
Mandrake: visualising microbial population
structure by embedding millions of genomes into a
low-dimensional representation
Authors:
John A. Lees1,*,†, Gerry Tonkin-Hill2,*, Zhirong Yang3,4, Jukka Corander2,5,6,†

*Contributed equally
†Corresponding authors: jlees@ebi.ac.uk, jukka.corander@medisin.uio.no

Affiliations:
1MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial
College London, London, United Kingdom
2Department of Biostatistics, University of Oslo, Norway
3Norwegian University of Science and Technology
4Aalto University
5Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
6Helsinki Institute for Information Technology HIIT, Department of Mathematics and
Statistics, University of Helsinki, Finland

Keywords: pathogens, population structure, visualisation, genomics, dimensional reduction

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract
In less than a decade, population genomics of microbes has progressed from the effort of
sequencing dozens of strains to thousands, or even tens of thousands of strains in a single
study. There are now hundreds of thousands of genomes available even for a single
bacterial species and the number of genomes is expected to continue to increase at an
accelerated pace given the advances in sequencing technology and widespread genomic
surveillance initiatives. This explosion of data calls for innovative methods to enable rapid
exploration of the structure of a population based on different data modalities, such as
multiple sequence alignments, assemblies and estimates of gene content across different
genomes. Here we present Mandrake, an efficient implementation of a dimensional
reduction method tailored for the needs of large-scale population genomics. Mandrake is
capable of visualising population structure from millions of whole genomes and we illustrate
its usefulness with several data sets representing major pathogens. Our method is freely
available both as an analysis pipeline (https://github.com/johnlees/mandrake) and as a
browser-based interactive application (https://gtonkinhill.github.io/mandrake-web/).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction
Advances in DNA sequencing technology have recently made whole-genome sequencing
both affordable and scalable enough for routine use in pathogen surveillance by research
organizations and public health agencies around the world (1,2). A striking example of this is
genomic surveillance of the SARS-CoV-2 virus for which over one million genome
sequences became available in just 15 months after its initial discovery (3). To shed light on
population genomic data at this scale calls for new tools that can be used for rapid
exploration of the structure among the samples, with particular emphasis on detecting
clusters of similar sequences (4,5). Many species do not have good quality schemes to label
input genomes, or suffer from poor quality or missing metadata, so unsupervised methods
are of particular interest when exploring data (6).

An additional challenge to the large number of individual genomes arises from the fact that
genomic datasets typically have a very large number of features, for example when using
SNPs or k-mers to represent sequence variation, each sample may typically have 106 -108
such markers. These markers are frequently used to calculate genetic distances between
samples, the number of which grows as the number of samples squared, such that one
million samples will have of the order of 1011 distances between them. Such high
dimensionality of population genomic data is beyond the capability of most analysis methods
available today, rendering it difficult to gain insight into the data structure in a fast and robust
manner. In this paper we explore and extend a class of methods which aims to reduce the
dimensionality of such data to only two dimensions, in a manner which supports ready
visualization and identification of clusters.

An embedding seeks to find a lower-dimensional representation of data where the distances
in the lower dimensional space y (output) are an accurate representation of distances in the
higher dimensional space x (input). Intuitively, genetically similar samples should be close
together in the embedding space, and genetically distant samples should be further apart in
the embedding space. Embedding spaces may be linear combinations of the input
dimensions as in principal component analysis and multidimensional scaling, but here we
focus on non-linear methods, which can infer potentially complex manifolds relating input to
output spaces in an unsupervised data-driven manner. This means, unlike in linear methods,
the transform in one part of the input space may be quite different to another part of the
space.

One such method is t-distributed stochastic neighbour embedding (t-SNE) (7,8). Rather than
minimising a distance between the input and output data, t-SNE minimises the Kullback-
Leibler divergence between two probability distributions defined by the input and output data.
The input conditional probability distribution pj|i between a pair of samples i and j is given by:

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

which equals the probability that xi would pick xj as its neighbour when sampling from a
normal probability distribution centred at xi with variance 𝜎!. To define this probability, it is
necessary to set a 'perplexity' which can be interpreted as the expected number of
neighbours for each sample. Lower values of perplexity favour more local structure, whereas
higher values assign greater weight to the global structure. Given the desired perplexity
level, the variances and the corresponding conditional probabilities can be computed for
each sample efficiently and in parallel (9), a technique known as entropic affinity.

In the output space t-SNE defines the probabilities qij using a student t-distribution with one
degree of freedom (a Cauchy distribution):

The use of a heavy tailed distribution rather than a normal distribution allows points to be
further apart without affecting the divergence too much, and is also faster to compute.

A popular measure of discrepancy between two probability distributions P(x) and Q(x) is
given by the Kullback–Leibler divergence, which is defined as:

The t-SNE algorithm minimises this divergence iteratively, thus giving an embedding y with a
probability distribution for between sample distances which is as similar as possible to the
probability distribution for between sample distances in the higher dimensional data x.

t-SNE and related methods have been used extensively to represent and visualise data from
numerous fields of research and they have recently been considered for analyzing
population structure in both human and pathogen populations, as well as data from single-
cell genomics (10–13). As these are unsupervised methods, they do not use sample labels
to find the embedding. Due to the choice of the output probability distribution, distances
between local samples are preserved, whereas global distances are less well preserved.
Consequently, t-SNE is often used to identify clusters in high-dimensional data, which may
correspond to units of population structure such as species, strains or lineages. Alternatively
they may map onto sample labels, such as their geographical origin or cell type.

