reads were first 538 

used cutadapt v1.9 program [69] for the process of quality filtering, trimming and uploaded on the 539 

DADA2 pipeline [34] integrated into the Nephele platform [70] (v.2.0, http://nephele.niaid.nih.gov). 540 

Chimeric sequences are automatically removed by this pipeline, which generates both rarefied 541 
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and unrarefied ASV abundance tables. We used Rarefied (10769 reads/sample) ASV table in 542 

most downstream analysis due to large differences between some total sample reads except for 543 

the scale invariant DEICODE and songbird. We removed any sequences that were classified as 544 

either being originated from eukarya, archaea, mitochondria, chloroplasts or unknown kingdoms.  545 

 546 

Quality control: We included no sample DNA extractions and no template negative control 547 

samples in every sequencing library prepared. Using reads in the negative control samples as 548 

reference we identified and removed probable contaminant reads of 13 ASVs from the ASV table, 549 

as predicted by Decontam R package [71] using the ‘prevalence’ method. In this method, the 550 

binary coded features across samples are compared to the prevalence in negative controls to 551 

identify contaminants. Also, we sequenced the same amplicon of an AD sample three times to 552 

check the sequencing variation. Although both centers used same protocols and kits from the 553 

same manufacturer in sequencing, we sequenced amplicons amplified from two same genomic 554 

DNA templates again from AD samples at both centers to check the center-to-center sequencing 555 

concordance. No differences could be identified between the taxonomic compositions of the 556 

samples seuquenced at both centers nor between the technical replicates (PCoA, PERMANOVA 557 

p=0.1).  558 

 559 

Numerical Ecology and Statistical Analysis: Most numerical downstream analysis of ASV 560 

abundances were performed in R environment [72]. All P values, where appropriate, were 561 

adjusted for multiple testing using Benjamini-Hochberg (False Discovery Rate; FDR) method.  We 562 

measured within samples microbial diversity (alpha diversity) using Observed richness, Chao1, 563 

Shannon, and Inverse Simpson in phyloseq [73] and tested using Kruskal Wallis. To identify 564 

differentially abundant bacterial species we employed animalculus [58]  and limma [74] R 565 

packages. We assessed microbial diversity between samples (beta diversity) using multiple 566 

distance metrics including Bray-Curtis, Jaccard, Canonical Analysis of Principal Components 567 
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(CAP). CAP analysis and the similarity percentages breakdown (SIMPER) procedure were 568 

performed using PRIMER.v7 [75] . Additionally, due to the compositional nature of the data, we 569 

also included robust Aitchison PCA, using the Qiime2 DEICODE plugin [36] to calculate beta 570 

diversity with feature loadings. The resulting ordination was visualized using Emperor [76]. We 571 

tested significance of beta diversity among groups using again Qiime diversity plugin 572 

PERMANOVA.  573 

 574 

Next, we used Songbird [37] for multinomial regression to rank species association with disease 575 

status with the following parameters: (formula: "MMSE+CDR+Sex+Edu+C(Group, Diff, 576 

levels=('C','MCI','AD'),  –p-epochs 10000  --p-differential-prior 0.5  --p-summary-interval 1 --p-577 

random-seed 3  –min-sample-count 1000 –min-feature-count 0)  . Of note, the formula structure 578 

follows Patsy formatting (https://patsy.readthedocs.io/en/latest/ ) such that Groups (C, MCI, AD) 579 

represent levels=[“healthy”, “mild”, “severe”] states, respectively. A null model was generated 580 

using the same parameters. The fitted model demonstrated better fit compared to the null model 581 

(pseudo Q2 = 0.874027). Taxa ranks were visualized using Qurro [38]. Significance was 582 

determined using a Welch’s t-test between groups, performed by Graph Pad Prism.  583 

 584 

To identify microbial species associated with the clinical metadata including patients’ medication 585 

we performed multivariate association with linear models (MaAsLin2) [77]. The control group was 586 

excluded from this analysis as they were not normally prescribed these medications. We 587 

employed the R package MaAsLin 2.1.0 to perform per-feature tests. We log-transformed relative 588 

abundances of microbial species and standardized continuous variables into Z-scores and binary 589 

encoded medication information before including them in the MaAsLin models (q<0.25 for 590 

significance). 591 

 592 
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Stratification of gut microbiota: We employed clustering, probabilistic partitioning, and 593 

topological data analysis approaches for the stratification of gut microbiota in the samples. 594 

