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Abstract 24 

Epidemiological surveillance of bacterial pathogens requires real-time data 25 

analysis with a fast turn-around, while aiming at generating two main outcomes: 26 

1) Species level identification; and 2) Variant mapping at different levels of 27 

genotypic resolution for population-based tracking, in addition to predicting traits 28 

such as antimicrobial resistance (AMR). With the recent advances and continual 29 

dissemination of whole-genome sequencing technologies, large-scale population-30 

based genotyping of bacterial pathogens has become possible. Since bacterial 31 

populations often present a high degree of clonality in the genomic backbone (i.e., 32 

low genetic diversity), the choice of genotyping scheme can even facilitate the 33 

understanding of ancestral relationships and can be used for prediction of co-34 

inherited traits such as AMR. Multi-locus sequence typing (MLST) fits that 35 

purpose and can identify sequence types (ST) based on seven ubiquitous genome-36 

scattered loci that aid in genotyping isolates beneath the species level. ST-based 37 

mapping also standardizes genotyping across laboratories and can be consistently 38 

used worldwide. However, ST-based algorithms, when using Illumina paired-end 39 

sequences, often rely on genome assembly prior to classification. That hinders 40 

rapid genotyping and scalability which are essential aspects of genomic 41 

epidemiology. stringMLST is a kmer-based ST method with the capacity to solve 42 

both hurdles. Yet, a comprehensive scalable comparison of its use in contrast to a 43 

standard MLST program for a wide array of phylogenetically divergent Public 44 

Health-relevant bacterial pathogens is lacking. Herein, we first demonstrated that 45 

stringMLST is a fast tool that can be deployed for ST-based epidemiological 46 
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inquiries of bacterial populations. Additionally, we systematically evaluated and 47 

showed the impact of genome-intrinsic and -extrinsic features, as well as the 48 

optimal kmer length in maximizing the performance of stringMLST on species-49 

by-species basis, and highlighted a few instances where this program may not be 50 

applicable in its current format. Furthermore, we integrated stringMLST as part of 51 

our freely available and scalable hierarchical-based population genomics platform 52 

called ProkEvo. Besides facilitating automatable and reproducible bacterial 53 

population guided analysis, ProkEvo now offers a rapidly deployable genomic 54 

epidemiology tool for ST mapping, with specific guidance on how to optimize its 55 

performance, that can be widely applicable by microbiological laboratories and 56 

epidemiological agencies.  57 

 58 

Introduction  59 

Modern epidemiological investigation of bacterial pathogens is primarily focused 60 

on real-time, fast turn-around characterization of many thousands of isolates, 61 

routinely received by Public Health laboratories and regulatory agencies [1][2]. 62 

Additionally, due to the large-scale availability of whole-genome sequencing 63 

(WGS) and an emerging emphasis on retrieving accurate metadata, three major 64 

goals can be achieved with population-based inquiries: 1) Species identification; 65 

2) Genotyping at different levels of hierarchical resolution; and 3) Prediction of 66 

co-inherited traits such as antimicrobial resistance (AMR) via loci mapping, or 67 

based on the assessment of population-inherited linkage between the core- and 68 

accessory-genomes [3]. In general, bacterial populations contain a genomic 69 
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backbone (i.e., clonal-frame), for which the degree of clonality is predicted to be a 70 

heritable trait, leading to a measurable degree and pattern of co-inheritance 71 

between core- and accessory-genes (loci) – high linkage disequilibrium (LD) 72 

[4][5][6][7]. Core loci are those found in 99% of the genomes or more; whereas 73 

accessory loci represent a sparse ensemble present in less than 99% of genomes, 74 

which combined form the species-specific pan-genomic content [66]. In theory, 75 

one should be able to identify a genotyping scheme that not only facilitates 76 

sufficient isolate differentiation beneath the species level, but can also reveal the 77 

pattern of population diversification and structuring, while being used in 78 

phenotypic prediction such as for AMR traits. This optimal level of genotypic 79 

resolution can be considered an informative genotypic unit that facilitates both 80 

ecological and epidemiological inquiries. 81 

    Multi-locus sequence typing (MLST) is a well-established and widely used 82 

genotyping technique that classifies bacterial genomes into sequence types (ST) 83 

[8]. ST classification is achieved by mapping seven ubiquitous genome-scattered 84 

loci using highly curated, and species-specific allelic databases. Essentially, 85 

sequences for those seven loci can be generated by polymerase chain reaction 86 

(PCR)-based assays, or WGS [8][9][44]. Regardless of the methodology, partial 87 

sequences for each locus are mapped against multiple ever-expanding public 88 

allelic databases [27][30][67]. The combination of all seven allelic numbers 89 

defines which ST number the isolate is classified into. ST-based classification 90 

provides useful genotyping approach below the species level, while revealing the 91 

population structure and retrieving ancestral relationships, since when five or 92 
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more loci are identical to one another between two genomes, both belong to the 93 

same clonal complex (i.e., group of STs that have shared a common ancestor very 94 

recently) [8][9][28][44]. Moreover, ST-based genotyping standardizes the 95 

nomenclature for intra- and inter-laboratorial diagnostics and epidemiological 96 

inquiries worldwide [9][10][11]. Lastly, genes that are part of the MLST scheme 97 

can co-vary with other accessory loci important for phenotypic predictions such 98 

serotyping (e.g., Salmonella enterica) and inter-species AMR predictions 99 

[12][13][14].  100 

    Harnessing this intrinsic LD property of bacterial pan-genomes has been the 101 

basis for recent innovation in epidemiological investigations, whereby heuristic 102 

mapping of STs led to accurate prediction of AMR profiles [14][15]. However, 103 

ST-based classification, using the most widely distributed Illumina sequencing 104 

technology, is often dependent on genome assemblies [27][30][67]. That results in 105 

slower turn-around for data analysis and hinders ST-based surveillance efforts for 106 

enhancing scalability when working with many thousands of genomes [16][21]. 107 

One approach to overcome those hurdles is to use kmer-based ST classification 108 

directly from Illumina paired-end raw reads (assembly-free). stringMLST is an 109 

approach that successfully accomplishes that goal [17], but has not yet been 110 

systematically tested for its analytical performance while classifying thousands of 111 

genomes from phylogenetically divergent bacterial pathogens. 112 

    Therefore, the purpose of this work was to test whether stringMLST can be 113 

used as a rapid and accurate replacement of the standard MLST programs for 114 

scalable genotyping of phylogenetic divergent bacterial pathogens, with direct 115 
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Public Health implications, using Illumina raw sequences. In contrast to the 116 

original work [17], our systematic approach demonstrated a comprehensive 117 

comparison between a standard MLST program vs. stringMLST, while 118 

classifying many thousands of genomes across 15 pathogens, including: 119 

Acinetobacter baumannii (Phylum: Proteobacteria), Clostridioides difficile 120 

(Phylum: Firmicutes), Enterococcus faecium (Phylum: Firmicutes), Escherichia 121 

coli (Phylum: Proteobacteria), Haemophilus influenzae (Phylum: Proteobacteria), 122 

Helicobacter pylori (Phylum: Proteobacteria), Klebsiella pneumoniae (Phylum: 123 

Proteobacteria), Mycobacterium tuberculosis (Phylum: Actinobacteria), Neisseria 124 

gonorrhoeae (Phylum: Proteobacteria), Pseudomonas aeruginosa (Phylum: 125 

Proteobacteria), Streptococcus pneumoniae (Phylum: Firmicutes), Campylobacter 126 

jejuni (Phylum: Proteobacteria), Listeria monocytogenes (Phylum: Firmicutes), 127 

Salmonella enterica (Phylum: Proteobacteria), and Staphylococcus aureus 128 

(Phylum: Firmicutes). Additionally, we have also analyzed the optimal kmer 129 

length for 23 most relevant zoonotic serovars of Salmonella enterica subsp. 130 

enterica lineage I (S. enterica) individually given its cryptic population structure 131 

and diverse ecology [12]. For comparison between programs, we use the 132 

following analytical outcomes as proxies for algorithmic performance-based 133 

assessment: 1) Computational runtime and memory used for genome 134 

classification; 2) ST richness and diversity metrics; and 3) Proportion of non-135 

classified STs and concordance between programs. [17]Importantly, we measured 136 

the statistical contribution of genome-intrinsic (genome size and composition) and 137 

-extrinsic (ST database size) factors on classification accuracy at species level of 138 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.28.466354doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466354
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 7 

resolution, including the identification of the optimal kmer length per species. 139 

This comprehensive approach revealed how stringMLST is a deployable ready-to-140 

use program that can be further optimized (parameter fine-tunning) based on the 141 

species dataset, while attempting to scale its application for practical 142 

implementation in microbiological laboratories and epidemiological agencies. 143 

Lastly, we added stringMLST to our computational platform called ProkEvo, 144 

aiming at facilitating its automated, reproducible, and scalable use, in 145 

combination with other standard assembly-based hierarchical genotypic and pan-146 

genomic mapping approaches for bacterial population genomic analyses.  147 

 148 

Materials and methods  149 

This systems-based comparison between mlst and stringMLST was centered at 150 

capturing their differences in computational and statistical performances, and was 151 

accomplished through the following steps: 1) Narrow-scope comparative analysis 152 

across four phylogenetic distinct pathogens species; 2) Further examination of 153 

algorithmic performance within a single ecologically diverse bacterial species; 154 

and 3) Wide-scope comparison between phylogenetic divergent pathogenic 155 

species with Public Health relevance and with databases available on pubMLST 156 

(https://pubmlst.org/) for direct contrast between stringMLST and mlst. 157 

  158 
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Datasets used for narrow-scope analysis 159 

WGS data from four major bacterial pathogens, including Campylobacter jejuni, 160 

Listeria monocytogenes, Salmonella enterica subps. enterica lineage I (S. 161 

enterica) and Staphylococcus aureus, were selected to be used in this first part of 162 

the study. Our basis for that choice was due to three a priori defined criteria: 1) 163 

Select bacterial species from two main phylogenetic divergent Phyla: Firmicutes 164 

(L. monocytogenes and S. aureus) and Proteobacteria (C. jejuni and S. enterica); 165 

2) Select zoonotic pathogens that continually cause human illnesses worldwide 166 

[18]; and 3) Consider their epidemiological relevance according to the Centers for 167 

Disease Control and Prevention (CDC) [19]. Specifically for S. enterica, 20 of the 168 

CDC most investigated serovars were represented in the dataset, which includes: 169 

