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Abstract:  
Natural ecological communities display striking features, such as high biodiversity and a wide 
range of dynamics, that have been difficult to explain in a unified framework. Using experimental 
bacterial microcosms, we perform the first direct test of recent complex systems theory predicting 
that simple aggregate parameters dictate emergent behaviors of the community. As either the 25 
number of species or the strength of species interactions is increased, we show that microbial 
ecosystems transition between distinct qualitative dynamical phases in the predicted order, from a 
stable equilibrium where all species coexist, to partial coexistence, to emergence of persistent 
fluctuations in species abundance. Under the same conditions, high biodiversity and fluctuations 
allow and require each other. Our results demonstrate predictable emergent diversity and dynamics 30 
in ecological communities. 
 

One-Sentence Summary: A phase diagram of ecological dynamics and diversity as a function 
of coarse-grained features of species interaction network.  
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Natural species reside and interact with myriad other species in complex communities (1). Central 
challenges of ecology include understanding what explains species diversity in communities, what 
determines their dynamical behaviors (2–4), and how diversity and dynamics interact to shape 
ecological services and functions (5, 6). Field observations have uncovered a broad range of 
dynamical behaviors and their relationships with diversity in natural settings (7), which are often 5 
understood in the context of environmental drivers affecting both (8).  Laboratory experiments in 
controlled environment offer the possibility of disentangling these external drivers from inherent 
community properties. Previous experiments have established the possibility of predictable 
dynamics (stable equilibria or limit cycle oscillations) in systems comprising a few species (9–14), 
which were explained by inter-species interactions such as predation (12, 13, 15), competition (9, 10 
10), and cross-feeding (16, 17). Furthermore, there is evidence of more complex fluctuating 
dynamics at the species level, as well as predictable behaviors at coarse-grained taxonomic levels, 
in highly diverse experimental communities (4, 17–19). Yet, it has been a challenge to discern 
general principles explaining the diversity and dynamics of complex multi-species communities, 
since detailed biological parameters are typically not available in large ecological networks. 15 
Therefore, a fundamental question remains: is it possible to identify simple aggregate parameters 
governing the macroscopic diversity and dynamics of ecological communities? 

Starting with the pioneering work of Robert May (15), ecologists have sought to predict key 
emergent properties of complex communities based on coarse-grained features of the interaction 
network, such as the number of species and the distribution of interaction strengths between 20 
species. May and others have suggested that large or strongly interacting communities will 
generically be unstable (20–26), yet we still do not understand how such large communities may 
arise, nor the dynamical behavior of communities that are not stable. In particular, it has been 
shown that species can go extinct before the community loses stability (27–30), and also that 
unstable communities can display a range of dynamics including periodic (limit cycle) oscillations 25 
or chaotic fluctuations, that in some cases play a role in sustaining diversity (31–37). This body of 
theory has however been difficult to validate because driving parameters such as ecological 
interactions are often challenging to estimate (38, 39). What has largely been missing is a 
controllable experimental setting where these theories can be tested systematically over a wide 
range of tunable conditions.  30 

To guide our experiments, we begin by modeling the long-term dynamics and diversity of 
ecological communities using the well-known generalized Lotka-Volterra (gLV) model, modified 
to include dispersal from a species pool: 

𝒅𝑵𝒊

𝒅𝒕 = 𝑵𝒊 %𝟏 −(𝜶𝒊𝒋𝑵𝒋

𝑺

𝒋$𝟏

* + 𝑫 (𝟏) 

where Ni is the abundance of species i (normalized to its carrying capacity), αij is the interaction 35 
strength that captures how strongly species j inhibits the growth of species i (with self-regulation 
αii = 1), and D is the dispersal rate from an outside species pool to the focal community. We 
simulated the dynamics of communities with different species pool sizes S and interaction 
matrices. We sample the interaction strength from a uniform distribution U [0, 2<αij>], where <αij> 
is the mean interaction strength between species (we show later that our predictions are robust to 40 
different choices of distributions of interaction strengths, but depend on a combination of 
interaction mean and variance, here entirely controlled by parameter <αij>). Modeling species 
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interactions as a random interaction network captures the heterogeneity of species without 
assuming any particular community structure (20, 21, 25, 29).  