However, t-SNE is not optimising the embedding to find clusters. So, when clusters do
emerge, they are an indirect consequence of preserving local structure in the data. The
recently developed method of stochastic cluster embedding (SCE) (14) generalises t-SNE to
include an additional scaling parameter, replacing the denominator of qij in the Kullback-
Leibler divergence. The authors of this method show that this scale factor can be chosen to
exactly replicate t-SNE, or alternatively can be tuned to effectively increase the 'repulsion'
between points, targeting distinct clusters forming in the output embedding, which are easier
to visualise and interpret.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

In this paper we extend the SCE method to use a variety of genomic data modalities as
input, improve its performance on large datasets, and add a range of output visualisations.
Our method allows users to rapidly gain insights into structure present in very large genome
datasets, which we show corresponds well with model-based genetic clustering algorithms.
We implemented our method as a piece of open-source software called mandrake
(https://github.com/johnlees/mandrake), and as a static web application
(https://gtonkinhill.github.io/mandrake-web).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Calculating between sample distances from genome data
As input, mandrake takes one of three types of data: a multiple sequence alignment, a set of
k-mer sketches (can be created from assembled or sequence read data), or a binary
presence absence matrix (which is typically used to represent genes, but can be used to
represent other genetic elements). These are all treated in fundamentally the same way, as
feature matrices, with N samples along rows, and M features (SNPs, k-mers or genes) along
columns. Although typically genomic datasets have been 'wide', with many more features
than samples, the scale of data means this is no longer the case, and we are now able to
analyse the case with more samples than genomic features.

To calculate input distances X from the feature matrix A we can compute X = M - AAT, which
counts the number of shared features between every pair of samples (the similarity) and
converts this to a distance by subtracting from the maximum shared features M. This is a
symmetric matrix with zeros on the diagonal. We note that more sophisticated genetic
distance calculations are possible by accounting for base frequencies and varying transition
rates between classes, but we do not consider such distances here.

A difficulty is that both the number of calculations needed to find X and the amount of
memory to store X grows as N2. Here we use methods which are fast enough to scale to N2
for at least one million samples, but such a matrix would still require at least 2Tb of memory
(or disk space). To avoid this major resource issue, we cut the size of X down using one of
two methods. The first is to set a distance threshold above which entries from X are
discarded. The second, which we use for all analyses here, is to retain just the k nearest
neighbours for each sample (excluding self distances, and including any ties). This means X
grows linearly in size with Nk in a predictable way, making memory allocations efficient. As
the perplexity sets the expected number of neighbours, choosing a k above the desired
perplexity will typically give good results. In practise, we store X as a sparse matrix in
coordinate ('triplet') format, with three ordered lists of i, j and xij for each retained distance.
We save these to disk so they can be reused by other programs, or by mandrake to re-run
the embedding without recomputing distances.

When A is a multiple sequence alignment, we code each row using the four DNA bases,
each in its own dynamic bitset with the same length as the alignment, storing 1 if the base is
present in that sample at that position, and 0 otherwise. Elements 𝑥!" = 𝑀 − 𝛴𝑎!#𝑎"#are
then computed by ANDing each of the four bitsets and counting the total number of bits that
are on (popcount). The use of bitsets ensures efficient packing into 64-bit words, which
makes the boolean AND operation and subsequent popcount very fast to complete across
all M sites. If A is a gene presence/absence matrix, the procedure is similar, but only a single
bitset is needed for each gene.

For sequence assemblies or sequence reads, which are unaligned, we count the number of
shared k-mers between samples. Reads can be 'cleaned' by first removing low frequency k-
mers, which typically are a consequence of sequencing error. Rather than using all k-mers,
of which there are a prohibitively large number (15), we use a 'sketching' approach

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

pioneered by the popular mash software, which instead uses a hash function [a hash
function here transforms a k-mer sequence to a 64-bit integer] to uniformly subsample a
fixed-size subset of the total k-mers (16). The proportion of shared k-mers (the Jaccard
distance) can be computed by the size of the intersection of the retained hashes. We use
two further modifications to this process. First, we use the method of bindash (17) to bin
hashes and calculate distances between them (which turns out to be very similar to the
dynamic bitset approach, but using bits of the calculated hash instead of DNA bases).
Secondly, we optionally enable the approach of PopPUNK which calculates the Jaccard
distance at multiple k-mer lengths and regresses their depletion at longer lengths to
calculate core and accessory distances within a species (18). In practise we use PopPUNK's
sketching and distance library pp-sketchlib (https://github.com/johnlees/pp-sketchlib) which
optimises sketching and distance calculation from assembly or read data, and has an API
which can be directly called from python.

The computation of each row of A and reduction to the k nearest neighbours is
embarrassingly parallel across up to N processes. We use OpenMP to achieve CPU
parallelism. pp-sketchlib can also make use of CUDA compatible GPUs for further
parallelism.

To convert distances in X to conditional probabilities P we used the entropic affinity using
interval bisection to find a suitable variance given a user-input perplexity parameter (9). We
used the implementation in scikit-learn, adding CPU parallelism with OpenMP (19).

Stochastic cluster embedding (SCE)
We give a brief overview of the mechanism behind SCE, but note that full details are
covered in the original publication (14). We also based our implementation on the reference
implementation available at https://github.com/rozyangno/sce, and note the main changes
here.