S. Agona, S. Anatum, S. Braenderup, S. Derby, S. Dublin, S. Enteritidis, S. Hadar, 170 

S. Heidelberg, S. Infantis, S. Javiana, S. Johannesburg, S. Kentucky, S. Mbandaka, 171 

S. Montevideo, S. Muenchen, S. Newport, S. Schwarzengrund, S. Senftenberg, S. 172 

Thompson, and S. Typhimurium [20]. All publicly available raw paired-end 173 

Illumina reads for these organisms were downloaded from NCBI using parallel-174 

fastq-dump [58]. Genomes used for all analyses were randomly selected from a 175 

previously downloaded samples of isolates containing C. jejuni (n = 21,919 176 

genomes), L. monocytogenes (n = 19,633 genomes), S. enterica (n = 25,284 177 

genomes), and S. aureus (n = 11,990 genomes) that were processed through the 178 

computational platform ProkEvo [21]. Specifically, our study design was 179 

comprised of random sampling of 600 genomes from each species, except for S. 180 

enterica for which 600 genomes were randomly drawn per serovar (list of all 20 181 
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serovars is shown in S1 Table). For each species and all S. enterica serovars, all 182 

~600 genomes were randomly split into three independent batches, with ~200 183 

genomes each. The batches were created to measure the degree of variation in 184 

classification accuracy when comparing the two ST-based genotyping programs. 185 

While for the majority of S. enterica serovars there were a total of 600 genomes 186 

available, the total number of raw reads publicly available on NCBI and 187 

ultimately used for the analyses for S. Agona, S. Derby, S. Johannesburg, S. 188 

Mbandaka and S. Senftenberg was 565, 590, 534, 535 and 563 respectively. The 189 

final total number of genomes used per species was: C. jejuni (n = 600), L. 190 

monocytogenes (n = 600), S. enterica (n = 11,787), and S. aureus (n = 600). Text 191 

file containing all genome NCBI SRA identifications is available here, 192 

https://figshare.com/articles/dataset/_/16735411.  193 

 194 

Software tools  195 

mlst 196 

mlst is a standard approach for scanning genome assemblies against traditional 197 

PubMLST typing schemes [22]. The genome assemblies can be in 198 

FASTA/GenBank/EMBL formats [22]. mlst (version 2.16.2) was installed using 199 

Anaconda, a package and environment manager that supports maintaining and 200 

installing various open-source conda packages [26]. mlst uses genome assemblies 201 

as an input. In order to generate assemblies from the raw Illumina paired-end 202 

reads, multiple pre-processing steps were performed. Quality trimming and 203 

adapter clipping were performed using Trimmomatic [50], while FastQC was 204 
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used to check and verify the quality of the trimmed reads [51]. The paired-end 205 

reads were assembled de novo into contigs using SPAdes with the default 206 

parameters [52]. The quality of the assemblies was evaluated using QUAST [53]. 207 

The information obtained from QUAST was used to discard assemblies with 0 or 208 

more than 300 contigs, or assemblies with N50 value of less than 25,000 [21]. 209 

Finally, the assemblies that passed the quality control were used with mlst, where 210 

they are categorized into specific variants based on the allele combinations from 211 

seven ubiquitous, house-keeping genes [22]. A list of the exact versions of the 212 

bioinformatics tools used for generating assemblies for mlst are shown on S2 213 

Table. We used mlst with the default options (e.g., mlst --legacy --scheme 214 

<scheme> --csv <assembly.fasta> > <output>) and the following schemes: 215 

“senterica” (for S. enterica), “campylobacter” (for C. jejuni), “lmonocytogenes” 216 

(for L. monocytogenes), “saureus” (for S. aureus). The distribution of mlst comes 217 

with set of pre-downloaded ST schemes. More details about these MLST 218 

schemes, such as the number of alleles in the seven genes and the number of ST 219 

classifications available are shown on S3 Table. To obtain the ST classifications 220 

of all datasets, mlst was run as part of the computational platform ProkEvo [21]. 221 

Additionally, a separate run of the mlst program was used to conduct a pairwise 222 

comparison between the computational performance (runtime and memory usage) 223 

of mlst and stringMLST. The used mlst script can be found here, 224 

https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/scripts/ml225 

st.submit. 226 
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 227 

stringMLST 228 

stringMLST is an assembly- and alignment-free rapid tool for ST-based 229 

classification of Illumina paired-end raw reads based on kmers [17]. For the 230 

analyses performed in this paper, we used stringMLST version 0.6.3. stringMLST 231 

was installed using Anaconda [26]. The first step of using stringMLST was to 232 

download the respective MLST scheme from PubMLST. In order to do this, a 233 

species name and a kmer length were needed. The default kmer length used and 234 

suggested by the developers of stringMLST for reads with lengths between 55 and 235 

150 base pairs or nucleotides is 35 (common read length for Illumina paired-end 236 

reads) [17]. We used stringMLST with the default options (e.g., stringMLST.py --237 

getMLST --species=<species_name> -P <output_prefix> -k <kmer>) and the 238 

following species names, “Salmonella enterica”, “Campylobacter jejuni”, 239 

“Listeria monocytogenes”, “Staphylococcus aureus”, and kmer lengths of 10, 20, 240 

30, 35, 45, 55, 65, 70, 80, 90 independently 241 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/scripts/str242 

ingMLST_dbs.submit). More details about the downloaded MLST schemes, such 243 

as the number of alleles in the seven genes and the number of ST classifications 244 

available are shown on S3 Table. After the MLST scheme was downloaded and 245 

prepared, the final step was to run “stringMLT.py –predict” for the ST 246 

classification. For this, we ran stringMLST with the databases a priori created and 247 

the respective paired-end raw reads and kmer lengths of 10, 20, 30, 35, 45, 55, 65, 248 

70, 80, 90 independently (e.g., stringMLST.py --predict -d 249 
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<directory_raw_reads> -p -r -t -x -P <database_prefix> -k <kmer> -o 250 

<output>) 251 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/scripts/str252 

ingMLST.submit). Our choice of using an increasing gradient of kmer lengths 253 

was to evaluate whether the kmer length parameter could be optimized to enhance 254 

ST-based classification accuracy across species. Lastly, stringMLST was also 255 

integrated as part of the computational platform ProkEvo for a rapid ST-based 256 

genotyping as part of a hierarchical genotypic scheme [21][57]. This 257 

implementation can be found here, 258 

https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/Prokevo_st259 

ringMLST. 260 

 261 

ProkEvo-based MLST classifications  262 

In order to compare the ST-based classification accuracy and conduct other 263 

statistical analysis (e.g., identifying major contributing factors influencing ST-264 

based classifications) between mlst version 2.16.2 (assembly-dependent) and 265 

stringMLST version 0.6.3 (assembly-independent), all initial ST calls for all 266 

selected genomes, across all four species, were done using mlst [22] through the 267 

computational platform ProkEvo [21]. In brief, ProkEvo uses bacterial Illumina 268 

raw paired-end sequences as an input, and the following steps are sequentially 269 

done prior to ST-based genotyping using mlst: Trimmomatic for sequence 270 

trimming [50], FastQC for quality control of the trimmed reads [51], SPAdes for 271 

de novo genome assembly [52], and QUAST for quality assessment of the 272 
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genome assemblies [53]. More information on how to install and use ProkEvo for 273 

hierarchical bacterial population genomic analyses can be found here, 274 

https://github.com/npavlovikj/prokevo. 275 

 276 

Genome-intrinsic and –extrinsic factors that can 277 

influence algorithmic performance 278 

Both genome-intrinsic and –extrinsic factors were considered to determine their 279 

contribution on the accuracy of ST classifications when comparing mlst vs. 280 

stringMLST.  281 

    The genome-intrinsic variables considered in these analyses were: number of 282 

contigs per genome, total number of nucleotides per genome (genome length), 283 

GC% content per genome, and dinucleotide composition of genomes. The number 284 

of contigs per genome, as well as the genome length, were calculated using the 285 

assembled contigs from SPAdes [52]. The number of contigs was calculated for 286 

each genome using the Linux “grep” utility (e.g., grep “>” assembly.fasta | wc -287 

l). The total number of nucleotides per genome was calculated using the 288 

“getlengths” function from the AMOS package [54]. For this analysis, we used 289 

AMOS v3.1. “getlengths” provides the length for each contig, and a custom Bash 290 

script was used to summarize these values per genome. The GC% content was 291 

calculated using the program FastQC [51]. FastQC is used to check and verify the 292 

quality of the raw Illumina paired-end raw reads. With each pair of raw reads 293 

from all datasets, FastQC v0.11 was used. One of the statistics checked for read 294 
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quality is GC% and this value was extracted with custom Bash script from the file 295 

“fastqc_data.txt” once the FastQC output was generated. Since FastQC outputs 296 

the GC% per read, the average of both reads was calculated as the final read 297 

GC%. The dinucleotide composition of the genomes was calculated with the 298 

function “compseq” from the EMBOSS package [55]. “compseq” calculates the 299 

frequency of words of a specific length (e.g., length is 2 in the case of 300 

dinucleotides) from given input genome sequences. For these analyses we used 301 

EMBOSS v6.6 with the command “compseq -word 2 -outfile <output> 302 

assembly.fasta” for all datasets and genomes a priori assembled with SPAdes 303 

[52]. Next, customized Bash script was used to count the total number of 304 

occurrences of each dinucleotide for each genome across all bacterial species. 305 

Finally, all these outputs were merged per genome using custom Python script to 306 

facilitate statistical analyses and data visualization. The used scripts can be found 307 

here, 308 

https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/scripts. 309 

    The genome-extrinsic variables used in the analyses presented here were: the 310 

total count of unique STs per database and the total count of unique alleles across 311 

all seven loci used for ST classification across all bacterial species. These 312 

genome-extrinsic variables were extracted from the PubMLST databases for both 313 

stringMLST and mlst using custom Bash scripts. While the first step of 314 

stringMLST is to download the newest available MLST scheme from PubMLST, 315 

the distributed version of mlst comes with set of pre-downloaded ST and allelic 316 

schemes. For each MLST scheme, the mlst distribution has a separate directory 317 
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with 8 files - seven are “.tfa” files with the fasta sequences of the alleles for each 318 

locus, and one file (e.g., senterica.txt) contains the ST information (i.e., the total 319 

number of STs mapped including their specific allelic composition across all 320 

seven loci for that given species). To calculate the total number of unique STs, we 321 

used the Linux utility “wc” with the text file with ST information (e.g., wc -l 322 

senterica.txt). To calculate the total count of unique alleles across the seven loci, 323 

the “grep” Linux utility was used with the seven “.tfa” files (e.g., grep “>” *.tfa | 324 

wc -l). All calculations were done per bacterial species. The downloaded MLST 325 

scheme with stringMLST is in a separate directory for each organism and used 326 

kmer length. This directory had 12 files - seven are “.tfa” files with fasta 327 

sequences for all alleles across all seven loci, and one file has the ST profiles 328 

(e.g., Salmonella_enterica_profile.txt), while the remaining files contained 329 

information about the extracted kmers and additional config and log information. 330 

Similarly, the total number of unique STs for stringMLST was counted using the 331 

Linux utility “wc” with the text file with ST profile information (e.g., wc -l 332 

