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Abstract 
In less than a decade, population genomics of microbes has progressed from the effort of 
sequencing dozens of strains to thousands, or even tens of thousands of strains in a single 
study. There are now hundreds of thousands of genomes available even for a single 
bacterial species and the number of genomes is expected to continue to increase at an 
accelerated pace given the advances in sequencing technology and widespread genomic 
surveillance initiatives. This explosion of data calls for innovative methods to enable rapid 
exploration of the structure of a population based on different data modalities, such as 
multiple sequence alignments, assemblies and estimates of gene content across different 
genomes. Here we present Mandrake, an efficient implementation of a dimensional 
reduction method tailored for the needs of large-scale population genomics. Mandrake is 
capable of visualising population structure from millions of whole genomes and we illustrate 
its usefulness with several data sets representing major pathogens. Our method is freely 
available both as an analysis pipeline (https://github.com/johnlees/mandrake) and as a 
browser-based interactive application (https://gtonkinhill.github.io/mandrake-web/). 
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Introduction 
Advances in DNA sequencing technology have recently made whole-genome sequencing 
both affordable and scalable enough for routine use in pathogen surveillance by research 
organizations and public health agencies around the world (1,2). A striking example of this is 
genomic surveillance of the SARS-CoV-2 virus for which over one million genome 
sequences became available in just 15 months after its initial discovery (3). To shed light on 
population genomic data at this scale calls for new tools that can be used for rapid 
exploration of the structure among the samples, with particular emphasis on detecting 
clusters of similar sequences (4,5). Many species do not have good quality schemes to label 
input genomes, or suffer from poor quality or missing metadata, so unsupervised methods 
are of particular interest when exploring data (6).  
 
An additional challenge to the large number of individual genomes arises from the fact that 
genomic datasets typically have a very large number of features, for example when using 
SNPs or k-mers to represent sequence variation, each sample may typically have 106 -108 
such markers. These markers are frequently used to calculate genetic distances between 
samples, the number of which grows as the number of samples squared, such that one 
million samples will have of the order of 1011 distances between them. Such high 
dimensionality of population genomic data is beyond the capability of most analysis methods 
available today, rendering it difficult to gain insight into the data structure in a fast and robust 
manner. In this paper we explore and extend a class of methods which aims to reduce the 
dimensionality of such data to only two dimensions, in a manner which supports ready 
visualization and identification of clusters. 
 
An embedding seeks to find a lower-dimensional representation of data where the distances 
in the lower dimensional space y (output) are an accurate representation of distances in the 
higher dimensional space x (input). Intuitively, genetically similar samples should be close 
together in the embedding space, and genetically distant samples should be further apart in 
the embedding space. Embedding spaces may be linear combinations of the input 
dimensions as in principal component analysis and multidimensional scaling, but here we 
focus on non-linear methods, which can infer potentially complex manifolds relating input to 
output spaces in an unsupervised data-driven manner. This means, unlike in linear methods, 
the transform in one part of the input space may be quite different to another part of the 
space. 
 
One such method is t-distributed stochastic neighbour embedding (t-SNE) (7,8). Rather than 
minimising a distance between the input and output data, t-SNE minimises the Kullback-
Leibler divergence between two probability distributions defined by the input and output data. 
The input conditional probability distribution pj|i between a pair of samples i and j is given by: 
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which equals the probability that xi would pick xj as its neighbour when sampling from a 
normal probability distribution centred at xi with variance 𝜎!. To define this probability, it is 
necessary to set a 'perplexity' which can be interpreted as the expected number of 
neighbours for each sample. Lower values of perplexity favour more local structure, whereas 
higher values assign greater weight to the global structure. Given the desired perplexity 
level, the variances and the corresponding conditional probabilities can be computed for 
each sample efficiently and in parallel (9), a technique known as entropic affinity. 
 
In the output space t-SNE defines the probabilities qij using a student t-distribution with one 
degree of freedom (a Cauchy distribution): 

 
The use of a heavy tailed distribution rather than a normal distribution allows points to be 
further apart without affecting the divergence too much, and is also faster to compute. 
 