The main difference between the SCE algorithm and the t-SNE algorithm described above
stems from the scaling factor s which appears in the denominator of qij. In SCE, an
alternative choice of s is determined which makes clusters apparent in visualisations
(determined by a user study in the original publication). This allows the objective function to
be minimised, D (the modified Kullback-Leibler divergence):

to be written in terms of an attraction, repulsion and constant with respect to q | s:

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

The stochastic cluster embedding method optimises D using stochastic gradient descent
(SGD), a popular method to fit neural networks (20). Here, the output embedding Y is
updated given the current s, then s is recomputed using the update Y. This is repeated for a
specified number of iterations, chosen such that D reaches a stable minima. To
stochastically update Y, a pair of samples i, j are chosen at random in proportion to their
conditional probabilities pj|i, and the gradient ▽ of their attraction term calculated (such that
C can be ignored). Then, a pair of samples i, j are chosen at random and the gradient of
their repulsion term calculated. In SGD a learning rate 𝜂is used to update Y by making a
small step down the direction of the gradient 𝑦! ← 𝑦! − 𝜂$ � at iteration t. The learning rate
decreases across the total T iterations T as 𝜂$ = 𝜂% ⋅ (1 −

$
&
). Larger steps are taken in early

iterations, and smaller steps are taken in later iterations closer to convergence. Y is
initialised by drawing 𝑦! ∼ 𝑈(0,10'() along each dimension.

While an additional drawback of t-SNE was that the iterative optimisation is challenging to
directly scale to larger datasets, SGD is simpler to parallelise. At each step updating Y, w
workers can independently pick pairs of points i, j to update. Ideally for CPU parallelism, w
will be chosen equal to the number of physical cores, and for GPU parallelism w will be
chosen to be large (105 or more) to maximise device occupancy. A potential issue arises if
two workers try to update the same i or j at the same time (bearing in mind the additional
complication that these workers may not be in sync). This becomes more likely when the
number of active workers is not much less than the number of samples. We address this in
the CPU implementation by using atomic operations to preserve memory integrity, and when
overwritten by another worker, retry with another pair. CUDA global memory is not directly
affected by memory integrity issues from race conditions, but we still use an atomic
operation to update Y rather than a simple overwrite. In each case, as long as memory
integrity is preserved, the stochastic nature of the algorithm will correct for missteps in
subsequent iterations, as long as they do not dominate. Additionally, while atomic operations
are faster than locks, they become slower when multiple threads are attempting to operate
on the same memory address, leading to a reduction in efficiency. We therefore output the
proportion of workers found to be 'clashing' at each iteration, so users are aware they may
wish to lower w when analysing smaller N.

We also note that we use the method of Walker (21) for drawing discrete random variables
to precompute tables to draw edges from Pj|i in constant time, reimplementing the GSL
library implementation in C++ (22). We also use the fast parallel random number generator

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

from the dust package (23), which is based on the xoshiro128+ generator (24), and can be
used to produce uncorrelated pseudorandom 32-bit integers in parallel on both CPUs and
GPUs. This also removed all link time dependencies from the compiled code, which made
compilation into WebAssembly straightforward (see below).

Visualising embeddings
We automatically output the final embedding Y in four formats:

● A simple text file with N rows and two columns, for reuse by other programs or
plotting software. A separate file listing sample names, and optionally clusters, is also
created.

● An interactive HTML plot using the WebGL mode of plot.ly (25). This can be viewed
in a web browser, and scales up to millions of points. Embedding positions and labels
appear on hover. For smaller datasets sample names also appear on hover, but this
can be turned off (as resulting files can be extremely large on disk).

● A static image using matplotlib (26).
● A .dot network file, which can be loaded for interactive viewing along with sample

labels in Microreact (27).

To add colour to samples in the plot, the user can either provide labels, or labels can be
generated by performing a spatial clustering on the embedding. For the latter, we use
HDBSCAN, as this usually works well on well-separated clusters of unspecified shape. We
centre and normalise the embedding to [-1, 1] in each direction, use a minimum cluster size
of two, and minimum distance between clusters of 0.02 (28). HDBSCAN may label some
points as 'noise', which are useful for potential singleton clusters, though care should be
taken not to group noise points into a cluster.

Colours for classes are chosen by randomly sampling from RGB space. We tried selecting
from HSL or HSLuv space, which are perceptually uniform colour spaces to the human eye,
but found empirically that contrast between labels was poorer than from RGB colours.
We found that for many of the genomic datasets we ran mandrake on, well-separated
clusters were a common feature (for example separating species). In the embedding output
this leads to many points overlapping, and although clusters can clearly be identified, their
size is obscured. To help remedy this, we included an additional (static) hexagon density plot
which shows a heatmap of the number of samples in each region of the plot.

We also include code to create a video of the embedding process as the SGD algorithm
runs, which is particularly useful for monitoring convergence. We take the current embedding
and objective function at 400 points across the total number of iterations, create a static plot,
and use these as frames in the output animation (at 20fps, so videos are 20s in duration). In
the CUDA code, the copy of the current embedding is launched asynchronously to the main
SGD kernel run, so it has a negligible impact on run time. We optionally add sound by mixing
decaying triangular wave oscillators at a frequency proportional to the maximum movement
along each dimension between each frame. This sound is in stereo, with each channel
corresponding to an SCE dimension.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Initially our code sampled frames uniformly from the SGD iterations, however this led to
animations where at the start points moved too fast, and at the end too slow. This is due to
the decreasing learning rate 𝜂. We decided instead to sample uniformly from the total
amount of learning completed, so when more learning (and larger changes to the
embedding) was being done more frames would be taken, and when less learning (and
smaller changes to the embedding) was being done fewer frames would be taken.

As we use a linearly decreasing learning rate, learning grows quadratically, so we sample
proportional to its inverse (the square root). More formally, the total amount of learning at
iteration 𝜅 ≤ 𝑇 is given by:

which can be approximated by an integral (ignoring a small constant term as T >> 1):

The total amount of learning completed when 𝜅 = 𝑇is therefore &)!
*

which can be subdivided
equally into f frames, which can be done by taking a sample at iteration 𝜅if the total learning
is an integer multiple c of &)!