Salmonella_enterica_profile.txt) and the total count of unique alleles per loci was 333 

extracted using the “grep” Linux utility with the seven “.tfa” files (e.g., grep “>” 334 

*.tfa | wc -l). Similarly, all ST and allelic counts were carried out per bacterial 335 

species. With stringMLST, the MLST schemes are downloaded and prepared 336 

separately for each different kmer length used. However, the kmer length did not 337 

affect the number of STs and unique alleles per organism. Thus, these values are 338 

the same across organisms and kmer lengths for stringMLST. 339 

 340 
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Kmer-based distribution across ST programs 341 

In order to assess the potential impact of random mapping or occurrence of kmers 342 

of different lengths across different bacterial species we randomly chose 100 raw 343 

Illumina paired-end reads from the initial C. jejuni, L. monocytogenes, S. aureus 344 

and S. Typhimurium (major representative zoonotic serovar of S. enterica) 345 

isolates. For each read, we extracted all unique kmers of length 10, 20, 30, 35, 45, 346 

55, 65, 70, 80 and 90 respectively, and counted their occurrence in the 347 

corresponding raw reads. This was done using DSK v2.2.0 [56] 348 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/scripts/ds349 

k.submit). Next, the total number of kmer frequency was summarized per 350 

organism and kmer length, and the mean value was calculated to examine the 351 

distribution of different kmers across the raw reads. For each database created 352 

with stringMLST, a file with the kmer frequency for the used ST scheme was 353 

generated. Using the kmers generated from the raw reads and the stringMLST 354 

database, a relative frequency of the common kmers was calculated (calculated as 355 

a ratio between the common kmers and the unique kmers from all the kmers 356 

generated between the raw reads and the stringMLST database, e.g., 357 

(common_kmers/unique_total_observations)*100). The code used for this can be 358 

found in our GitHub repository 359 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/figures_c360 

ode). 361 

 362 
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Agreement in ST classification between programs 363 

In order to assess the overall accuracy of stringMLST compared to the standard 364 

mlst approach for ST calls, a percentage of agreement in ST classification was 365 

calculated. For this, the initial dataset composed of 600 genomes from either C. 366 

jejuni, or L. monocytogenes, or S. aureus was selected, in addition to a total of 367 

11,787 genomes across twenty zoonotic serovars of S. enterica (~600 genomes 368 

per serovar, S1 Table). The program stringMLST was run with increasing kmer 369 

lengths ranging from 10 to 90 nucleotides. If both stringMLST and mlst produced 370 

identical ST calls, either “good” or “bad” ones, the call was a match. A “good” 371 

and “bad” call represent ST with a number or a missing/blank value, respectively. 372 

The remaining combinations were classified as a mismatch. Next, the percentage 373 

of agreement (concordance) was calculated with custom R base script 374 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/figures_c375 

ode). 376 

 377 

Computational platforms 378 

All computational analyses performed for this paper were done on Crane - one of 379 

the high-performance computing clusters at the University of Nebraska-Lincoln 380 

Holland Computing Center [23]. Crane is Linux cluster, having 548 Intel Xeon 381 

nodes with RAM ranging from 64 GB to 1.5 TB. The scalability of ProkEvo with 382 

stringMLST was tested on the Open Science Grid (OSG), a distributed, high-383 

throughput computational platform for large-scale scientific research [24][25]. 384 

OSG is a national consortium of more than 100 academic institutions and 385 
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laboratories that provide storage and tens of thousands of resources to OSG users. 386 

These sites share their idle resources via OSG for opportunistic usage. The OSG 387 

resources are Linux-based, and due to the different sites involved, the hardware 388 

specifications of the resources are different and vary. 389 

 390 

Computational performance 391 

To evaluate the computational performance of stringMLST in comparison to the 392 

mlst program, we assessed the runtime and memory usage of both programs. For 393 

this, we chose four different datasets, C. jejuni, L. monocytogenes, S. aureus and 394 

S. Typhimurium (major representative zoonotic serovar of S. enterica), with three 395 

different batches of 200 genomes each, with a total of 600 genomes each. We ran 396 

mlst with all required steps, such as quality trimming and adapter clipping, de 397 

novo assembly and assembly discarding on each dataset (see Section Software 398 

tools: mlst for more detailed description). Separately, we ran stringMLST with a 399 

range of 10 different kmer lengths (10, 20, 30, 35, 45, 55, 65, 70, 80, 90) on each 400 

dataset. For each organism, the runtime was calculated as an average of all 200 401 

genomes per batch. In general, the runtime depends on multiple factors, such as 402 

the specification and capabilities of the used computational platform. Since the 403 

runtime can vary depending on these various factors, the average statistics was 404 

used to show the central tendency of the runtime when comparing stringMLST vs. 405 

mlst. The runtime was calculated using the “date” command integrated in the 406 

Unix operating systems (e.g., t=`date +%s`; mlst --legacy --scheme senterica --407 

csv assembly.fasta > <output>; tt=`date +%s`; total_time=$((tt-t))). For each 408 
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organism, the memory was calculated as the maximum memory recorded from all 409 

200 genomes per batch, since all genomes were analyzed separately and 410 

concurrently. In the case of mlst, the recorded memory was the maximum 411 

memory of all the steps ran prior to mlst, such as trimming, de novo assembly, 412 

quality checking, filtering and ST typing. The memory used for these steps 413 

considerably varies from a few MBs to a few GBs (e.g., filtering vs. de novo 414 

assembly), and since the memory is a physical limitation of the computational 415 

platform, the maximum used memory was calculated for each organism and 416 

batch. The memory used was calculated using the “cgget” command that tracks 417 

various parameters from the Linux Control Groups (cgroups) per running job 418 

(e.g., mlst --legacy --scheme senterica --csv assembly.fasta > <output>; r=`cgget 419 

-r memory.usage_in_bytes /slurm/uid_${UID}/job_${SLURM_JOBID}/`; 420 

mem=`echo $r | awk -F: '{print $3}'`).  421 

 422 

Incorporating stringMLST in ProkEvo 423 

ProkEvo is a freely available and scalable computational platform capable of 424 

facilitating bacterial population genomics analyses while combining various 425 

independent algorithms in a portable pipeline [21]. One of the advantages of 426 

ProkEvo is its ability to facilitate the addition and removal of new steps and 427 

programs. For instance, more details about adding new program to ProkEvo are 428 

given here https://github.com/npavlovikj/ProkEvo/wiki/4.1.-Add-new-429 

bioinformatics-tool-to-ProkEvo. By following these instructions, we were able to 430 

successfully add stringMLST to the current ProkEvo platform. The ultimate 431 
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description of how stringMLST was integrated into ProkEvo can be found here, 432 

https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/Prokevo_st433 

ringMLST. 434 

 435 

Comparison between mlst and stringMLST performance 436 

using ProkEvo 437 

In order to compare the performance/accuracy of MLST and stringMLST as part 438 

of the ProkEvo platform, two subsets of the C. jejuni, L. monocytogenes, S. 439 

Typhimurium and S. aureus datasets used in this paper were selected. One subset 440 

was composed of 100 randomly selected genomes, while the second one 441 

contained 1,000. The subsets were randomly selected from the original isolates 442 

used in this paper. As part of ProkEvo, stringMLST was run with the default kmer 443 

length of 35. The ProkEvo workflows with mlst and stringMLST and the two 444 

datasets were individually run on Crane - one of the high-performance computing 445 

clusters at the Holland Computing Center. Once the four workflows finished, the 446 

performance of ProkEvo with mlst and stringMLST and the datasets with 100 and 447 

1,000 genomes, respectively, was compared using: i) the total running time; ii) the 448 

percentage of non-classified STs; and iii) the percentage of agreement between 449 

programs. Since ProkEvo is an automated platform, a list of NCBI-SRA 450 

identifications was provided with the ProkEvo implementations with both mlst 451 

and stringMLST. In brief, ProkEvo manages all the dependencies and 452 

intermediate steps, and produces the final ST classification as an output. 453 

 454 
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stringMLST-based kmer length optimization across 455 

phylogenetic divergent bacterial pathogens 456 

In order to identify the optimal species-specific kmer length that minimizes the 457 

frequency of ST miscalls, we ran stringMLST with a range of different kmer 458 

lengths across phylogenetic divergent pathogenic species. First, we chose twenty-459 

three S. enterica serovars (S. Agona, S. Anatum, S. Braenderup, S. Derby, S. 460 

Dublin, S. Enteritidis, S. Hadar, S. Heidelberg, S. Infantis, S. Javiana, S. 461 

Johannesburg, S. Kentucky, S. Mbandaka, S. Montevideo, S. Muenchen, S. 462 

Newport, S. Oranienburg, S. Poona, S. Saintpaul, S. Schwarzengrund, S. 463 

Senftenberg, S. Thompson, S. Typhimurium), and for each dataset we randomly 464 

selected 100 paired-end Illumina reads from NCBI-SRA. Second, for each dataset 465 

we ran mlst and stringMLST with kmer lengths ranging from 20, 30, 35, 40, 45, 466 

50, 55, 60, 65, 70, 80, 90. The kmer length of 10 was excluded due to its poor 467 

performance in previous analyses. Additionally, we use data from fourteen 468 

pathogens with Public Health relevance to widen the scope of the analysis and 469 

assess the necessity of fine-tunning the kmer length on a more broadly selected 470 

collection of species. In particular, we chose the following pathogens: 471 

Acinetobacter baumannii, Clostridioides difficile, Enterococcus faecium, 472 

Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella 473 

pneumoniae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Pseudomonas 474 

aeruginosa, Streptococcus pneumoniae, Campylobacter jejuni, Listeria 475 

monocytogenes, Staphylococcus aureus. For each pathogen, we randomly selected 476 

and downloaded 1,000 paired-end reads from NCBI-SRA and processed these 477 
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reads separately with mlst and stringMLST. stringMLST was run with kmer 478 

lengths ranging from 20, 30, 35, 45, 55, 65, 70, 80, 90 and different schemes for 479 

the different pathogens. Similarly to the S. enterica datasets, the kmer length of 10 480 

was excluded from the analysis. 481 

     Across all datasets, the percentage of ST miscalls was calculated for 482 

stringMLST for each kmer length, whereby miscalls were defined as “bad” ST 483 

calls - calls with a missing or blank value. Next, for each dataset, the kmer length 484 

that equated with the lowest percentage of ST miscalls was recorded. For some 485 

datasets, multiple kmer lengths generated an identical lowest percentage for ST 486 

miscalls. In this case, we applied a two-folded approach to select the most optimal 487 

kmer length: 1) if kmer of length 35 was part of the kmer lengths that showed the 488 

most optimal results, we recorded kmer 35 as the optimal kmer length since that is 489 

the default and recommended value for stringMLST; or 2) if kmer of length 35 490 

was not part of the kmer lengths that showed the most optimal results, we 491 

recorded the kmer with the highest value as the most optimal one, since in general 492 

our analysis showed that longer kmers consumed less computational resources 493 

and speed up the entire analysis. Ultimately, the optimal kmer length and the 494 

percentage of ST miscalls were visualized onto a core-genome phylogeny 495 

generated for all twenty-three S. enterica serovars, as well as for all fourteen 496 

pathogens including all twenty-three S. enterica serovars which jointly totaled 497 

fifteen pathogens (total of 37 genomes, one per species including one per serovar 498 

of S. enterica, were used to construct the core-genome phylogeny for 499 

visualization purposes). The core-genome alignment was generated using Roary 500 
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with this set of parameters, “roary -s -e --mafft -p 8 -cd 70 -i 70 501 