A popular measure of discrepancy between two probability distributions P(x) and Q(x) is 
given by the Kullback–Leibler divergence, which is defined as: 

 
The t-SNE algorithm minimises this divergence iteratively, thus giving an embedding y with a 
probability distribution for between sample distances which is as similar as possible to the 
probability distribution for between sample distances in the higher dimensional data x. 
 
t-SNE and related methods have been used extensively to represent and visualise data from 
numerous fields of research and they have recently been considered for analyzing 
population structure in both human and pathogen populations, as well as data from single-
cell genomics (10–13). As these are unsupervised methods, they do not use sample labels 
to find the embedding. Due to the choice of the output probability distribution, distances 
between local samples are preserved, whereas global distances are less well preserved. 
Consequently, t-SNE is often used to identify clusters in high-dimensional data, which may 
correspond to units of population structure such as species, strains or lineages. Alternatively 
they may map onto sample labels, such as their geographical origin or cell type. 
 
However, t-SNE is not optimising the embedding to find clusters. So, when clusters do 
emerge, they are an indirect consequence of preserving local structure in the data. The 
recently developed method of stochastic cluster embedding (SCE) (14) generalises t-SNE to 
include an additional scaling parameter, replacing the denominator of qij in the Kullback-
Leibler divergence. The authors of this method show that this scale factor can be chosen to 
exactly replicate t-SNE, or alternatively can be tuned to effectively increase the 'repulsion' 
between points, targeting distinct clusters forming in the output embedding, which are easier 
to visualise and interpret.  
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In this paper we extend the SCE method to use a variety of genomic data modalities as 
input, improve its performance on large datasets, and add a range of output visualisations. 
Our method allows users to rapidly gain insights into structure present in very large genome 
datasets, which we show corresponds well with model-based genetic clustering algorithms. 
We implemented our method as a piece of open-source software called mandrake 
(https://github.com/johnlees/mandrake), and as a static web application 
(https://gtonkinhill.github.io/mandrake-web). 
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Methods 

Calculating between sample distances from genome data 
As input, mandrake takes one of three types of data: a multiple sequence alignment, a set of 
k-mer sketches (can be created from assembled or sequence read data), or a binary 
presence absence matrix (which is typically used to represent genes, but can be used to 
represent other genetic elements). These are all treated in fundamentally the same way, as 
feature matrices, with N samples along rows, and M features (SNPs, k-mers or genes) along 
columns. Although typically genomic datasets have been 'wide', with many more features 
than samples, the scale of data means this is no longer the case, and we are now able to 
analyse the case with more samples than genomic features. 
 
To calculate input distances X from the feature matrix A we can compute X = M - AAT, which 
counts the number of shared features between every pair of samples (the similarity) and 
converts this to a distance by subtracting from the maximum shared features M. This is a 
symmetric matrix with zeros on the diagonal. We note that more sophisticated genetic 
distance calculations are possible by accounting for base frequencies and varying transition 
rates between classes, but we do not consider such distances here. 
 
A difficulty is that both the number of calculations needed to find X and the amount of 
memory to store X grows as N2. Here we use methods which are fast enough to scale to N2 
for at least one million samples, but such a matrix would still require at least 2Tb of memory 
(or disk space). To avoid this major resource issue, we cut the size of X down using one of 
two methods. The first is to set a distance threshold above which entries from X are 
discarded. The second, which we use for all analyses here, is to retain just the k nearest 
neighbours for each sample (excluding self distances, and including any ties). This means X 
grows linearly in size with Nk in a predictable way, making memory allocations efficient. As 
the perplexity sets the expected number of neighbours, choosing a k above the desired 
perplexity will typically give good results. In practise, we store X as a sparse matrix in 
coordinate ('triplet') format, with three ordered lists of i, j and xij for each retained distance. 
We save these to disk so they can be reused by other programs, or by mandrake to re-run 
the embedding without recomputing distances. 
 
When A is a multiple sequence alignment, we code each row using the four DNA bases, 
each in its own dynamic bitset with the same length as the alignment, storing 1 if the base is 
present in that sample at that position, and 0 otherwise. Elements 𝑥!" = 𝑀 − 𝛴𝑎!#𝑎"#are 
then computed by ANDing each of the four bitsets and counting the total number of bits that 
are on (popcount). The use of bitsets ensures efficient packing into 64-bit words, which 
makes the boolean AND operation and subsequent popcount very fast to complete across 
all M sites. If A is a gene presence/absence matrix, the procedure is similar, but only a single 
bitset is needed for each gene. 
 