*
:

rearranging to find 𝜅:

Therefore we take samples distributed as the square root of the iterations t.

Software implementations
Mandrake is written in a combination of C++, CUDA, python and javascript. One of the major
changes from the reference implementation of SCE is that we provide python bindings to the
SCE method using pybind11 (29). The C++/CUDA part of mandrake which runs the entropic
affinity preprocessing and modified SCE algorithm can be imported into any python program
and called with 'triplet' sparse matrix data.

Command line interface (python)
The full mandrake executable is available as a python executable which includes genetic
distance calculation, and plotting of the output. We include numerous progress meters for
each stage of computation, as on large datasets estimating time or eliminating

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

computationally impossible steps is a necessity. The package can be installed using conda,
and we provide online documentation and examples at
https://mandrake.readthedocs.io/en/latest/.

Optimisation of GPU code (CUDA)
We optimised the CUDA code through multiple rounds of profiling, the results of which can
be accessed with the datasets on Zenodo. Briefly, this resulted in the following changes:

● Use of a callback function to output the objective function at each iteration, so
convergence can be monitored.

● Use of CUDA graphs to run each iteration, which eliminates overheads from calls to
the CUDA API at every step.

● Reversing the strides of the embedding Y from row-major to column-major, which
can sometimes coalesce memory accesses. Changing the strides back (to be
compatible with numpy) is done in a new device kernel.

● Use of parallel reductions from the cub library to calculate the objective at the end of
each step.

● Use of the wrapper classes from the dust package to manage device memory (23).
● Elimination of thread divergences within warps.
● Inclusion of 32-bit and 64-bit versions of the code (64-bit operations are slower and

use more registers, and some devices can only emulate 64-bit floating point
operations, which can decrease performance greatly).

● Storing each worker's random number generator state in registers, rather than writing
to/from global memory whenever it is changed.

● Added compiler optimisations and loop unrolling.

Static web app (WebAssembly and Javascript)
We optimised a version of Mandrake for the web (https://gtonkinhill.github.io/mandrake-
web). This is particularly important to improve accessibility for users who have less
experience running and installing bioinformatics programs on the command line. We made
use of the Emscripten compiler to convert a slightly modified version of the C++ code used in
the python package to WebAssembly, which executes within the browser on the user's
machine. This provides significant performance benefits over a pure javascript based
implementation, and allows the web application to achieve similar speeds as the command
line version on small to medium sized datasets. As the support for multi-threading in
WebAssembly is still experimental, the web application currently only supports runs on a
single CPU, so the command line version is still recommended for very large datasets.

The static web application was created using the Hugo site generator and custom javascript
to interact with the compiled WebAssembly functions. A significant benefit of this approach is
that once the website is loaded, there is no reliance on an internet connection and the entire
analysis is run on the user's local machine. This ensures that the user's data is secure, as it
is never uploaded, and which can be particularly useful in locations with poor internet
connections where the uploading of any large dataset would be infeasible. It is also possible
to run mandrake-web entirely offline.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data and code availability
Code: https://github.com/johnlees/mandrake and https://github.com/gtonkinhill/mandrake-
web
Documentation: https://mandrake.readthedocs.io/en/latest/
Archived code: https://dx.doi.org/10.5281/zenodo.5579270
Commands used for analysis: https://github.com/gtonkinhill/mandrake_manuscript
Datasets: https://dx.doi.org/10.5281/zenodo.5572316

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Results

Overview of Mandrake's design

Figure 1: Overview of the mandrake software. Firstly, a genomic dataset, which may be a
multiple sequence alignment, gene presence/absence or sequence sketches is used to
calculate all pairwise distances between samples. Each entry in the distance matrix X is then
the number of different features between each pair of samples. Each row of X is sorted, and
the lowest k values (excluding self-matches of zero) are retained in triplet format. Entropic
affinity converts these sparse distances to conditional probabilities, which can be thought of

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

as the probability of selecting sample xj as a neighbour, if probabilities are normally
distributed. The user sets a perplexity parameter, which is used to set the variance of the
distribution for each sample. Stochastic cluster embedding is run over a user-set number of
iterations of stochastic gradient descent.

Figure 1 gives a graphical overview of the steps we use in mandrake to create a low
dimensional embedding from genomic data. Pairwise genetic distances X between all
samples are calculated from the genome data. Each element of X, of which there are N2,
requires comparison of M genomic features. This is typically the largest calculation in
mandrake, and we have highly optimised it and allow it to take advantage of many CPU
cores where available. This makes calculation of distance matrices from up to millions of
samples feasible. Each sample is reduced to the k-nearest neighbour distances on-the-fly to
save space in memory. Note that although Figure 1 removes identical distances for visual
clarity, in our code we retain them. We then use entropic affinity, as described in the
introduction, to convert these distances into a conditional probability distribution, as
described in the introduction. Figure 1 shows an example for sample x3, which has nearest
neighbours x1 at one SNP away and x2 at two SNPs away. These are converted into
probabilities using the height of Gaussian as shown, with a variance found to match the
chosen perplexity through interval bisection.

Stochastic cluster embedding is then run; we make the user specify the number of iterations
to run for and do not stop until this is reached. Some example frames across the SGD
iterations are shown. At the start, points in the lower dimensional space are randomly
distributed, but are moved around more as the learning rate is higher. Later on, points are in
clusters, and move smaller amounts along their gradient each step due to the lower learning
rate. Some example attractive Jattraction and repulsive Jrepulsion gradient steps are shown on the
first two panels. Points are selected for attraction more frequently if they have a higher
conditional probability. This has the effect that within a cluster (close in the higher dimension;
higher conditional probabilities) points are pushed together. Repulsion is between any pair of
points, which at later stages of the algorithm repulses clusters from one another, with the
attractive force keeping the cluster together.