./prokka_output/*.gff -f roary_output” 502 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/scripts/ro503 

ary.submit).The phylogenetic tree was produced using FastTree [76] and 504 

visualized using iTOL [77], and the recorded statistics were extract with custom R 505 

scripts 506 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/blob/main/figures_c507 

ode/figures_code.Rmd). 508 

    In addition to calculating the percentage of ST miscalls for different kmer 509 

lengths with stringMLST, for each dataset we calculated the percentage of 510 

agreement (concordance) between mlst and stringMLST on ST calls (“good” or 511 

“bad”), as previously described here. Of note, when the stringMLST and mlst 512 

results were combined, the number of returned ST calls wasn't always 1,000 (the 513 

original size of the used datasets). If 1,000 reads are used with stringMLST, 514 

stringMLST generates ST calls for all 1,000 reads. On the other hand, when using 515 

mlst, a set of steps are used before mlst, including filtering, and a fraction of 516 

assemblies were disregarded due to poor quality. Thus, only genome sequences 517 

that passed through the mlst program and yielded a “good” or “bad” call were 518 

ultimately used to compare with stringMLST. The number of raw reads for each 519 

dataset, as well as the number of final reads from mlst used for these analyses are 520 

shown on S4 Table. 521 

 522 
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Statistical analyses 523 

In order to compare the overall performance and accuracy of mlst vs. stringMLST 524 

on ST-based classifications, the following statistics were used across all bacterial 525 

species datasets: 1) ST richness; 2) Simpson’s D index (1 – D) of diversity using 526 

ST counts as input data; 3) Proportion of non-classified STs (missing values or 527 

blank calls); and 4) Standard deviation of the proportion of non-classified STs. 528 

These statistics were calculated to evaluate the algorithmic performance on ST-529 

based classification accuracy within and between bacterial species selected to be 530 

used in the narrow scope analysis (C. jejuni, S. aureus, L. monocytogenes, and S. 531 

enterica). ST richness was calculated by identifying the number of distinct STs 532 

present in each species. The Simpson’s D index of diversity (1- D) was used to 533 

calculate the degree of genotypic diversity across species, using the diversity() 534 

function available in the vegan (version 2.5-6) R library [29]. The proportion of 535 

non-classified STs was calculated using the counts of isolates or genomes that 536 

were not assigned a ST number after each run of either mlst or stringMLST. The 537 

standard deviation of the proportion of non-classified STs was calculated using 538 

the sd() function which is derived from an unbiased estimate of the sample 539 

variance corrected by n – 1 (n for number of observations). The frequency of 540 

genomes used for all analyses was calculated per batch and program across all 541 

species, including across serovars for S. enterica. The relative frequency of the 542 

most dominant ST lineages was also assessed across bacterial species.  543 

    PERMANOVA univariate or multivariate models were used to assess the 544 

degree of association between the genome-intrinsic and –extrinsic factors with the 545 
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following dependent variables: ST richness, Simpson’s D index of diversity, or 546 

proportion of non-classified STs. Statistical models were built for each of the 547 

dependent variables separately. Multivariate models included either the 548 

combination of bacterial species and program, or serovars in the case of S. 549 

enterica and program. These multivariate models were stated to calculate the 550 

main and synergistic effects of the explanatory variables (e.g., species*program or 551 

serovar*program). Univariate models were also assessed for each of the 552 

dependent variables, using one of the following independent/explanatory 553 

variables: 1) Genome-intrinsic variables: median number of contigs, mean of the 554 

total count of nucleotides per genome, mean of the average GC% content per 555 

genome, standard deviation of the number of contigs, standard deviation of the 556 

total count of nucleotides per genome, and standard deviation of the average 557 

GC% content per genome; 2) Genome-extrinsic variables: species, serovar of S. 558 

enterica, program (mlst vs. stringMLST with kmer lengths of 10, 20, 30, 35, 45, 559 

55, 65, 70, 80, 90), mean of the total count of unique STs per program, mean of 560 

the total count of unique alleles across all genes per program, and the Simpson’s 561 

D index of diversity per species. Statistical significance and strength of 562 

association between the dependent and independent variables were measured with 563 

p-values (p < 0.05) and R-squared, respectively. In the case of contig size 564 

(median), total number of nucleotides per genome (mean), and GC% content per 565 

genome, summary statistic values (median or mean) were calculated grouped by 566 

species and batch (there was a total of three batches per bacterial species or 567 

serovar). For the total count of STs and total number of alleles in the database, 568 
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summary statistic values (mean) were calculated grouped by species, batch, and 569 

program. Lastly, the standard deviation of number of contigs, total count of 570 

nucleotides per genome, or GC% content per genome were calculated grouped by 571 

species. PERMANOVA models were run using the adonis() function with 1,000 572 

permutations using the vegan (version 2.5-6) R library [29]. Principal component 573 

analysis (PCA) was used to analyze the dinucleotide distribution across species 574 

and across serovars for S. enterica with two dimensions using the prcomp() 575 

function. The PCA calculations and the selection of the number of PCs were done 576 

using the factoextra (version 1.0.7) library. Bar-plots, box-and-whiskers plots, and 577 

bivariate/trivariate scatter plots were used to assess the distribution and 578 

associations within and between dependent and independent/explanatory 579 

variables. The R software (version 4.0.3) and R libraries such as Tidyverse 580 

(version 1.3.0) were used to conduct all statistical analyses, and all R scripts are 581 

available here 582 

(https://github.com/npavlovikj/MLST_stringMLST_analyses/tree/main/figures_c583 

ode). Data quality control was achieved with R base functions, in addition to the 584 

following packages: skimr (version 2.1.3) and visdat (version 0.5.3). Graphical 585 

visualizations were achieved using ggplot2 (version 3.3.2), GGally (version 586 

2.1.2), and plotly (version 4.9.4.1). R code integrity was checked using the 587 

assertive (version 0.3-6) package. 588 

 589 
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Results 590 

The computational and analytical approaches used in this paper are shown on Fig 591 

1. Our analytical approach was sub-divided into a narrow- and wide-scope 592 

analysis aiming at accomplishing two goals: 1) Comparing the computational and 593 

statistical performance of mlst vs. stringMLST; and 2) Optimizing the use of 594 

stringMLST on a bacterial species basis and ultimately implementing it as part of 595 

the ProkEvo computational genomics platform. First, we used freely available raw 596 

Illumina paired-end sequence data from C. jejuni, L. monocytogenes, S. enterica 597 

and S. aureus, to run stringMLST and mlst independently in order to compare the 598 

accuracy in ST-based classifications and assess the computational needs and 599 

performance in the overall analysis (narrow-scope step). In particular, for this 600 

narrow-scope stage we performed a detailed comparative analysis between these 601 

two programs including: i) analyses of computational performance and resources 602 

needed (e.g., average runtime per genome and maximum memory needed to 603 

analyze all genomes), and ii) statistical analyses to determine the accuracy of 604 

classifications (e.g., ST richness, Simpson’s D index of ST-based diversity, 605 

proportion of miscalls, and percentage of agreement or concordance between 606 

programs). For the wide-scope step, we systematically analyzed the accuracy and 607 

concordance between mlst and stringMLST across a broad array of phylogenetic 608 

divergent pathogens with direct implication for Public Health (Acinetobacter 609 

baumannii, Clostridioides difficile, Enterococcus faecium, Escherichia coli, 610 

Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, 611 

Mycobacterium tuberculosis, Neisseria gonorrhoeae, Pseudomonas aeruginosa, 612 
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Streptococcus pneumoniae, Campylobacter jejuni, Listeria monocytogenes, 613 

Salmonella enterica and Staphylococcus aureus). Combined with the intra-species 614 

analysis done across 23 serovars of S. enterica, our assessment aimed at revealing 615 

the optimized kmer length to be used with stringMLST in order to: i) minimize 616 

the percentage of ST miscalls, and ii) maximize the use of computational 617 

resources by speeding up the analysis. Lastly, we provided an implementation of 618 

stringMLST within ProkEvo - a freely available and scalable computational 619 

platform that facilitates hierarchical genotyping of bacterial populations including 620 

pan-genomic mapping  [21].  621 

 622 

Computational performance  623 

The computational performance between stringMLST and mlst was measured 624 

using two metrics: 1) The average computational runtime per genome; and 2) The 625 

maximum memory used per dataset. The average runtime in minutes per genome 626 

per batch between mlst and stringMLST with different kmer lengths, for C. jejuni, 627 

L. monocytogenes, S. aureus, and S. Typhimurium (major representative of S. 628 

enterica), is shown on Fig 2. While the runtime of mlst varies between 20 and 80 629 

minutes per genome depending on the dataset used, all stringMLST runs with 630 

different kmers finished within a few minutes (ranging from ~1-16 minutes when 631 

kmer 10 was included and ~1-5 minutes when kmer 10 was excluded). Apart from 632 

stringMLST with kmer 10, all other kmer lengths showed a uniform runtime. The 633 

longer runtime observed with kmer 10 can be partially explained by the higher 634 

number of kmers that were generated and used for mapping (S1 Fig). The 635 
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obtained results show that ST-based classifications are accomplished considerably 636 

more rapidly when carried out using stringMLST compared to the standard MLST 637 

program.  638 

    Additionally, a comparison of maximum memory used when both stringMLST 639 

and mlst were run for C. jejuni, L. monocytogenes, S. aureus, and S. Typhimurium 640 

(major representative of S. enterica) is shown on S2 Fig. Across all species, the 641 

range of maximum memory usage for mlst and stringMLST (across all kmers) 642 

was ~2-16GBs and ~3-30GBs respectively. Although the memory used across 643 

datasets is variable, none of the analyses we ran exceeded 30GBs of RAM. Since 644 

most high-performance computers can consistently provide resources from 32GBs 645 

to a few TBs of RAM, the memory available should not be considered a 646 

bottleneck for running either program.  647 

 648 

Factors that can influence ST-based classification  649 

First, we describe the characteristics and composition of the data utilized for 650 

comparison between programs regarding ST-based classification in the narrow-651 

scope approach (utilization of fewer phylogenetic diverse pathogen datasets). The 652 

frequency of genomes utilized per species and across programs is shown on S3A-653 