For sequence assemblies or sequence reads, which are unaligned, we count the number of 
shared k-mers between samples. Reads can be 'cleaned' by first removing low frequency k-
mers, which typically are a consequence of sequencing error. Rather than using all k-mers, 
of which there are a prohibitively large number (15), we use a 'sketching' approach 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


pioneered by the popular mash software, which instead uses a hash function [a hash 
function here transforms a k-mer sequence to a 64-bit integer] to uniformly subsample a 
fixed-size subset of the total k-mers (16). The proportion of shared k-mers (the Jaccard 
distance) can be computed by the size of the intersection of the retained hashes. We use 
two further modifications to this process. First, we use the method of bindash (17) to bin 
hashes and calculate distances between them (which turns out to be very similar to the 
dynamic bitset approach, but using bits of the calculated hash instead of DNA bases). 
Secondly, we optionally enable the approach of PopPUNK which calculates the Jaccard 
distance at multiple k-mer lengths and regresses their depletion at longer lengths to 
calculate core and accessory distances within a species (18). In practise we use PopPUNK's 
sketching and distance library pp-sketchlib (https://github.com/johnlees/pp-sketchlib) which 
optimises sketching and distance calculation from assembly or read data, and has an API 
which can be directly called from python. 
 
The computation of each row of A and reduction to the k nearest neighbours is 
embarrassingly parallel across up to N processes. We use OpenMP to achieve CPU 
parallelism. pp-sketchlib can also make use of CUDA compatible GPUs for further 
parallelism. 
 
To convert distances in X to conditional probabilities P we used the entropic affinity using 
interval bisection to find a suitable variance given a user-input perplexity parameter (9). We 
used the implementation in scikit-learn, adding CPU parallelism with OpenMP (19). 

Stochastic cluster embedding (SCE) 
We give a brief overview of the mechanism behind SCE, but note that full details are 
covered in the original publication (14). We also based our implementation on the reference 
implementation available at https://github.com/rozyangno/sce, and note the main changes 
here. 
 
The main difference between the SCE algorithm and the t-SNE algorithm described above 
stems from the scaling factor s which appears in the denominator of qij. In SCE, an 
alternative choice of s is determined which makes clusters apparent in visualisations 
(determined by a user study in the original publication). This allows the objective function to 
be minimised, D (the modified Kullback-Leibler divergence): 

 
to be written in terms of an attraction, repulsion and constant with respect to q | s: 
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The stochastic cluster embedding method optimises D using stochastic gradient descent 
(SGD), a popular method to fit neural networks (20). Here, the output embedding Y is 
updated given the current s, then s is recomputed using the update Y. This is repeated for a 
specified number of iterations, chosen such that D reaches a stable minima. To 
stochastically update Y, a pair of samples i, j are chosen at random in proportion to their 
conditional probabilities pj|i, and the gradient ▽ of their attraction term calculated (such that 
C can be ignored). Then, a pair of samples i, j are chosen at random and the gradient of 
their repulsion term calculated. In SGD a learning rate 𝜂is used to update Y by making a 
small step down the direction of the gradient 𝑦! ← 𝑦! − 𝜂$ � at iteration t. The learning rate 
decreases across the total T iterations T as 𝜂$ = 𝜂% ⋅ (1 −

$
&
). Larger steps are taken in early 

iterations, and smaller steps are taken in later iterations closer to convergence. Y is 
initialised by drawing 𝑦! ∼ 𝑈(0,10'() along each dimension. 
 
While an additional drawback of t-SNE was that the iterative optimisation is challenging to 
directly scale to larger datasets, SGD is simpler to parallelise. At each step updating Y, w 
workers can independently pick pairs of points i, j to update. Ideally for CPU parallelism, w 
will be chosen equal to the number of physical cores, and for GPU parallelism w will be 
chosen to be large (105 or more) to maximise device occupancy. A potential issue arises if 
two workers try to update the same i or j at the same time (bearing in mind the additional 
complication that these workers may not be in sync). This becomes more likely when the 
number of active workers is not much less than the number of samples. We address this in 
the CPU implementation by using atomic operations to preserve memory integrity, and when 
overwritten by another worker, retry with another pair. CUDA global memory is not directly 
affected by memory integrity issues from race conditions, but we still use an atomic 
operation to update Y rather than a simple overwrite. In each case, as long as memory 
integrity is preserved, the stochastic nature of the algorithm will correct for missteps in 
subsequent iterations, as long as they do not dominate. Additionally, while atomic operations 
are faster than locks, they become slower when multiple threads are attempting to operate 
on the same memory address, leading to a reduction in efficiency. We therefore output the 
proportion of workers found to be 'clashing' at each iteration, so users are aware they may 
wish to lower w when analysing smaller N. 
 