Applying SGD to D tries to make the input distribution (the conditional probabilities pj|i) as
similar as possible to the output distribution (set by a Cauchy distribution qij). This is shown
at the bottom of figure 1 – an example with two points with the same input and output
probability on the y-axis, are a small distance apart on the x-axis. Therefore, close distances
in the higher dimensional space of X will also be close in the lower dimensional space Y.
The heavy tails of the output Cauchy (black, solid distribution) apply less penalisation if
smaller input probabilities are further apart than the tails of a Gaussian distribution (green,
dashed distribution).

Our resulting implementation runs in a few hours, on up to around one million samples (table
1). Some variation in runtimes not directly proportional to the number of iterations is
observed, this is typically due to setting a number of workers to aim for a maximum 10%
clash rate on each dataset, such that efficiency increased in the larger datasets. Our web
app is responsive up to the range of 10,000 samples, which completes in around a minute,
depending on the input data type.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: Resource usage for mandrake on datasets used. The first row shows use of the
static web app on a single core. All other reported times used 60 CPU cores, and where
applicable an Nvidia 3090 RTX GPU was with double precision (fp64) or single precision
(fp32). Note, GPU distance calculations are supported for sketches, but the table reports the
CPU time only. The HIV pol gene alignment used was a random 5,000 subset from the Los
Alamos public database (30).

Dataset Number of
samples

Distance
calculation

Maximum
memory

Iterations
used

SCE time
(CPU)

SCE time
(GPU)

HIV-1 pol gene
alignment

5,000 35 s (web) NA 1x106 11s (web) NA

S. pneumoniae
accessory
genome

20,047 3 mins 6.5 Gb (host)
/ 0.35 Gb
(GPU)

3x108 7.8 mins 5s (fp64)

SRA bacterial
assemblies

661,406 3 hrs 7 Gb (host) /
3 Gb (GPU)

5x1011 186 hrs 1.3hrs (fp64)

SARS-CoV-2
alignment

941,981 101 hrs 26 Gb (host) /
13 Gb (GPU)

1x1012 372 hrs 2.8 hrs (fp64) /
2.3 hrs (fp32)

Before interpreting our results on different datasets, we recap some key features of non-
linear embeddings (31):

● Cluster sizes in the embedding space do not relate to the number of points in the

cluster, or its genetic diversity. In SCE particularly, many points will be heavily
overplotted, and the density plot should be used for determining the number of
samples in one region.

● Distances between clusters do not correspond to their genetic distances. Two well-
separated clusters, close together, are not necessarily more genetically similar than
two well-separated clusters at opposite ends of the plot.

● Perplexity can greatly affect results, and runs at a few different perplexities should
typically be attempted. At lower perplexities, structure can sometimes be found
where there is none. Complex topological relationships are generally not expected in
genetic data, but where these may exist (in the presence of extensive horizontal
gene transfer) multiple perplexity runs may be able to find these.

Clustering the accessory genome of 20k
Streptococcus pneumoniae
To demonstrate the ability of the SCE embedding to identify meaningful clusters within a
large dataset we first considered a collection of 20,047 S. pneumoniae genomes which
consisted of a subset of high quality genomes from the Global Pneumococcal Sequencing
project and two other pneumococcal genome surveillance studies (4,32–34). S. pneumoniae
is a highly recombinant bacterial species with an extensive accessory genome that has been
shown to be highly structured (35,36). This makes it a good example for investigating the
ability of Mandrake to identify clusters from a gene presence/absence matrix.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

We first inferred a pangenome gene presence/absence matrix using Panaroo v1.2 (37). This
resulted in a binary matrix consisting of 27,322 features (genes) and 20,047 genomes which
was used as input to Mandrake.

Figure 2 and supplementary video 1 indicate the resulting embedding with points coloured
according to which of the Global Pneumococcal Sequencing Clusters (GPSCs) each
genome belonged to (4,32). Those clusters with less than 50 genomes are coloured in grey
with the Mandrake embedding placing them together in a single large group. This is similar
to the behaviour of other clustering algorithms such as BAPS where outlying genomes are
often grouped together into a single cluster representing the broader genomic background
(30,38). To compare the observed clustering in the 2D embedding to the underlying GPSCs
we calculated the rand index after first clustering the embedded points using HDBSCAN
(28). The Rand index is a measure of similarity between the two clusterings and gives an
indication of the accuracy with which one clustering predicts the other. The Mandrake
embedding was found to have an index of 0.987 which was similar but still higher than that
found using common alternative embeddings including UMAP, t-SNE and PCA
(Supplementary Table 1). This suggests that Mandrake is able to produce a biologically
meaningful embedding quickly using the presence and absence of accessory genes as
input.

Figure 2: A 2-dimensional embedding calculated using Mandrake from the accessory gene
presence/absence matrix of 20,047 pneumococcal genomes. Points are coloured by the

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

underlying Global Pneumococcal Sequence Cluster to which they belong. Those GPSCs
with less than 50 isolates are coloured in grey.

Clustering ~650k bacterial genome assemblies from public
databases
We then used SCE to search for structure across the space of highly diverse bacterial
genomes. A recent analysis produced curated and assembled bacterial samples from the
SRA database, producing 661,406 high-quality bacterial genomes (39). We downloaded
these assemblies from ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k (39) and
sketched their 14-mers. We then used these sketches to calculate Jaccard distances
between 14-mers, which we used to produce a sparse matrix with the 100 nearest
neighbours. Using this, we ran mandrake for 5x1011 iterations using 65,536 workers on a
GPU, which took two hours. The objective stabilised around halfway through the run, and the
resulting embedding can be seen in Figure 3, and an animation of the SCE iterations in
supplementary video 2.