D Fig. The frequency of S. enterica genomes was higher than other species 654 

because an equal sample of ~600 genomes was taken from 20 representative 655 

zoonotic serovars (S4A-D Fig). An assessment of the proportion of the most 656 

dominant STs across species (proportion ³ 2% - S5A-D Fig) or serovars of S. 657 

enterica (proportion ³ 15% - S4N Fig) initially revealed a similar ST-based 658 
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distribution across programs. Furthermore, genome-intrinsic and -extrinsic factors 659 

that could potentially impact the mlst vs. stringMLST algorithmic comparison and 660 

performance were a priori determined and considered in the analysis. Among the 661 

genome-intrinsic factors considered across species were the number of contigs per 662 

genome (Fig 3A), the total number of nucleotides per genome (Fig 3B), GC% 663 

content per genome (Fig 3C), and the distribution and composition of 664 

dinucleotides per species (Fig 3D and S3E-F Fig). Similarly, the distribution of 665 

the genome-intrinsic factors was analyzed across all twenty serovars of S. enterica 666 

(S4G-L Fig). A correlogram (pairwise correlation analysis) was also used to 667 

assess the bivariate correlation (Pearson’s correlation coefficient) across genome-668 

intrinsic variables, for either all four bacterial species (S3G Fig) or serovars 669 

across S. enterica (S4M Fig). At large, the differences observed in the distribution 670 

of genomic-intrinsic variables were species driven, with a strong uniformity found 671 

across serovars of S. enterica.  672 

    As for the genome-extrinsic variables, the total count of unique STs (for 673 

species - Fig 3E) and unique number of alleles across all seven loci (for species - 674 

Fig 3F), across all batches, were selected as factors that could influence the 675 

comparative analysis between mlst and stringMLST. Similarly, the genome-676 

extrinsic variables were analyzed across all twenty serovars of S. enterica (S4E-F 677 

Fig). Of note, database size differences (number of STs and alleles) may directly 678 

influence the number of miscalls since it is expected that the larger the database 679 

is, the more likely STs are to be classified, or to find a match, and not be 680 

miscalled [30]. Considering the differences in genome-intrinsic and -extrinsic 681 
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variable distribution across species, such factors were further utilized for 682 

assessing their statistical contribution in the accuracy of ST-based classification 683 

between mlst vs. stringMLST. 684 

 685 

Assessing the contribution of genome-intrinsic and –686 

extrinsic variables  687 

In order to assess the statistical association and contribution of each genomic-688 

intrinsic and -extrinsic variable onto the accuracy of mlst vs. stringMLST on ST 689 

calls (narrow-scope analysis since it only included four bacterial species, C. 690 

jejuni, S. aureus, L. monocytogenes, and S. enterica), the following dependent 691 

variables (outcomes) were used in the PERMANOVA models: 1) ST richness 692 

(Fig 4A); 2) Simpson’s D index of ST diversity (Fig 4B); and 3) Proportion of 693 

non-classified STs (Fig 4C). Additionally, the standard deviation of the proportion 694 

of non-classified STs was measured as an auxiliary metric for accuracy (Fig 4D). 695 

At the species level, a multivariate model was used to examine the interaction of 696 

species and program (mlst vs. stringMLST); whereas, the remaining analyses 697 

were done using univariate models containing each genome-intrinsic and -698 

extrinsic variable for all three outcomes (S6A-L Fig, S7A-K Fig, S8A-L Fig).    699 

    For each variable, the significance and strength of association were assessed by 700 

jointly examining the p-value (p < 0.05) and R-squared, respectively. For both ST 701 

richness (Fig 4A) and the Simpson’s D index of diversity (Fig 4B), the difference 702 

between species explained the majority of the variation with ~98.3% and ~99%, 703 

respectively. As expected, based on the phylogenetic divergence of the four 704 
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chosen pathogens, differences across species could largely be explained by 705 

genome-intrinsic variables associated with genome composition, such as: GC% 706 

content (p ~0.0009, R-squared ~44%) for ST richness, and the number of contigs 707 

per genome (p ~0.0009, R-squared ~39.5%) for the Simpson’s D index of 708 

diversity (Fig 4A-B). Notably, for both ST richness and the Simpson’s D index of 709 

diversity most of the differences between species could be explained by variation 710 

in genome composition (Fig 4A-B). Not surprisingly, co-linearity was observed 711 

between ST richness and the Simpson’s D index of diversity across species (Fig 712 

4A). In the case of the proportion of non-classified STs (ST miscalls) (Fig 4C), 713 

most of the variation was explained by inter-species differences (p ~0.0009, R- 714 

squared ~33%), with the number of contigs per genome being the most important 715 

genome-intrinsic contributing factor (p ~0.0009, R- squared ~27%). As for the 716 

kmer length parameter used by stringMLST, results for ST richness and the 717 

Simpson’s D index of diversity were uniform across all lengths (Fig 4A-B). 718 

However, when examining the proportion of miscalls (Fig 4C) and the standard 719 

deviation of that proportion (Fig 4D), the data pointed toward the optimal kmer 720 

length being between 35 and 65 across all four species (narrow-scope analysis). 721 

Specifically, this kmer length range was defined based on two criteria: i) 722 

minimization of the proportion of miscalls; and ii) less variation (standard 723 

deviation) around the average of ST-based miscalls. Of note, mlst has the highest 724 

proportion of miscalls and standard deviation of that proportion for both L. 725 

monocytogenes and C. jejuni (Fig 4C-D), and the kmer length 10 for stringMLST 726 

yielded very low accuracy and null results for ST richness and Simpson’s D index 727 
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of diversity (Fig 4A-D). Differences between species across ST richness, 728 

Simpson’s D index of diversity, and proportion of ST miscalls along with all 729 

genome-intrinsic and -extrinsic variables across programs (mlst vs. stringMLST) 730 

were further examined here (Fig 5A-D, S9A-O Fig). Nonetheless, differences in 731 

ST-based calls across programs were largely influenced by the bacterial species 732 

dataset. 733 

    Given the complexity and diversity of the S. enterica population structure [12], 734 

the stringMLST performance was analyzed across twenty zoonotic serovars 735 

(S4O-R Fig), and resulted in a significant and predominant contribution of the 736 

“serovar groupings” across all outcomes and PERMANOVA models (S10A-L 737 

Fig, S11A-K Fig, S12A-L Fig): ST richness (p ~0.0009, R-squared ~75.4%), 738 

Simpson’s D index of diversity (p ~0.0009, R-squared ~88%), and proportion of 739 

ST miscalls (p ~0.0009, R- squared ~35.4%). By assessing the distribution of the 740 

model outcomes, along with PERMANOVA model results and bivariate 741 

association between dependent and explanatory variables (S13A-R Fig), the 742 

results recapitulated the species-level results with the optimal kmer length for 743 

stringMLST being around 35 and 65, but also revealed the need to consider 744 

difference across S. enterica serovars prior to implementation. Combined, these 745 

accuracy-based results suggest that: i) stringMLST minimizes the ST miscalls 746 

compared to mlst in a species-specific fashion, and by consequence the optimal 747 

kmer length for stringMLST ranged from 35 to 65 overall; ii) the performance 748 

and accuracy of stringMLST can vary across species and serovars of S. enterica 749 

allowing for data-driven fine-tunning of the kmer length; and iii) the use of 750 
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sequence platform with longer reads which would maximize the number of 751 

contigs per genome could directly alter both mlst and stringMLST accuracy in ST 752 

calls across species.  753 

 754 

Concordance between programs  755 

Concordance between programs was calculated as the percentage of cases in 756 

which outputs from both mlst vs. stringmlst agreed in the call (“good” or “bad”). 757 

Results demonstrating the percentage agreement in ST calls between mlst and 758 

stringMLST with different kmer lengths are shown on Fig 6. With the exception 759 

of kmer 10, across all species, the percentage of agreement between mlst and 760 

stringMLST varies between 81.50% and 97.50%. In the case of L. 761 

monocytogenes, C. jejuni, and S. aureus, the kmer length of 35 appears to be the 762 

optimal value to reach the same accuracy as mlst, which matches the original 763 

default and recommended parameter value for stringMLST [17]. However, for S. 764 

enterica a higher percentage of agreement with MLST was achieved for kmer 765 

lengths of 55 and 65 (Fig 6). This S. enterica-related observation recapitulated the 766 

initial findings of decreased proportion of ST miscalls with higher kmer lengths 767 

(Fig 4C). Of note, our finding collectively showed that the kmer length of 10 768 

yielded low accuracy when compared to mlst and other stringMLST kmer lengths. 769 

The most likely explanation for lower accuracy generated by kmer 10 is that 770 

shorter kmers are more likely to map unambiguously onto a genome when 771 

compared to other lengths. That high frequency of kmer length 10 on a given 772 

dataset reflects their higher likelihood of mapping to multiple regions of a genome 773 
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(S1 Fig, S14A-B Fig). Overall, stringMLST is a rapidly deployable and 774 

optimizable ST-based genotyping algorithm that in this narrow-scope analysis 775 

proved to be applicable to four phylogenetic distinct pathogens. 776 

 777 

Optimization of stringMLST kmer length across 778 

phylogenetic divergent species   779 

As previously proposed [17], the default kmer length for Illumina paired-end 780 

reads for stringMLST is 35. However, our narrow-scope analysis across four 781 

distinct pathogens (see above) suggested a species-specific variation in the 782 

optimal kmer length capable of minimizing the proportion of ST miscalls. 783 

Therefore, we systematically investigated what kmer length would give the fewest 784 

ST miscalls (optimized length) with stringMLST across a diverse array of 785 

phylogenetic divergent pathogens. Given our previous results, we first deepened 786 

our investigation into the S. enterica population given the genetic and ecological 787 

diversity across serovars. For that, we selected data from twenty-three S. enterica 788 

zoonotic serovars and ran stringMLST with wide range of kmer lengths (20, 30, 789 

35, 40, 45, 50, 55, 60, 65, 70, 80, 90). Fig 7A shows the core-genome phylogeny 790 

mapping of the optimized kmer length across all twenty-three serovars along with 791 

their corresponding percentage of ST miscalls. More detailed information on the 792 

distribution of the percentage of ST miscalls for all used kmer lengths (20, 30, 35, 793 

40, 45, 50, 55, 60, 65, 70, 80, 90) is shown on S15A Fig. As it can be seen on Fig 794 

7A, many serovars (S. Anatum, S. Braenderup, S. Javiana, S. Mbandaka, S. 795 

Montevideo, S. Oranienburg, S. Poona, S. Schwarzengrund, S. Senftenberg, S. 796 
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Typhimurium) have 0% of miscalls when the default kmer length 35 was used. S. 797 