We also note that we use the method of Walker (21) for drawing discrete random variables 
to precompute tables to draw edges from Pj|i in constant time, reimplementing the GSL 
library implementation in C++ (22). We also use the fast parallel random number generator 
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from the dust package (23), which is based on the xoshiro128+ generator (24), and can be 
used to produce uncorrelated pseudorandom 32-bit integers in parallel on both CPUs and 
GPUs. This also removed all link time dependencies from the compiled code, which made 
compilation into WebAssembly straightforward (see below). 

Visualising embeddings 
We automatically output the final embedding Y in four formats: 

● A simple text file with N rows and two columns, for reuse by other programs or 
plotting software. A separate file listing sample names, and optionally clusters, is also 
created. 

● An interactive HTML plot using the WebGL mode of plot.ly (25). This can be viewed 
in a web browser, and scales up to millions of points. Embedding positions and labels 
appear on hover. For smaller datasets sample names also appear on hover, but this 
can be turned off (as resulting files can be extremely large on disk). 

● A static image using matplotlib (26). 
● A .dot network file, which can be loaded for interactive viewing along with sample 

labels in Microreact (27). 
 

To add colour to samples in the plot, the user can either provide labels, or labels can be 
generated by performing a spatial clustering on the embedding. For the latter, we use 
HDBSCAN, as this usually works well on well-separated clusters of unspecified shape. We 
centre and normalise the embedding to [-1, 1] in each direction, use a minimum cluster size 
of two, and minimum distance between clusters of 0.02 (28). HDBSCAN may label some 
points as 'noise', which are useful for potential singleton clusters, though care should be 
taken not to group noise points into a cluster. 
 
Colours for classes are chosen by randomly sampling from RGB space. We tried selecting 
from HSL or HSLuv space, which are perceptually uniform colour spaces to the human eye, 
but found empirically that contrast between labels was poorer than from RGB colours. 
We found that for many of the genomic datasets we ran mandrake on, well-separated 
clusters were a common feature (for example separating species). In the embedding output 
this leads to many points overlapping, and although clusters can clearly be identified, their 
size is obscured. To help remedy this, we included an additional (static) hexagon density plot 
which shows a heatmap of the number of samples in each region of the plot. 
 
We also include code to create a video of the embedding process as the SGD algorithm 
runs, which is particularly useful for monitoring convergence. We take the current embedding 
and objective function at 400 points across the total number of iterations, create a static plot, 
and use these as frames in the output animation (at 20fps, so videos are 20s in duration). In 
the CUDA code, the copy of the current embedding is launched asynchronously to the main 
SGD kernel run, so it has a negligible impact on run time. We optionally add sound by mixing 
decaying triangular wave oscillators at a frequency proportional to the maximum movement 
along each dimension between each frame. This sound is in stereo, with each channel 
corresponding to an SCE dimension. 
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Initially our code sampled frames uniformly from the SGD iterations, however this led to 
animations where at the start points moved too fast, and at the end too slow. This is due to 
the decreasing learning rate 𝜂. We decided instead to sample uniformly from the total 
amount of learning completed, so when more learning (and larger changes to the 
embedding) was being done more frames would be taken, and when less learning (and 
smaller changes to the embedding) was being done fewer frames would be taken.  
 
As we use a linearly decreasing learning rate, learning grows quadratically, so we sample 
proportional to its inverse (the square root). More formally, the total amount of learning at 
iteration 𝜅 ≤ 𝑇 is given by: 

 
which can be approximated by an integral (ignoring a small constant term as T >> 1): 
 

 
 

The total amount of learning completed when 𝜅 = 𝑇is therefore &)!
*

which can be subdivided 
equally into f frames, which can be done by taking a sample at iteration 𝜅if the total learning 
is an integer multiple c of  &)!