We found that the most common species formed clear clusters in the embedding space, with
the exception of Closteroides difficile in the centre of the space, which overlaps with many
other gut pathogens. This is likely due to be from gut samples where the sequence
contained multiple species, but just the most abundant species was reported. Most species
were split into multiple clusters, likely representing strains within species, or subspecies (in
the case of e.g. Salmonella enterica which appears in multiple clusters over the whole
embedding space). Some other interesting examples include Listeria monocytogenes which
has genetically distinct major lineages (40), and appears as separate clusters spread around
the embedding. Mycobacterium tuberculosis is split into 5-10 clusters, which are close
together in the embedding, and have a larger radius than e.g. Escherichia coli clusters,
despite harbouring much less genetic diversity. The non-linear nature of the embedding is
therefore also able to capture structure across a range of genetic scales. This also
demonstrates the points of cluster size not having a direct interpretation, but between cluster
distances sometimes retaining meaning.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: A Mandrake embedding of 662,406 bacterial genomes from the SRA with Jaccard
distances calculated using sketches of 14-mers. Species with at least 10,000 genomes in
the data set are coloured.

Clustering ~1M SARS-CoV-2 genome alignments from public
databases
We next considered Mandrake’s ability to embed highly similar genomes into clusters by
running the algorithm in its multiple sequence alignment mode on a cleaned subset of
941,981 SARS-CoV-2 genomes downloaded from the ENA (covid19dataportal.org). Of the
original 977,048 genomes downloaded, we filtered out 35,067 which had a length less than
90% of the Wuhan.1 reference genome or were made up of more than 5% ambiguous
nucleotide calls. Each genome was assigned to a SARS-CoV-2 lineage using Pangolin
(5,41). After generating a multiple sequence alignment of the genomes using MAFFT v7.487
we ran Mandrake in it’s ‘alignment’ mode which calculates the pairwise hamming distance
between genomes ignoring ambiguous base calls. Mandrake was run for 1x1012 iterations on
a GPU with 94,976 workers, which took 3.7 hours. The resulting embedding is shown in
Figure 4 and supplementary video 3, with the major SARS-CoV-2 lineages comprising more
than 10,000 genomes assigned different colours. Interestingly, the major variants of concern
including the Delta and Alpha lineages are clearly visible in the embedding indicating that
Mandrake is able to identify biologically meaningful structure within very large but highly
similar genomes.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: A Mandrake embedding of 941,981 SARS-CoV-2 genomes downloaded from the
ENA. Points corresponding to genomes within large Pangolin lineages (>10,000 members)
are coloured and variants of concern are manually labelled.

Discussion
Currently population genomics of pathogens is experiencing an unprecedented pace of
genome sequencing on a global scale, which poses a challenge to many standard workflows
for data analysis. As many downstream epidemiological or evolutionary analyses work within
identified clusters, the first tasks in population genomics workflows are to understand the
population structure and the extent of clustering of the input genomes, both of which are
difficult to do with increasing data size. While some new highly scalable methods have been
developed for this task, they are frequently species-specific (42). Doing this in a manner
which can be visualised is particularly helpful, especially given the high dimensions and
complex relationships inherent in genomic datasets.

In this article we have presented the mandrake software, which meets these particular needs
and offers programmatic plotting options and interactive exploration of the data. Our current
software architecture scales well to even the largest available contemporary pathogen
genomics data sets. However, in future it would clearly benefit from reducing the quadratic
computational complexity of the input genome distance calculations, which could for
example be achieved with subsampling of the data by picking representative samples
among highly similar genomes. This has been achieved in other packages by assuming
genetic distances generally obey the triangle inequality (18,43).

Another interesting opportunity for further research and development stems from the
challenge of optimizing output plots using models of human perception. Here, we used user-
guided training in SCE to determine a parameter s, which governs the display of clusters in
the output embedding. Recent results in perception modeling for visualization have

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

demonstrated notable improvements over default software options for scatterplots, where
optimized designs can much better adapt to an increase in data density (44). There are
multiple display parameters that could be adjusted in order to give a human expert an
enhanced view into the data structure, such as the marker size, their opacity and colors.
Optimization of such parameters using models of human cognition has the potential to
resolve the visualization challenges arising from extremely high dimensionality of the data,
not only for cluster embedding as considered here, but also for other complex objects such
as phylogenetic trees. An exciting opportunity for considering this untapped potential arises
from combining cognitive models with recent developments in Approximate Bayesian
Computation (ABC), which allows efficient fitting of simulator-based models to data when the
likelihood calculations are intractable (45,46). Several successful examples of using ABC in
cognitive model inference (47,48) suggest that this approach could be fruitful for making
improved displays of high-dimensional population genomic data.

Nevertheless, we have been able to make mandrake useful across a range of scales and to
a range of users, scaling from within-browser analysis, through multicore CPU use on the
command line, up to high power graphics cards. The functions provided may also serve as a
basis for the analysis of pairwise relationships between genomic data in other tools, such as
phylogenetics (49), selection analysis (50) and mathematical modelling (51).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements
We would like to thank the many researchers who generated genomic data and then openly
deposited it in databases free of usage restrictions (SRA and INSDC), without whom
developing methods to analyse large microbial datasets would be considerably more
challenging. In particular, we are grateful to the GPS consortium, Grace Blackwell and the
COVID-19 data portal for making the genomic data and associated metadata from their
analyses freely available and easy to access in a reproducible and reusable manner.
JAL acknowledges funding from the MRC Centre for Global Infectious Disease Analysis
(reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and
the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO
Concordat agreement and is also part of the EDCTP2 programme supported by the
European Union. GTH was funded by the Norwegian Research Council grant no. 299941.
JC was funded by the European Research Council grant no. 742158.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

References
1. Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, et

al. Pathogen Genomics in Public Health. N Engl J Med. 2019 Dec 26;381(26):2569–80.