Infantis and S. Derby show the lowest percentage of ST miscalls (3% and 2% 798 

respectively) with higher value of kmer, e.g., 90. Interestingly, S. Saintpaul 799 

showed the highest percentage of ST miscalls when only considering the range of 800 

kmer lengths used for the initial analyses (10-90). To investigate this further, we 801 

ran stringMLST for S. Saintpaul with kmer lengths up to 240 (240 was chosen 802 

because the maximum read length for the S. Saintpaul dataset is 250 base pairs or 803 

nucleotides) (S15C-D Fig). As it can be seen on S15C Fig, the fewest ST miscalls 804 

for S. Saintpaul were produced when kmer of length 140 was used (22%). When 805 

comparing the percentage of ST miscalls between mlst and stringMLST, mlst 806 

outperformed stringMLST for the used datasets and range of kmer lengths. In 807 

addition to the percentage of ST miscalls, we calculated the percentage of ST 808 

agreement between mlst and stringMLST with the range of kmer lengths (S15B 809 

Fig). While for some serovars this percentage is the highest when kmer with 810 

length 35 is used (e.g., S. Anatum, S. Braenderup, S. Javiana, S. Mbandaka, S. 811 

Montevideo, S. Oranienburg, S. Poona, S. Schwarzengrund, S. Senftenberg, S. 812 

Typhimurium), for other serovars (e.g., S. Derby, S. Dublin, S. Enteritidis, S. 813 

Hadar, S. Heidelberg, S. Infantis, S. Kentucky, S. Saintpaul) the percentage of ST 814 

agreement between the two programs was higher with higher kmer lengths.  815 

    In order to widen the scope of our phylogenetic-based analysis, we assessed the 816 

percentage of ST miscalls across varying kmer lengths for divergent bacterial 817 

pathogens with Public Health relevance. We selected 14 distinct organisms and 818 

ran stringMLST with wide range of kmer lengths (20, 30, 35, 45, 55, 65, 70, 80, 819 
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90). Fig 7B depicts the core-genome phylogeny mapped results including the 820 

optimal kmer length that minimized the percentage of ST miscalls. Of note, the 821 

phylogeny contained fourteen distinct pathogens and twenty-three genomes across 822 

each serovar of S. enterica. The distribution of the percentage of ST miscalls for 823 

all used kmer lengths (20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90) is shown on 824 

S15E Fig. While the percentage of ST miscalls varied between 0% and 22% 825 

across the S. enterica serovars as shown in Fig 7A, the percentage of miscalls is 826 

more variable for the fourteen bacterial pathogens, ranging from 1.2% to 74.9%. 827 

The datasets for A. baumannii, C. jejuni, H. influenzae, K. pneumoniae, L. 828 

monocytogenes, N. gonorrhoeae, S. aureus and S. pneumoniae showed the lowest 829 

percentage of ST calls with the default kmer length of 35. C. difficile and M. 830 

tuberculosis had minimized ST miscalls with kmer lengths of 20 and 30 831 

respectively, while P. aeruginosa with kmer length of 65. Interestingly, for E. 832 

faecium and H. pylori, the optimal kmer lengths were 35 and 20, even though the 833 

percentage of miscalls was high (74.9% and 67.6%). To further investigate this, 834 

we ran stringMLST for E. faecium and H. pylori with kmer lengths up to 140 (140 835 

was chosen because the maximum read length for the two datasets is 150 base 836 

pairs or nucleotides) (S15G-H Fig, S15K-L Fig). As it can be seen on the Figures, 837 

the percentage of miscalls was higher with higher kmer lengths, and the lower 838 

kmer lengths yielded fewer miscalls, even though this number was still high. 839 

Additionally, we ran stringMLST on another set of randomly selected 100 paired-840 

end reads for E. faecium (S15M-N Fig), H. pylori (S15I-J Fig) and Enterococcus 841 

faecalis (S15O-P Fig). These 100 reads were not part of the initial datasets and 842 
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were chosen to validate that the initial random data selection was not completely 843 

biased. We also added E. faecalis here due to its close phylogenetic association 844 

with E. faecium. For E. faecium and H. pylori we observed the same pattern with 845 

100 reads as with 1,000 reads. On the other hand, the pattern for E. faecalis was 846 

quite opposite and as expected, with lowest percentage of ST miscalls of 5.43% 847 

for kmer 35. When comparing the percentage of ST miscalls between mlst and 848 

stringMLST, for some datasets, such as H. pylori, C. jejuni, L. monocytogenes, M. 849 

tuberculosis, N. gonorrhoeae, S. aureus, mlst performed worse than stringMLST. 850 

In addition to the percentage of ST miscalls, we calculated the percentage of ST 851 

agreement between mlst and stringMLST with the range of kmer lengths (S15F 852 

Fig). Of note, in the case of stringMLST, when the optimal kmer length was 853 

above the default parameter of 35, the ultimately selected kmer length was picked 854 

based on our empirical evidence for longer kmers being capable of speeding up 855 

the computational analysis.  856 

    In summary, while the default kmer length of 35 used by stringMLST performs 857 

accurately across many organisms, our systems-based approach that encompassed 858 

the analysis of a variety of phylogenetic divergent organisms revealed: i) intra- 859 

and inter-species variation in the percentage of ST miscalls requires fine-tunning 860 

of the kmer length parameter; ii) lack of association between taxonomy or 861 

phylogenetic placement of organisms and the optimal kmer length; and iii) unique 862 

species behave as outliers for which stringMLST cannot be directly applied with 863 

the default settings. 864 

 865 
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Incorporating stringMLST in ProkEvo 866 

ProkEvo was recently developed as an automated and scalable computational 867 

platform for bacterial population genomics analyses that uses the Pegasus 868 

Workflow Management System (WMS) [31] that allows for distributed use on 869 

different computational platforms and rapid integration of novel programs [21]. In 870 

particular, ProkEvo facilitates the use of a hierarchical approach for population 871 

stratification with different layers of genotypic resolution. MLST-based 872 

classification of genomes into STs is part of this hierarchical approach that has 873 

been proven to be predictive of ecological traits such as AMR in S. enterica 874 

lineages [57]. However, ProkEvo currently only uses the standard mlst algorithm 875 

for ST calls [21]. As part of this paper, the stringMLST program was incorporated 876 

into ProkEvo without any disruption in its workflow. The workflow design of 877 

ProkEvo with both mlst and stringMLST is shown on S16 Fig.  878 

    In order to compare the performance of ProkEvo with mlst and stringMLST, 879 

randomly shuffled subsets derived from the original datasets used for C. jejuni, L. 880 

monocytogenes, S. Typhimurium, and S. aureus were used. One random subset 881 

contained 100 genomes, while the second one had 1,000 genomes. ProkEvo was 882 

run using either mlst or stringMLST on Crane, one of the high-performance 883 

computing clusters at the Holland Computing Center [23]. For mlst, the pipeline 884 

used was previously established and included a few required steps, such as quality 885 

trimming and adapter clipping, de novo assembly and assembly discarding prior 886 

to the ST mapping [21]. Based on the inter-species results shown here (Fig 6), the 887 

default kmer length of 35 was used with stringMLST for this comparison. The 888 
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outcomes measured for this analysis were: i) total running time (Fig 8A); ii) the 889 

percentage of non-classified STs (Fig 8B); and iii) the percentage of agreement 890 

between programs (Fig 8C).  891 

    While the runtime of using ProkEvo with mlst varied from ~8 to 34 hours for 892 

the subset containing 100 genomes, the runtime of ProkEvo with stringMLST 893 

varied from ~25 minutes to 3 hours (Fig 8A). Similarly, for the larger datasets 894 

containing 1,000 genomes, the runtime of ProkEvo with mlst varied from ~17 to 895 

39 hours, while the runtime of ProkEvo with stringMLST varied from ~4 to 8 896 

hours. Regardless of the pathogen species tested, stringMLST speeded up the 897 

analyses ~4 times when utilizing 1,000 genomes across species.   898 

    In terms of accuracy in ST classifications, the use of stringMLST considerably 899 

decreased the number of non-classified STs, regardless of the dataset size (100 or 900 

1,000 genomes) and bacterial species (Fig 8B). In accordance, stringMLST 901 

resulted in a higher frequency of genomes classified as novel STs (ST numbers 902 

that were not classified by mlst) (S17 Fig). Additionally, the overall concordance 903 

between mlst and stringMLST varies from 82% to 100% across all datasets. The 904 

percentage of agreement is the lowest for S. Typhimurium, while it is the highest 905 

for S. aureus (Fig 8C). The lower proportion of ST miscalls and high percentage 906 

of agreement between programs for S. aureus, compared to other species, is 907 

associated with its higher degree of genetic homogeneity (fewer dominant STs) 908 

(S5 Fig). This difference in miscalls and concordance between programs may be 909 

further explained by the variation in database sizes, since the PubMLST schemes 910 
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used for mlst have fewer alleles across all seven loci which results in fewer STs 911 

compared to stringMLST as shown on S3 Table.  912 

    Previously, the scalability of ProkEvo was assessed by a comparative analysis 913 

of its computational performance on Crane and OSG, using two datasets with 914 

2,392 and 23,045 genomes each (10 X difference), and the standard mlst approach 915 

for ST calling [21]. To further demonstrate the gain in computational runtime 916 

obtained with the use of stringMLST within ProkEvo, the complete S. 917 

Typhimurium dataset containing 23,045 genomes was run on OSG. While 918 

ProkEvo with mlst finished all ST calls in 26 days and 6 hours when OSG was 919 

used as a computational platform [21], ProkEvo with stringMLST completed the 920 

task in 3 days and 6 hours. Altogether, stringMLST provides an accurate and 921 

rapid alternative to mlst for scalable ST genotyping that is portable to be 922 

implemented in any high-performance and high-throughput platform, with its use 923 

being further facilitated by its implementation in ProkEvo.  924 

 925 

Discussion 926 

The incorporation of WGS technology has advanced the study of bacterial 927 

populations, since it has facilitated genotyping at different levels of resolution, 928 

which in turn has proven to be predictive of, or associated with, inferable 929 

ecological traits or epidemiological patterns [21] [32][33][34][35][36][37][38]. In 930 

particular, the use of a hierarchical population structure analysis allows for 931 

ancestral relationships and patterns of diversification to be inferred, while 932 
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determining the most important informative genotypic unit to be tracked over 933 

time [21][39][40][41][12][42][43]. ST-based classification is an integral part of 934 

the hierarchical genotyping approach [21][27]. ST lineages are formed based on 935 

the utilization of allelic mapping across seven genome scattered loci that are 936 

ubiquitously present across phylogenetic divergent bacterial species [8][9][44]. 937 