*
: 

 
rearranging to find 𝜅: 

 
Therefore we take samples distributed as the square root of the iterations t. 

Software implementations 
Mandrake is written in a combination of C++, CUDA, python and javascript. One of the major 
changes from the reference implementation of SCE is that we provide python bindings to the 
SCE method using pybind11 (29). The C++/CUDA part of mandrake which runs the entropic 
affinity preprocessing and modified SCE algorithm can be imported into any python program 
and called with 'triplet' sparse matrix data. 

Command line interface (python) 
The full mandrake executable is available as a python executable which includes genetic 
distance calculation, and plotting of the output. We include numerous progress meters for 
each stage of computation, as on large datasets estimating time or eliminating 
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computationally impossible steps is a necessity. The package can be installed using conda, 
and we provide online documentation and examples at 
https://mandrake.readthedocs.io/en/latest/.  

Optimisation of GPU code (CUDA) 
We optimised the CUDA code through multiple rounds of profiling, the results of which can 
be accessed with the datasets on Zenodo. Briefly, this resulted in the following changes: 
 

● Use of a callback function to output the objective function at each iteration, so 
convergence can be monitored. 

● Use of CUDA graphs to run each iteration, which eliminates overheads from calls to 
the CUDA API at every step. 

● Reversing the strides of the embedding Y from row-major to column-major, which 
can sometimes coalesce memory accesses. Changing the strides back (to be 
compatible with numpy) is done in a new device kernel. 

● Use of parallel reductions from the cub library to calculate the objective at the end of 
each step. 

● Use of the wrapper classes from the dust package to manage device memory (23). 
● Elimination of thread divergences within warps. 
● Inclusion of 32-bit and 64-bit versions of the code (64-bit operations are slower and 

use more registers, and some devices can only emulate 64-bit floating point 
operations, which can decrease performance greatly). 

● Storing each worker's random number generator state in registers, rather than writing 
to/from global memory whenever it is changed. 

● Added compiler optimisations and loop unrolling. 

Static web app (WebAssembly and Javascript) 
We optimised a version of Mandrake for the web (https://gtonkinhill.github.io/mandrake-
web). This is particularly important to improve accessibility for users who have less 
experience running and installing bioinformatics programs on the command line. We made 
use of the Emscripten compiler to convert a slightly modified version of the C++ code used in 
the python package to WebAssembly, which executes within the browser on the user's 
machine. This provides significant performance benefits over a pure javascript based 
implementation, and allows the web application to achieve similar speeds as the command 
line version on small to medium sized datasets. As the support for multi-threading in 
WebAssembly is still experimental, the web application currently only supports runs on a 
single CPU, so the command line version is still recommended for very large datasets. 
 
The static web application was created using the Hugo site generator and custom javascript 
to interact with the compiled WebAssembly functions. A significant benefit of this approach is 
that once the website is loaded, there is no reliance on an internet connection and the entire 
analysis is run on the user's local machine. This ensures that the user's data is secure, as it 
is never uploaded, and which can be particularly useful in locations with poor internet 
connections where the uploading of any large dataset would be infeasible. It is also possible 
to run mandrake-web entirely offline. 
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Data and code availability 
Code: https://github.com/johnlees/mandrake and https://github.com/gtonkinhill/mandrake-
web  
Documentation: https://mandrake.readthedocs.io/en/latest/  
Archived code: https://dx.doi.org/10.5281/zenodo.5579270  
Commands used for analysis: https://github.com/gtonkinhill/mandrake_manuscript  
Datasets: https://dx.doi.org/10.5281/zenodo.5572316  
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Results 

Overview of Mandrake's design 

 
Figure 1: Overview of the mandrake software. Firstly, a genomic dataset, which may be a 
multiple sequence alignment, gene presence/absence or sequence sketches is used to 
calculate all pairwise distances between samples. Each entry in the distance matrix X is then 
the number of different features between each pair of samples. Each row of X is sorted, and 
the lowest k values (excluding self-matches of zero) are retained in triplet format. Entropic 
affinity converts these sparse distances to conditional probabilities, which can be thought of 
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as the probability of selecting sample xj as a neighbour, if probabilities are normally 
distributed. The user sets a perplexity parameter, which is used to set the variance of the 
distribution for each sample. Stochastic cluster embedding is run over a user-set number of 
iterations of stochastic gradient descent.  
 