2. Brown B, Allard M, Bazaco MC, Blankenship J, Minor T. An economic evaluation of the
Whole Genome Sequencing source tracking program in the U.S. PLoS One. 2021 Oct
6;16(10):e0258262.

3. Oude Munnink BB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier
RAM, et al. The next phase of SARS-CoV-2 surveillance: real-time molecular
epidemiology. Nat Med. 2021 Sep;27(9):1518–24.

4. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al.
International genomic definition of pneumococcal lineages, to contextualise disease,
antibiotic resistance and vaccine impact. EBioMedicine. 2019 May;43:338–46.

5. O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of
epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol.
2021 Jul 30;7(2):veab064.

6. Black A, MacCannell DR, Sibley TR, Bedford T. Ten recommendations for supporting
open pathogen genomic analysis in public health. Nat Med [Internet]. 2020 Jun 11;
Available from: http://dx.doi.org/10.1038/s41591-020-0935-z

7. Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res.
2008;9(Nov):2579–605.

8. van der Maaten L. Accelerating t-SNE using Tree-Based Algorithms. J Mach Learn Res.
2014;15(93):3221–45.

9. Vladymyrov M, Carreira-Perpinan M. Entropic Affinities: Properties and Efficient
Numerical Computation. In: Dasgupta S, McAllester D, editors. Proceedings of the 30th
International Conference on Machine Learning. Atlanta, Georgia, USA: PMLR; 2013. p.
477–85. (Proceedings of Machine Learning Research; vol. 28).

10. Abudahab K, Prada JM, Yang Z, Bentley SD, Croucher NJ, Corander J, et al. PANINI:
Pangenome Neighbour Identification for Bacterial Populations. Microb Genom [Internet].
2018 Nov 22;4. Available from: http://dx.doi.org/10.1099/mgen.0.000220

11. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality
reduction for visualizing single-cell data using UMAP. Nat Biotechnol [Internet]. 2018
Dec 3; Available from: http://dx.doi.org/10.1038/nbt.4314

12. Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun.
2019 Nov 28;10(1):1–14.

13. Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population
genetics. J Hum Genet. 2021 Jan;66(1):85–91.

14. Yang Z, Chen Y, Sedov D, Kaski S, Corander J. Stochastic Cluster Embedding
[Internet]. arXiv [cs.LG]. 2021. Available from: http://arxiv.org/abs/2108.08003

15. Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, et al. Improved
Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable
Pangenome-Spanning Regressions. MBio [Internet]. 2020 Jul 7;11(4). Available from:

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1128/mBio.01344-20

16. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash:
fast genome and metagenome distance estimation using MinHash. Genome Biol.
2016;17(1):1–14.

17. Zhao X. BinDash, software for fast genome distance estimation on a typical personal
laptop. Bioinformatics. 2019 Feb 15;35(4):671–3.

18. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, et al. Fast and
flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019 Jan
24;29(2):304–16.

19. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
Machine Learning in Python. J Mach Learn Res. 2011;12(85):2825–30.

20. Bottou L, Others. Stochastic gradient learning in neural networks. Proceedings of
Neuro-Nımes. 1991;91(8):12.

21. Walker AJ. An Efficient Method for Generating Discrete Random Variables with General
Distributions. ACM Trans Math Softw. 1977 Sep 1;3(3):253–6.

22. Knuth DE. The art of computer programming, volume 2 (3rd ed.): seminumerical
algorithms. USA: Addison-Wesley Longman Publishing Co., Inc.; 1997.

23. FitzJohn RG, Knock ES, Whittles LK, Perez-Guzman PN, Bhatia S, Guntoro F, et al.
Reproducible parallel inference and simulation of stochastic state space models using
odin, dust, and mcstate. Wellcome Open Res. 2021 Jun 10;5:288.

24. Blackman D, Vigna S. Scrambled Linear Pseudorandom Number Generators [Internet].
arXiv [cs.DS]. 2018. Available from: http://arxiv.org/abs/1805.01407

25. Inc. PT. Collaborative data science [Internet]. Montreal, QC: Plotly Technologies Inc.;
2015. Available from: https://plot.ly

26. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.

27. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact:
visualizing and sharing data for genomic epidemiology and phylogeography. Microb
Genom. 2016 Nov;2(11):e000093.

28. McInnes L, Healy J, Astels S. hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software. 2017;2(11):205.

29. Jakob W, Rhinelander J, Moldovan D. pybind11 -- Seamless operability between C++11
and Python. 2017.

30. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian
analysis of population structure. Nucleic Acids Res [Internet]. 2019 May 11; Available
from: http://dx.doi.org/10.1093/nar/gkz361

31. Wattenberg M, Viégas F, Johnson I. How to use t-SNE effectively. Distill [Internet]. 2016
Oct 13;1(10). Available from: http://distill.pub/2016/misread-tsne

32. Lo SW, Gladstone RA, van Tonder AJ, Lees JA, du Plessis M, Benisty R, et al.
Pneumococcal lineages associated with serotype replacement and antibiotic resistance
in childhood invasive pneumococcal disease in the post-PCV13 era: an international

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

whole-genome sequencing study. Lancet Infect Dis. 2019 Jul;19(7):759–69.

33. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, et al.
Dense genomic sampling identifies highways of pneumococcal recombination. Nat
Genet. 2014 Mar;46(3):305–9.

34. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population
genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013
Jun;45(6):656–63.

35. Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, et al.
Frequency-dependent selection in vaccine-associated pneumococcal population
dynamics. Nature Ecology & Evolution. 2017 Oct 16;1.

36. Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, et al. Frequency-
dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol.
2020;18(10):e3000878.

37. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing
polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020 Jul
22;21(1):180.

38. Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially
explicit clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013
May;30(5):1224–8.

39. Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, et al. Exploring
bacterial diversity via a curated and searchable snapshot of archived DNA sequences
[Internet]. Cold Spring Harbor Laboratory. 2021 [cited 2021 Mar 4]. p.
2021.03.02.433662. Available from:
https://www.biorxiv.org/content/10.1101/2021.03.02.433662v1

40. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole
genome-based population biology and epidemiological surveillance of Listeria
monocytogenes. Nature Microbiology. 2016 Oct 10;2:16185.

41. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic
nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology.
Nature microbiology. 2020;5(11):1403–7.

42. Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al. Ultrafast
Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the
SARS-CoV-2 pandemic. Nat Genet. 2021 May 10;1–8.

43. Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat
Commun. 2018 Jun 29;9(1):2542.

44. Micallef L, Palmas G, Oulasvirta A, Weinkauf T. Towards Perceptual Optimization of the
Visual Design of Scatterplots. IEEE Trans Vis Comput Graph. 2017 Jun;23(6):1588–99.

45. Lintusaari J, Gutmann MU, Dutta R, Kaski S, Corander J. Fundamentals and Recent
Developments in Approximate Bayesian Computation. Syst Biol. 2017 Jan 1;66(1):e66–
82.

46. Lintusaari J, Vuollekoski H, Kangasrääsiö A, Skytén K, Järvenpää M, Marttinen P, et al.
ELFI: Engine for Likelihood-Free Inference. J Mach Learn Res. 2018;19(16):1–7.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

47. Gebhardt C, Oulasvirta A, Hilliges O. Hierarchical Reinforcement Learning Explains
Task Interleaving Behavior. Computational Brain & Behavior. 2021 Sep 1;4(3):284–304.

48. Kangasrääsiö A, Jokinen JPP, Oulasvirta A, Howes A, Kaski S. Parameter Inference for
Computational Cognitive Models with Approximate Bayesian Computation. Cogn Sci.
2019 Jun;43(6):e12738.

49. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015
Jan;32(1):268–74.

50. Frost SDW, Magalis BR, Kosakovsky Pond SL. Neutral theory and rapidly evolving viral
pathogens. Mol Biol Evol [Internet]. 2018 Apr 24 [cited 2018 Apr 24]; Available from:
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy088/4983910

51. Vöhringer HS, Sanderson T, Sinnott M, De Maio N, Nguyen T, Goater R, et al. Genomic
reconstruction of the SARS-CoV-2 epidemic in England. Nature [Internet]. 2021 Oct 14;
Available from: http://dx.doi.org/10.1038/s41586-021-04069-y

Figure and table captions
Figure 1: Overview of the mandrake software. Firstly, a genomic dataset, which may be a
multiple sequence alignment, gene presence/absence or sequence sketches is used to
calculate all pairwise distances between samples. Each entry in the distance matrix X is then
the number of different features between each pair of samples. Each row of X is sorted, and
the lowest k values (excluding self-matches of zero) are retained in triplet format. Entropic
affinity converts these sparse distances to conditional probabilities, which can be thought of
as the probability of selecting sample xj as a neighbour, if probabilities are normally
distributed. The user sets a perplexity parameter, which is used to set the variance of the
distribution for each sample. Stochastic cluster embedding is run over a user-set number of
iterations of stochastic gradient descent.

Figure 2: A 2-dimensional embedding calculated using Mandrake from the accessory gene
presence/absence matrix of 20,047 pneumococcal genomes. Points are coloured by the
underlying Global Pneumococcal Sequence Cluster to which they belong. Those GPSCs
with less than 50 isolates are coloured in grey.

Figure 3: A Mandrake embedding of 662,406 bacterial genomes from the SRA with Jaccard
distances calculated using sketches of 14-mers. Species with at least 10,000 genomes in
the data set are coloured.

Figure 4: A Mandrake embedding of 941,981 SARS-CoV-2 genomes downloaded from the
ENA. Points corresponding to genomes within large Pangolin lineages (>10,000 members)
are coloured and variants of concern are manually labelled.

Table 1: Resource usage for mandrake on datasets used. The first row shows use of the
static web app on a single core. All other reported times used 60 CPU cores, and where
applicable an Nvidia 3090 RTX GPU was with double precision (fp64) or single precision

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

(fp32). Note, GPU distance calculations are supported for sketches, but the table reports the
CPU time only. The HIV pol gene alignment used was a random 5,000 subset from the Los
Alamos public database (30).

Supplementary Table 1: Rand index between PopPUNK clusters (GPSCs) on the S.
pneumoniae accessory data, and HDBSCAN clusters made from four different embedding
methods.

Method Rand Index

Mandrake 0.98697

UMAP 0.98660

tSNE 0.98598

PCA 0.84303

Supplementary video 1: An animation of mandrake running on the S. pneumoniae
accessory genome data, with the same parameters as figure 1.

Supplementary video 2: An animation of mandrake running on the SRA bacterial genomes
data, with the same parameters as figure 2.

Supplementary video 3: An animation of mandrake running on the SARS-CoV-2 genomes
data, with the same parameters as figure 3.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/