Such ST lineages can be further combined in clonal complexes, when sharing five 938 

or more of the seven loci combinations - also called eBURST groups (eBG) 939 

[10][45]. Thus, ST-based genotyping is widely used for a variety of reasons, 940 

including: i) classification of genomes below the species level [8][9][44]; ii) 941 

providing stable informative genotypic unit that can be used intra- and inter-942 

laboratory for mapping and tracking of populations [8][9][44]; iii) predictability 943 

of ecological traits such as serovar in the case of S. enterica, and AMR across 944 

bacterial species due to the linkage disequilibrium between MLST and accessory 945 

loci [13][14][15][57]; and iv) inferring ancestral relationships through eBG 946 

profiles [10][45]. ST-based genotyping is typically dependent on genome 947 

assembly, which is efficient and accurate but not scalable and of rapid turn-948 

around [30][22]. However, stringMLST is a program capable of rapidly 949 

classifying genomes into STs independently of genome assemblies [17]. Yet, a 950 

systematic and scalable comparison between the standard MLST and stringMLST 951 

programs is lacking [16]. Therefore, this study sought to comprehensively assess 952 

the computational performance and accuracy of mlst vs. stringMLST across 953 

phylogenetic divergent bacterial pathogens with direct implication for Public 954 

Health. Additionally, this algorithmic comparison was designed to consider the 955 
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intra- and inter-species variation, in addition to the statistical contribution of 956 

genome-intrinsic and -extrinsic factors on classification accuracy, aiming at 957 

identifying actionable approaches that may be used to further optimize the 958 

implementation of stringMLST.  959 

    Characterization of bacterial pathogens and performing molecular typing 960 

provides valuable epidemiological information important for Public Health 961 

agencies. There are multiple tools available for MLST classification, such as mlst 962 

[22], ARIBA Error! Reference source not found., stringMLST [17], 963 

MentaLiST Error! Reference source not found., STing Error! Reference 964 

source not found.. In general, the available tools can be categorized based on the 965 

input data they use - some tools use raw Illumina paired-end sequence data, while 966 

others use de novo assemblies [16]. In order to generate the de novo assemblies, a 967 

few pre-processing steps need to be performed, such as quality control, trimming, 968 

assembly and filtering, that can be costly and require lots of computational 969 

resources, such as memory and time. Using raw sequence data for ST-based 970 

classification has a tremendous advantage especially in pathogen surveillance, 971 

since all the costly steps prior to the de novo assembly are bypassed and the STs 972 

calls are made as the sequence reads are generated. mlst uses de novo genome 973 

assemblies as an input and performs mapping in order to align sequences to pre-974 

downloaded allelic files across all target loci. ARIBA identifies AMR-associated 975 

genes, single nucleotide polymorphisms and ST calls using Illumina paired-end 976 

raw sequencing reads. ARIBA clusters the raw reads by mapping them to genes, 977 

and then performs local assembly within clusters to identify AMR genes and ST 978 
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calls. On the other hand, stringMLST and MentaLiST rely on kmer matching 979 

between raw sequence reads and available ST schemes that allows for fast 980 

mapping and ST-based typing. Both tools are shown to be accurate and fast for 981 

standard MLST classification, while providing comparable accuracy with 982 

MentaLiST albeit using less computational resources Error! Reference source 983 

not found.. STing is the successor of stringMLST - it uses the same algorithmic 984 

approach with additional computational applications for large MLST schemes 985 

such as ribosomal MLST (rMLST) and core-genome MLST (cgMLST) Error! 986 

Reference source not found.. All these tools have integrated ST schemes and/or 987 

provide utilities for downloading the available PubMLST databases. There are a 988 

few available comparisons of such tools for ST classification, mostly focusing on 989 

the computational resources used and the percentage of correctly classified STs 990 

[16]Error! Reference source not found.Error! Reference source not found.. 991 

When tools were tested with real outbreak datasets (L. monocytogenes, E. coli, C. 992 

jejuni, S. enterica) comprising 85 samples, stringMLST showed the fastest 993 

running time of 80.8 minutes and high accuracy in ST calls (100%) [16]. While 994 

MentaLiST does not scale well when reads with high coverage are used, it 995 

performs well on MLST schemes with up to a few thousand genes and alleles, 996 

such as cgMLST (~3,000 genes) Error! Reference source not found.. While 997 

most ST tools perform satisfactorily, there are some relevant bottlenecks to be 998 

considered. For example, some tools use out-of-date MLST databases that require 999 

manual curation, and can directly affect the accuracy of ST calls, especially when 1000 

mixed and low coverage samples are used [16]. ST tools that are assembly and 1001 
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alignment free, such as stringMLST, STing and MentaLiST, show quite a few 1002 

advantages in term of accuracy and efficiency that make them applicable for real-1003 

time molecular epidemiology and surveillance. Thus, we chose stringMLST as a 1004 

representative of the kmer-based ST tools to perform a systems-based 1005 

comparative analysis that assess the computational and statistical efficacy of ST 1006 

calls across divergent pathogens in contrast to the legacy MLST approach.  1007 

    As shown here, the stringMLST accuracy can be affected by the species being 1008 

tested without any specific phylogenetic patterns. In particular, the choice of kmer 1009 

length used directly impacts the proportion of ST miscalls across species, and in 1010 

certain cases it may not be applied as designed even after parameter tunning,  1011 

which is likely a reflect of their varying population structure and pattern of 1012 

genome diversification and architecture (e.g., horizontal gene transfer (HGT), and 1013 

acquisition of mobile elements such as prophages and insertion sequences, etc.) 1014 

[12][41][68][69][70][71][72][73]. A clear example is S. enterica, for which the 1015 

accuracy of stringMLST varied across ecologically distinct serovars that are 1016 

known to have unique pan-genomic composition as exemplified by their 1017 

predictive prophage distribution [12][71][74][75]. To the best of our knowledge, 1018 

the currently available comparisons between ST tools have not considered any 1019 

systematic approach for parameter tunning across phylogenetic divergent 1020 

species known to vary in population structure [21][27][67]. 1021 

    In evaluating genome-intrinsic and -extrinsic variables that could contribute to 1022 

differences in accuracy between mlst and stringMLST, it was found that the 1023 

species level variation was mostly explained by the uniqueness of their genomic 1024 
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composition and number of contigs per genome. As genomic composition is an 1025 

inheritable property of the bacterial species and reflects their evolutionary history 1026 

and speciation patterns, this association with algorithmic performance was 1027 

somewhat expected [46][47]. However, the contribution of the number of contigs 1028 

making the overall difference between programs poses forth the hypothesis that 1029 

by using sequencing platforms that generate longer reads, such as PacBio and 1030 

Oxford Nanopore Technologies (ONT), both mlst and stringMLST accuracy in 1031 

ST calls may be considerably altered in species-specific fashion, whereby 1032 

accuracy would be expected to improve if HGT occurs at high rates. However, 1033 

these sequencing technologies produce reads with lower accuracy (~80-90%) that 1034 

may inflate the number of false allelic calls and consequently alter the distribution 1035 

of STs - likely this would split major STs into sub-populations [48]Error! 1036 

Reference source not found.Error! Reference source not found.. Therefore, 1037 

while more work is needed in this field, current studies using hybrid assembly 1038 

approaches of both Illumina short reads and ONT long reads Error! Reference 1039 

source not found., as well as only polished ONT reads Error! Reference source 1040 

not found. for performing ST-based classification showed promising cost-1041 

effective results for this kind of molecular typing. Hence, we expect that 1042 

stringMLST, or its successor STing, will be optimized for their implementation 1043 

with longer read sequencing platform such as PacBio and Oxford Nanopore 1044 

Technologies [14][49], which will in turn facilitate real-time surveillance of 1045 

pathogens using hierarchical genotypes such as ST calls.  1046 
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    While the kmer length of 35 is currently recommended as a default value of 1047 

stringMLST, our systems-based approach demonstrated that for specific bacterial 1048 

species it will result in increasing the frequency of ST miscalls which in turn may 1049 

hinder epidemiological investigations. Across phylogenetic divergent pathogenic 1050 

bacterial species, the optimal kmer length ranged from 20 to 140, regardless of 1051 

their ancestral relationship or speciation pattern. The varying population structure, 1052 

the pattern of genome diversification and architecture (e.g., impact of HGT), as 1053 

well as sequence coverage may be some of the reasons underlying the observed 1054 

statistics [12][41][68][69][70][71][72][73]. Although we hypothesize that longer 1055 

sequence reads will help overcome this limitation, there is still a context-1056 

dependent consideration for parameter tunning and overall algorithmic 1057 

implementation. Therefore, in the case of stringMLST, we suggest the following 1058 

actionables to maximize its utilization, including: i) developers to consider 1059 

implementing a pre-step that heuristically searches for the optimal kmer length 1060 

(minimizes ST miscalls) in dataset-dependent fashion (sampling from the testing 1061 

data), perhaps even by comparing with the standard MLST as positive controls; 1062 

and/or ii) researchers to run wide range of kmer lengths on a subset of the dataset 1063 

in order to select the optimal kmer length that minimizes the percentage of ST 1064 

miscalls. Given the speed and scalability of stringMLST, using multiple kmer 1065 

lengths is not likely to add much overhead to the analyses, and this provides an 1066 

empirical statistical approach for kmer selection and optimization of ST 1067 

classifications. With this data-driven fine-tunning of the kmer length, stringMLST 1068 
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is a powerful program that can be efficiently and effectively used in 1069 

microbiological and epidemiological laboratories. 1070 

    We recently developed ProkEvo, a freely available scalable platform for 1071 

performing hierarchical-based bacterial population genomics analyses [21]. 1072 

ProkEvo: 1) uses the Pegasus Workflow Management System to ensure 1073 

reproducibility, scalability, and modularity; 2) uses high-performance and high-1074 

throughput computational platforms; 3) automates and scales multitude of 1075 

computational analyses of a few to tens of thousands of bacterial genomes; 4) can 1076 

run many thousands of analyses concurrently if the computational resources are 1077 

available; 5) is easily modifiable and expandable platform that can incorporate 1078 

additional algorithmic steps and custom scripts. The initial implementation of ST-1079 

based classifications through ProkEvo, as part of a hierarchical genotyping 1080 

strategy to map and track populations, was done using the assembly-dependent 1081 

MLST program [21][22]. Running mlst inside ProkEvo allows for parallelization 1082 

of the genome assemblies (run per isolate or genome) which enhances scalability 1083 

and facilitates the optimal use of computation resources. Theoretically, if there 1084 

are n isolates and n cores available on the computational platform, ProkEvo can 1085 

linearly utilize all resources and run all n independent tasks simultaneously. 1086 