Figure 1 gives a graphical overview of the steps we use in mandrake to create a low 
dimensional embedding from genomic data. Pairwise genetic distances X between all 
samples are calculated from the genome data. Each element of X, of which there are N2, 
requires comparison of M genomic features. This is typically the largest calculation in 
mandrake, and we have highly optimised it and allow it to take advantage of many CPU 
cores where available. This makes calculation of distance matrices from up to millions of 
samples feasible. Each sample is reduced to the k-nearest neighbour distances on-the-fly to 
save space in memory. Note that although Figure 1 removes identical distances for visual 
clarity, in our code we retain them. We then use entropic affinity, as described in the 
introduction, to convert these distances into a conditional probability distribution, as 
described in the introduction. Figure 1 shows an example for sample x3, which has nearest 
neighbours x1 at one SNP away and x2 at two SNPs away. These are converted into 
probabilities using the height of Gaussian as shown, with a variance found to match the 
chosen perplexity through interval bisection. 
 
Stochastic cluster embedding is then run; we make the user specify the number of iterations 
to run for and do not stop until this is reached. Some example frames across the SGD 
iterations are shown. At the start, points in the lower dimensional space are randomly 
distributed, but are moved around more as the learning rate is higher. Later on, points are in 
clusters, and move smaller amounts along their gradient each step due to the lower learning 
rate. Some example attractive Jattraction and repulsive Jrepulsion gradient steps are shown on the 
first two panels. Points are selected for attraction more frequently if they have a higher 
conditional probability. This has the effect that within a cluster (close in the higher dimension; 
higher conditional probabilities) points are pushed together. Repulsion is between any pair of 
points, which at later stages of the algorithm repulses clusters from one another, with the 
attractive force keeping the cluster together. 
 
Applying SGD to D tries to make the input distribution (the conditional probabilities pj|i) as 
similar as possible to the output distribution (set by a Cauchy distribution qij). This is shown 
at the bottom of figure 1 – an example with two points with the same input and output 
probability on the y-axis, are a small distance apart on the x-axis. Therefore, close distances 
in the higher dimensional space of X will also be close in the lower dimensional space Y. 
The heavy tails of the output Cauchy (black, solid distribution) apply less penalisation if 
smaller input probabilities are further apart than the tails of a Gaussian distribution (green, 
dashed distribution). 
 
Our resulting implementation runs in a few hours, on up to around one million samples (table 
1). Some variation in runtimes not directly proportional to the number of iterations is 
observed, this is typically due to setting a number of workers to aim for a maximum 10% 
clash rate on each dataset, such that efficiency increased in the larger datasets. Our web 
app is responsive up to the range of 10,000 samples, which completes in around a minute, 
depending on the input data type. 
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Table 1: Resource usage for mandrake on datasets used. The first row shows use of the 
static web app on a single core. All other reported times used 60 CPU cores, and where 
applicable an Nvidia 3090 RTX GPU was with double precision (fp64) or single precision 
(fp32). Note, GPU distance calculations are supported for sketches, but the table reports the 
CPU time only. The HIV pol gene alignment used was a random 5,000 subset from the Los 
Alamos public database (30). 

Dataset Number of 
samples 

Distance 
calculation  

Maximum 
memory 

Iterations 
used 

SCE time 
(CPU) 

SCE time 
(GPU) 

HIV-1 pol gene 
alignment 

5,000 35 s (web) NA 1x106 11s (web) NA 

S. pneumoniae 
accessory 
genome 

20,047 3 mins 6.5 Gb (host) 
/ 0.35 Gb 
(GPU) 

3x108 7.8 mins 5s (fp64) 

SRA bacterial 
assemblies 

661,406 3 hrs 7 Gb (host) / 
3 Gb (GPU) 

5x1011 186 hrs 1.3hrs (fp64) 

SARS-CoV-2 
alignment 

941,981 101 hrs 26 Gb (host) / 
13 Gb (GPU) 

1x1012 372 hrs 2.8 hrs (fp64) / 
2.3 hrs (fp32) 

 
Before interpreting our results on different datasets, we recap some key features of non-
linear embeddings (31): 

 
● Cluster sizes in the embedding space do not relate to the number of points in the 

cluster, or its genetic diversity. In SCE particularly, many points will be heavily 
overplotted, and the density plot should be used for determining the number of 
samples in one region. 