Our simulations revealed a strong dependence of the steady state diversity and dynamics of 
the community on both the species pool size S (Fig. 1A) and interaction strength <αij> (Fig. 1B). 
As either of these parameters increase, communities experience a transition from I) stable full 5 
coexistence—all species survive and reach stable abundances, to II) stable partial coexistence—
some species go extinct (Methods, Fig. S1), and the surviving ones reach stable abundances, to 
III) persistent fluctuations in species abundances. A linear stability analysis confirms that the 
transition to unstable dynamics (II à III) coincides with the community matrix eigenvalues 
exhibiting positive real parts (Fig. S2). Recent theory also proved analytically the existence of a 10 
phase transition from a unique stable state (I and II) to persistent fluctuations or alternative stable 
states (III) using the same control parameters (27). In accordance with these theoretical predictions 
(27, 28, 40), our simulations demonstrate that the size of the species pool S and the strength of 
interactions <αij> combine to determine the dynamical behaviors exhibited by ecological 
communities.  15 

To further understand the ecological implications of the different dynamical phases in our 
model, we analyzed both the fraction of species that survive in the long term (Fig. 1C, E) and the 
fraction of communities that exhibit persistent fluctuations (Fig. 1D, F) over a wide range of 
parameter values. This analysis confirmed that the observed sequence of three dynamical phases 
is a generic trend across the parameter space: communities generally experience species 20 
extinctions before they lose stability (Fig. 1C-F) as either the species pool size or the interaction 
strength increase. Importantly, this order of transitions between dynamical phases—stable full 
coexistence, stable partial coexistence, and persistent fluctuations—is not only predicted by 
analytical expressions for the phase boundaries (Fig. 1C-F), but it is also robust to different choices 
of interaction strength distributions and modeling assumptions (Fig. S3) (27). Our results suggest 25 
that it may be possible that the diversity and dynamics of multi-species communities to be 
predicted by coarse-grained features—the statistics of interaction strengths and species pool size—
without detailed knowledge of the interaction network or the underlying mechanisms behind those 
interactions. 

To experimentally test the theoretically predicted transitions between dynamical phases in 30 
ecological communities, we built synthetic microbial communities using a library of 48 bacterial 
isolates from terrestrial environments (Materials, Fig. S4, 5). This library is phylogenetically 
diverse, with isolates coming from 26 different families among 4 phylums: Proteobacteria, 
Firmicutes, Bacteroidota and Actinobacteriota. We used subsets of this library to obtain species 
pools of different sizes, which we exposed to serial cycles of growth and dilution in the presence 35 
of dispersal from the species pool (Fig. 2A). To monitor the dynamics of these communities, we 
measured community composition via 16S ribosomal RNA (rRNA) amplicon sequencing and total 
biomass via optical density (OD) at the end of each daily cycle. In addition to varying the size of 
the species pool, we experimentally tuned the strength of the interactions between community 
members by varying the nutrient concentration in the media. Consistent with previous work (19, 40 
41), we found that the probability of coexistence in pair-wise co-culture decreased as we 
supplemented the media with glucose and urea (Fig 2B). In this media, an increase in nutrient 
concentration therefore increases the strength of competitive interactions. This experimental 
platform allows us to control the two key parameters established by theory—the species pool size 
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and the interaction strength between species—to drive communities between different dynamical 
phases. 