Typically, ST-based classifications are time consuming because the mapping 1087 

process is run sequentially in a set of genomes instead of running them 1088 

independently. Thus, using modular and distributed platforms such 1089 

as ProkEvo for performing ST-based genotyping provides great benefit, especially 1090 

if additional features such as other hierarchical genotypes and pan-genomic 1091 
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mapping tools are part of the same platform [21]. As part of this work, we 1092 

modified ProkEvo to not only offer the standard assembly-dependent MLST 1093 

mapping approach, but it now contains stringMLST, and our tests showed a 1094 

significant speed-up in runtime for datasets ranging from a few hundreds to tens 1095 

of thousands of genomes. To use ProkEvo with stringMLST, the researcher only 1096 

needs to provide a list of SRA identifications and run the submit script without 1097 

any advanced experience in high-performance or high-throughput computing. 1098 

Depending on the configuration set, ProkEvo can use locally downloaded 1099 

sequence data or download the data from NCBI directly. The Pegasus Workflow 1100 

Managements System that is used by ProkEvo automatically handles the 1101 

dependencies, as well as all the intermediate and final files. Thus, using platforms 1102 

such as ProkEvo with fast tool for hierarchical genotyping, such as stringMLST, 1103 

allows for robust and efficient population-based genomics analyses that facilitate: 1104 

i) mapping and tracking of variants or lineages for epidemiological inquiries; ii) 1105 

population structure analysis; and iii) ecological trait prediction using pan-1106 

genomic mapping to specific genotypes.   1107 

 1108 

Conclusion 1109 

In conclusion, stringMLST largely proved to be an accurate, rapid, and scalable 1110 

tool for ST-based classifications that could be readily implemented in 1111 

microbiological laboratories and epidemiological agencies. Notably, this 1112 

comprehensive analysis of stringMLST across phylogenetic divergent bacterial 1113 

pathogens, with varying degrees of clonality, revealed the potential for enhancing 1114 
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its accuracy by parameter tunning (kmer length) in a dataset-dependent fashion. 1115 

Specifically, we propose that the kmer length can be optimized in two ways on a 1116 

case-by-case basis: 1) intrinsically by implementing a pre-step inside the 1117 

algorithm to sample from the target data and select the optimal kmer length; or 2) 1118 

by the user through a heuristic data mining approach to select the optimal kmer 1119 

length prior to finalizing the ST calls. Also, by assessing genome-intrinsic and -1120 

extrinsic factors that could affect the stringMLST performance, our work suggests 1121 

that longer sequence reads have the potential to improve its accuracy for specific 1122 

bacterial species. Furthermore, the integration of stringMLST into ProkEvo 1123 

allows users to take advantage of other hierarchical genotyping strategies, 1124 

including pan-genomic mapping, which reproducibly facilitates ecological and 1125 

epidemiological inquiries at scale. Ultimately, this work emphasizes the 1126 

importance of developing robust algorithmic tools for mining WGS data that can 1127 

have direct implications for mapping and tracking of bacterial populations.   1128 
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Figure 1. Computational workflow describing the analytical steps for a 
comparative analysis of two algorithms used for ST-based classification. 
From top-down, the first step (narrow-scope) of the analytical approach entailed 
the acquisition and processing of Illumina paired-end raw reads from four distinct 
pathogens (C. jejuni, L. monocytogenes, S. enterica and S. aureus), through an 
assembly-dependent (mlst) or assembly-free (stringMLST) approach for ST-based 
classification. Next, a set of comparative analyses encompassing measuring the 
computational performance, statistical metrics, and modeling were used to assess 
the accuracy and efficiency of mlst vs. stringMLST. Additionally, the contribution 
of genome-intrinsic and –extrinsic variables were used to identify explanatory 
factors that could impact the algorithmic efficiency across phylogenetic divergent 
species. Upon identification of inter-species differences in the performance of 
stringMLST, a wide-scope analysis was done to assess its accuracy across an array 
of other fourteen phylogenetic divergent pathogenic species of bacteria with Public 
Health relevance. Ultimately, stringMLST was added to the computational 
platform ProkEvo to facilitate ST-based classification at scale, as part of a 
hierarchical-based approach for population genomic analyses. 
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Figure 2. Box-and-whiskers plot showing the comparison of the average runtime 
per genome per batch (in minutes) needed by mlst and stringMLST for ST 
classification of genomes across four distinct bacterial species. 
In order to compare the average runtime used by mlst and stringMLST with 
different kmer values, we chose four different datasets, including four phylogenetic 
divergent bacterial pathogenic species: C. jejuni, L. monocytogenes, one major 
serovar of S. enterica (S. Typhimurium) and S. aureus - using 600 randomly 
selected genomes for each species. These 600 genomes were randomly split into 
three batches with 200 genomes each. We then ran mlst with all required steps, 
such as quality trimming and adapter clipping, de novo assembly and assembly 
discarding, on each batch and dataset. Separately, we ran stringMLST with a range 
of 10 different kmer values (10, 20, 30, 35, 45, 55, 65, 70, 80, 90) on each dataset, 
including the default length of 35 (y-axis). For each organism, the runtime was 
calculated as an average of 200 genomes per batch - since there were three batches, 
three datapoints were used to depict the distribution of runtime in minutes (x-axis). 
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Figure 3. Genome-intrinsic and –extrinsic variables that can impact the accuracy of 
ST-based classification using either mlst (MLST-based genotyping) or 
stringMLST algorithmic approaches.  
Box-and-whiskers plot showing genome-intrinsic variables, varying in distribution 
according to the bacterial species (A-C as y-axis), that may affect ST-based 
classification, include: (A) Number of contigs per genome (x-axis); (B) Total 
number of nucleotides per genome (x-axis); (C) GC% content per genome (x-axis); 
and (D) Dinucleotide composition of genomes. (D) Inter-species PCA using the 
relative frequency of all pairs of dinucleotides (16 pairs) present in the genome as 
input data. Only two PCs are shown, and the percentage of variance explained by 
either PC is depicted in parenthesis. Bar plots showing genome-extrinsic variables 
that may influence the performance of mlst vs. stringMLST across species include 
but are not limited to: (E) Total count of unique STs per database (ST richness in 
the database used for mapping of raw reads or assemblies) (x-axis); and (F) Total 
count of unique alleles across all seven loci used for ST classification (x-axis). 
Specifically, the differences in ST richness and allelic composition in the databases 
reflect difference between mlst vs. stringMLST, and were not impacted by the 
kmer length (E-F, y-axis). 
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Figure 4. Statistical analysis of ST-based classification outcomes for comparison 
between mlst and stringMLST performance across bacterial species.  
(A-C) Box-and-whiskers plots A-C demonstrate the relationship between ST 
richness (x-axis), Simpson’s index of diversity (1 – D) based on ST composition 
(x-axis), or the proportion of non-classified STs (x-axis) across bacterial species 
(color-coded differently) and programs (y-axis), respectively. Along with plots A-
C are depicted all PERMANOVA results including p-values (p < 0.05) and the 
univariate or synergistic contribution of factors measured by R-squared. 
PERMANOVA modeling was done in two specific ways: 1) A model including 
species, program, and their interaction, considering that those were the main 
variables of interest; and 2) All other results were calculated using univariate 
models and included modeling using genome-intrinsic (number of contigs per 
genome, total number of nucleotides per genome, and average GC% content) and –
extrinsic (Simpson’s D index of diversity, ST and allelic counts per database) 
variables. (D) Bar plot depicting the distribution of the standard deviation (SD, y-
axis) for the proportion of non-classified STs based on species (color-coded 
differently) and programs (y-axis). 
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Figure 5. Multi-dimensional analysis of ST-based classification outcomes across 
different species using mlst vs. stringMLST. 
(A) Tri-dimensional scatter plot demonstrating species grouping based on the 
outcomes calculated using the ST classification across programs, including: 1) 
Simpson’s index of diversity (1 – D, Simpson’s index); 2) ST richness; and 3) 
proportion of non-classified STs. (B-D) Biplots demonstrating groupings formed 
across species and programs based on the same outcomes. Scatter plot B depicts 
groupings produced based on the relationship between Simpson’s index of 
diversity vs. ST richness (Richness); whereas scatter plot C shows the relationship 
between the Simpson’s index of diversity and the proportion of non-classified STs; 
and lastly, scatter plot D depicts the relationship between ST richness (Richness) 
and the proportion of non-classified STs. 
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Figure 6. Box-and-whiskers plot depicting the concordance between mlst and 
stringMLST in ST calls.  
Four different datasets belonging to four phylogenetic distinct bacterial pathogens, 
including C. jejuni (600 genomes), L. monocytogenes (600 genomes), S. enterica 
(11,787 genomes from 20 different serovars) and S. aureus (600 genomes) were 
run with mlst and stringMLST for ST-based classification. In the case of 
stringMLST, kmer lengths varied from 10 to 90 to identify the optimal value 
(highest percentage of agreement with the standard MLST approach), across all 
four species (y-axis). If both programs outputted identical ST calls (either number 
of missing/blank value), the call was defined as a match; otherwise, it was 
identified as a mismatch, and the percentage of agreement (x-axis, concordance) 
was calculated accordingly. The dashed line on the x-axis represents the 
percentage agreement for the kmer value of 35 which is used as a default 
parameter by stringMLST. 
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Figure 7. Phylogeny-guided display of optimal kmer length and algorithmic 
performance when using stringMLST for ST mapping across bacterial species.  
(A) Phylogeny-based display of stringMLST results across the twenty-three 
zoonotic serovars of Salmonella enterica subsp. enterica lineage I (S. enterica). 
The branches are colored based on the optimal kmer length which gives the lowest 
percentage of ST miscalls (ST calls that returned missing/blank values for 
stringMLST). The outer ring present in the phylogeny is colored based on the 
corresponding ST miscall percentages associated with each optimal kmer length. 
The dataset used to identify the optimal kmer length and percentage of ST miscalls 
was composed of 2,300 genomes (100 genomes per serovar) and the phylogenetic 
tree was generated using twenty-three genomes (one of each serovar to facilitate 
data visualization); (B) Phylogeny-based display of stringMLST results across 
fourteen phylogenetic divergent bacterial pathogens, including twenty-three 
representative genomes across each zoonotic serovar of the S. enterica species. The 
tree branches are colored based on the optimal kmer length which minimizes the 
percentage of ST miscalls (ST calls that returned missing/blank values for 
stringMLST). The outer ring present in the phylogeny corresponds to ST miscall 
percentage associated with each optimal kmer length. The dataset used to identify 
the optimal kmer length and percentage of ST miscalls was composed of 14,000 
genomes (1,000 genomes for each bacterial pathogen) and 2,300 Salmonella 
genomes (100 genomes per serovar). The phylogeny was ultimately generated 
using 37 genomes (one of each dataset used to facilitate visualization). All 
phylogeny-based visualization were generated using iTOL version 6.4. 
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Figure 8. Comparison between the computational and statistical performance of 
mlst and stringMLST when using ProkEvo to run both programs. 
Two subsets, one with 100 and the second one with 1,000 randomly chosen 
genomes, were selected from C. jejuni, L. monocytogenes, one major serovar of S. 
enterica (S. Typhimurium) and S. aureus to compare the performance of running 
mlst or stringMLST through ProkEvo. The performance and statistical metrics 
used for comparison were: (A) Total runtime of individual workflow in minutes; 
(B) Percentage of non-classified STs (ST calls that returned missing/blank values); 
and (C) Percentage of agreement (concordance) between programs (“good” or 
“bad” ST calls that matched between mlst and stringMLST). 
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