Partitioning around the medoid (PAM) approach [39] clusters samples by iteratively updating each 595 

cluster’s medoid. We assigned samples to community types using the function pam() in R 596 

package cluster based on Bray Curtis and Jensen Shannon distances. The number of clusters 597 

was determined by Gap statistic evaluation. Departing from the clustering approach, we next used 598 

two distinct probabilistic methods to partition microbiota landscape, namely  Dirichlet multinomial 599 

mixture models (DMM) [40] and Latent Dirichlet Allocation (LDA) [41, 42]. Genus level 600 

abundances were fitted to DMM models to partition microbial community profiles into a finite 601 

number of clusters, using the Laplace approximation as previously described [40, 78].  602 

 603 

As a second probabilistic partitioning we performed LDA, is a multi-level hierarchical Bayesian 604 

model [41] otherwise used for collections of discrete data such as text corpus analysis in 605 

linguistics. LDA is a generalization of Dirichlet multinomial mixture modeling where biological 606 

samples are allowed to have fractional membership and distinct microbial communities have 607 

different microbial signatures. Thus, for each taxon there is a vector of probabilities across all 608 

clusters that it can be assigned to. Each cluster, therefore, has a different probability of containing 609 

taxa, indicating chance of microbes in a particular subgroup (strata) co-occurring due to 610 

community assembly dynamics. To fit the model we used Gibb’s sampling with the R package 611 

MetaTopics (v.1.0) [79]. The relative abundances of genus collapsed table with abundances more 612 

than 0.1% and 5% sample prevalence was input to the model. We plotted perplexity measure and 613 

loglikelyhood values to estimate model performance and optimal number of topics (subgroups of 614 

microbial assemblages) using 5-fold cross-validation. However, we observed that both 615 

parameters continued to improve with increasing subgroup number without a clear optimum 616 

except the first jump in perplexity was near 10 topics. We therefore picked first 10 topics for the 617 

sake of interpretability.  618 
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 619 

The final method we applied was topological data analysis (TDA) based on the Mapper algorithm 620 

[50] and network representation for stratification and association of study of high dimensional 621 

microbiome data, all integrated into tmap tool [43]. The framework enables to reveal association 622 

of taxa or metadata within the entire network and to identify enrichment subnetworks of different 623 

association patterns. Conceptually, the Mapper algorithm transforms a distance matrix and 624 

represent the shape of the data cloud in an undirected network. Next, a modified version of special 625 

analysis functional enrichment (SAFE) algorithm to map the value of the target feature into the 626 

network was employed, followed by ordination of SAFE scores to show taxa-metadata association 627 

[43].   628 

 629 

Signature taxa: To identify microbial signature of severity of cognitive impairment in AD 630 

continuum we implemented a machine learning procedure. We first took advantage of songbird 631 

tool to select features including the covariates and healthy (control) and disease states (AD+MCI) 632 

in the model formula. We subsequently fit the list of ASV selected this way into Random Forest 633 

models. We plotted the area under the receiver operating characteristic curve (AUROC) to show 634 

prediction performance of the models. To create the classifiers, a random forest constituted of 635 

500 trees were computed using the default settings of the “randomForest” function implemented 636 

in the randomForest R package (v4.6-7).  Mean decrease Gini values were averaged for each 637 

ASV among the 100 random forest replicates. The ASVs with the first 20 highest mean decrease 638 

Gini values were plotted. ASVs with mean decrease Gini values above the breakpoint curve were 639 

chosen to be part of the classifier. Breakpoints were estimated using the “breakpoints” function 640 

included in the strucchange R package [52]. We subsequently fit the list of ASVs selected this 641 

way with or without psychometric test values,  i.e. MMSE and CDR, into Random Forest models, 642 

and bootstrapped for 100 times. We plotted the area under the receiver operating characteristic 643 

curve (AUROC) to show prediction performance of the models. 644 
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