We experimentally mapped the phase space of community dynamics by exposing three 
replicates of 189 synthetic communities of different species pool sizes (S = 2 – 48) to three levels 
of interaction strength. The time series for the total biomass of these communities were relatively 5 
stable when the interaction strength was low and species pool was less diverse, while increasing 
these two variables progressively led to a higher fraction of communities exhibiting biomass 
fluctuations (Fig. 2C). Analyzing species abundances through 16S sequencing, we found that total 
biomass fluctuations were highly correlated with species abundance fluctuations in these synthetic 
communities (Fig. S6). For example, for communities with 12 species in the pool and high nutrient 10 
concentration, 4 out of 8 communities reached stable equilibria, and the remaining 4 exhibited 
fluctuations in both biomass and species abundances until the end of the experiment (Fig. 2C and 
D). We performed three replicates for each community we studied here, and we found that the 
replicates of the same communities exhibited highly reproducible dynamics (Fig. S7-15). The 
classification of communities into fluctuating and stable groups was robust to different methods 15 
based on biomass or species compositions, and agreed with a classification through divergence 
between replicates. (Methods, Fig. S6). Single species monoculture (S=1) and pairwise co-culture 
(S=2) always reached stable equilibria in our experiment (Fig. S16). These results show that our 
synthetic microbial communities lose stability as either the species pool size or the interaction 
strength is increased, as predicted by theory (Fig. 1). 20 

To understand how this loss of stability is related to species extinction, we analyzed the 
fraction of species surviving in the different experimental conditions. As expected, we observed a 
decrease in the fraction of species that survived as we increased either the species pool size or the 
interaction strength—determined by nutrient concentration (Fig. 3A). For example, at medium 
interaction strength 83% (+/- 3%) of species were able to survive in the fifteen pairwise co-cultures 25 
tested (S = 2), and this survival fraction decreased to 36% (+/- 7%) among the eight different 
combinations of six species communities (S = 6) (Fig. 3A). Despite the significant loss of species, 
none of these communities displayed persistent fluctuations (Fig. 3B). Only with further increase 
of the species pool size did we begin to observe fluctuations in species abundance, with half of the 
24-species combinations displaying fluctuations (Fig. 3B). Interestingly, the species survival 30 
fraction displayed only a modest decrease entering the fluctuation regime, with 24% (+/- 2%) of 
species surviving in the 24-species communities down from 36% (+/- 7%) surviving in the 6-
species communities (Fig. 3A and B). Mapping these experimental results over the phase space 
(Fig. 3C and D) confirmed that transitions between dynamical phases occur in the specific order 
predicted by theory (Fig. 1E and F): communities experience species extinctions before exhibiting 35 
persistent fluctuations, as either species pool size or interaction strength increases.  

To address the question of how fluctuations and diversity affect each other, we analyzed the 
species survival fraction reached by individual communities with different species compositions 
in the same conditions. In simulations, the fraction of surviving species revealed a generic trend: 
for the same species pool size and interaction strength, fluctuating communities were more diverse 40 
than stable communities (Fig. 4A). This trend was also observed in experimental communities, 
where the vast majority of fluctuating communities reached higher survival fractions than stable 
communities under the same experimental conditions (Fig 4B). For example, in the 12-species 
communities, the fluctuating communities had on average 5 +/- 1 species surviving, as compared 
to only 2+/- 1 species surviving in the stable communities. Among the fluctuating communities, 45 
88% (+/-5%) exhibited survival fractions above or equal to the mean, as compared to only 14% 
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(+/- 6%) in the case of stable communities (p<0.05, Methods). Both experiments and simulations 
suggested that fluctuations are an emergent, diversity-dependent phenomenon, as we selected pairs 
of stable communities, combined their species pools to assemble composite communities, and 
found that some exhibited fluctuations (Fig. S17). We also found numerically that fluctuations and 
high diversity disappeared together as we stopped the dispersal or pinned the abundance of the 5 
most abundant species (Fig. S1). Our results suggest that persistent fluctuations and high diversity 
require and allow each other, as theoretically shown in previous work (32, 33). 

Our study contributes insight into the long-debated relationship between diversity and 
stability. We found a strong positive correlation between realized diversity (number of surviving 
species) and instability (abundance fluctuations). This finding is consistent with two major ideas 10 
in theoretical ecology: in one direction, May's suggestion that complexity leads to instability (20), 
and in the other direction, Chesson's argument that temporal fluctuations can help maintain 
diversity (42). Our results suggest that both of these mechanisms are at play, with both diversity 
and instability promoting each other, which is consistent with recent theory (33). 

We uncovered this diversity-stability relationship by experimentally controlling two factors 15 
that are usually unobservable in natural settings: the pool size of species that may invade a 
community, and the interaction strength (here tuned via resource levels). Both factors could play 
a confounding role by varying across ecosystems, affecting diversity and stability simultaneously. 
Variation in interaction strength could even reverse the realized diversity-stability relationship. On 
the one hand, stability decreases with increasing either size of species pool or realized diversity 20 
(number of surviving species) for any given value of the interaction strength (Fig 1F, 3D, 4A and 
4B). On the other hand, increasing interaction strength for a given species pool size leads to a 
lower realized diversity and lower stability fraction (Fig. 1E and 3C), creating a positive 
correlation between diversity and stability. We believe that these different interplays between 
parameters across orthogonal directions in the phase diagram could underlie some of the seemingly 25 
contradictory results from field experiments (8) addressing the diversity-stability relationship. 

Furthermore, our experimental setting allowed us to isolate the community dynamics from 
environmental fluctuations. While many ecological communities exhibit abundance fluctuations, 
the question of whether such fluctuations are inherent to the community—arising from species 
interactions—or are instead driven by external factors has seldom been addressed empirically and 30 
systematically. Under laboratory conditions that minimize environmental fluctuations, our results 
suggest that two inherent components of an ecological community—the size of species pool and 
the strength of interactions—can determine both the stability and long-term biodiversity reached 
by an ecosystem. Our experimental results agree with predictions of recent theory (27, 29, 43) that 
coarse-grained features of the interaction network are sufficient to predict the dynamical behaviors 35 
of complex ecological communities. These predictions are robust to various biological ingredients 
(e.g., intraspecific diversity and inter-species interaction mechanism), and can also be recapitulated 
in a resource-explicit model (44). Therefore, the emergent phases of diversity and dynamics that 
we observed here may occur in a wide range of ecological communities. Future work should strive 
to determine whether these emergent phases generalize across spatiotemporal scales, 40 
environmental conditions and organism types, to understand their prevalence and importance in 
shaping major ecological patterns (45).  

 
 

 45 
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Fig.1. Theory predicts that species pool size and interspecies interaction strength shape 
phases of community diversity and dynamics. (A) Representative time series of species abun-
dance for the qualitatively different dynamics of communities with different species pool size S, 5 
given the same interspecies interaction strength <αij>=0.3. Communities transition from stable full 
coexistence (S=4) to stable partial coexistence (S=20) to persistent fluctuations (S=50). Analogous 
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changes in community dynamics also result from increasing the interaction strength (B) while 
keeping the species pool size constant. (C) Mean fraction of species that survive in the community, 
and fraction of communities that exhibit persistent fluctuations (D) as a function of the interaction 
strength. As interaction strength increases, communities lose species (transition from phase I to II, 
vertical dashed line) before losing stability (transition from phase II to III, solid vertical line). 5 
Mapping the survival fraction (E) and community fluctuation fraction (F) onto the phase space 
reveals that the sequence (phase I to phase II to phase III) of phase transitions is maintained as 
either of the control parameters increases. The gray dashed (solid) line shows the analytical solu-
tion for the survival (stability) boundary, and the color maps account for numerical results (Supp. 
Material).  10 
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Fig. 2. Increasing species pool size or interaction strength leads to loss of stability in experi-
mental microbial communities. (A) We constructed subsets of a library of 48 bacterial isolates 
to create experimental species pools of different sizes and compositions. We used these species 
pools to inoculate communities that were exposed to 10 daily cycles of growth and dilution with 5 
dispersal from the species pool. To monitor community dynamics, we measured community com-
position (via 16S sequencing) and total biomass (through optical density, OD) at the end of each 
cycle. (B) Measuring the experimental outcome of pairwise (2-species) competitions revealed that 
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the fraction of competitive exclusion (one of the competitor species goes extinct) cases, and, there-
fore, the fraction of interaction strengths that leads to the loss of pairwise coexistence (aij > 1), 
increased with nutrients concentration. This result enables using different nutrient (glucose and 
urea) concentrations to experimentally tune the interaction strength (see Supp Material). Error bars, 
s.e.m., n=30. (C) Fluctuations in microbial community biomass increase with either species pool 5 
size or interaction strength. Solid lines stand for 8 different species pool compositions, and dashed 
lines in the S=48 case show the time series for 2 additional replicates with identical species pool 
composition. Purple (orange) lines highlight stable (fluctuating) dynamics between days 7 and 10 
(see Supp Material). (D) 16S sequencing data reveals that, under strong interactions (high nutrients 
concentration), half of the 12-species communities exhibit persistent fluctuations (top panels) in 10 
species abundances, and the other half reached stability (bottom panels). Column colors represent 
specific amplicon sequence variants (ASV), which correspond to different species of the library. 
(E) Time series (top panels) for the species abundances in a 48-species community in the different 
interaction strength (nutrients concentration) conditions. The 48-species community reached sta-
bility only in the low interaction strength (low nutrients concentration) condition. Community 15 
composition at the end of the experiment was also highly reproducible in this condition, while 
higher interaction strengths led to higher variability between replicates (bottom panels, and Fig. 
S13-15).  
 

 20 
 
 
 
 
 25 
 
 
 
 
 30 
 
 
 
 
 35 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466339doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466339
http://creativecommons.org/licenses/by/4.0/


 

10 
 

 
Fig. 3. Species pool size and interaction strength determines the diversity and dynamics of 
experimental communities. (A) The fraction of surviving species decreases as either the species 
pool size or the interaction strength —determined by nutrient concentration—increase. The sur-
vival fraction decreases more slowly at high S and strong interaction strength. Error bars, s.e.m., 5 
n=8. (B) The fraction of fluctuating communities increases as we increase either the species pool 
size or the interaction strength. Error bars, s.e.m., n=8. (C) Phase diagram for the fraction of species 
surviving in experimental communities. The dashed line shows boundary of phase I, where all 
species survive. As communities move farther away from phase I, they experience species extinc-
tions, with a fast decay in survival fraction through phase II, and a relative maintenance of survival 10 
fraction through phase III. (D) Phase diagram for the fraction of fluctuating communities in exper-
iments. The solid gray line indicates the boundary between phase II and phase III, where commu-
nities start exhibiting persistent fluctuations. Experimental communities universally exhibit the 
three predicted phases of stable full coexistence (I), stable partial coexistence (II) or persistent 
fluctuations (III) as a function of both species pool size and the interaction strength.  15 
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Fig. 4. Fluctuating communities are more diverse than stable communities under the same 
conditions. (A) As the average survival fraction decreases with increasing species pool size S in 
simulations, more communities exhibit fluctuations in species abundances (orange points). While 5 
stable communities (purple) exhibit a steady decrease in species survival fraction as the species 
pool size increases, the loss of species is slower in fluctuating communities. Each point represents 
an individual community. (B) In experiments, fluctuating microbial communities also exhibit a 
higher survival fraction than stable communities. The survival fractions of 88% (+/-5%) of the 
fluctuating communities are above or equal to the mean, as compared to 14% (+/- 6%) in the case 10 
of stable communities (p<0.05, Methods); error bars, s.e.m., n=8. 
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