● Distances between clusters do not correspond to their genetic distances. Two well-
separated clusters, close together, are not necessarily more genetically similar than 
two well-separated clusters at opposite ends of the plot. 

● Perplexity can greatly affect results, and runs at a few different perplexities should 
typically be attempted. At lower perplexities, structure can sometimes be found 
where there is none. Complex topological relationships are generally not expected in 
genetic data, but where these may exist (in the presence of extensive horizontal 
gene transfer) multiple perplexity runs may be able to find these. 

Clustering the accessory genome of 20k 
Streptococcus pneumoniae 
To demonstrate the ability of the SCE embedding to identify meaningful clusters within a 
large dataset we first considered a collection of 20,047 S. pneumoniae genomes which 
consisted of a subset of high quality genomes from the Global Pneumococcal Sequencing 
project and two other pneumococcal genome surveillance studies (4,32–34). S. pneumoniae 
is a highly recombinant bacterial species with an extensive accessory genome that has been 
shown to be highly structured (35,36). This makes it a good example for investigating the 
ability of Mandrake to identify clusters from a gene presence/absence matrix. 
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We first inferred a pangenome gene presence/absence matrix using Panaroo v1.2 (37). This 
resulted in a binary matrix consisting of 27,322 features (genes) and 20,047 genomes which 
was used as input to Mandrake.  
 
Figure 2 and supplementary video 1 indicate the resulting embedding with points coloured 
according to which of the Global Pneumococcal Sequencing Clusters (GPSCs) each 
genome belonged to (4,32). Those clusters with less than 50 genomes are coloured in grey 
with the Mandrake embedding placing them together in a single large group. This is similar 
to the behaviour of other clustering algorithms such as BAPS where outlying genomes are 
often grouped together into a single cluster representing the broader genomic background 
(30,38). To compare the observed clustering in the 2D embedding to the underlying GPSCs 
we calculated the rand index after first clustering the embedded points using HDBSCAN 
(28). The Rand index is a measure of similarity between the two clusterings and gives an 
indication of the accuracy with which one clustering predicts the other. The Mandrake 
embedding was found to have an index of 0.987 which was similar but still higher than that 
found using common alternative embeddings including UMAP, t-SNE and PCA 
(Supplementary Table 1). This suggests that Mandrake is able to produce a biologically 
meaningful embedding quickly using the presence and absence of accessory genes as 
input. 
 

 
Figure 2: A 2-dimensional embedding calculated using Mandrake from the accessory gene 
presence/absence matrix of 20,047 pneumococcal genomes. Points are coloured by the 
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underlying Global Pneumococcal Sequence Cluster to which they belong. Those GPSCs 
with less than 50 isolates are coloured in grey. 

Clustering ~650k bacterial genome assemblies from public 
databases 
We then used SCE to search for structure across the space of highly diverse bacterial 
genomes. A recent analysis produced curated and assembled bacterial samples from the 
SRA database, producing 661,406 high-quality bacterial genomes (39). We downloaded 
these assemblies from ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k (39) and 
sketched their 14-mers. We then used these sketches to calculate Jaccard distances 
between 14-mers, which we used to produce a sparse matrix with the 100 nearest 
neighbours. Using this, we ran mandrake for 5x1011 iterations using 65,536 workers on a 
GPU, which took two hours. The objective stabilised around halfway through the run, and the 
resulting embedding can be seen in Figure 3, and an animation of the SCE iterations in 
supplementary video 2. 
 
We found that the most common species formed clear clusters in the embedding space, with 
the exception of Closteroides difficile in the centre of the space, which overlaps with many 
other gut pathogens. This is likely due to be from gut samples where the sequence 
contained multiple species, but just the most abundant species was reported. Most species 
were split into multiple clusters, likely representing strains within species, or subspecies (in 
the case of e.g. Salmonella enterica which appears in multiple clusters over the whole 
embedding space). Some other interesting examples include Listeria monocytogenes which 
has genetically distinct major lineages (40), and appears as separate clusters spread around 
the embedding. Mycobacterium tuberculosis is split into 5-10 clusters, which are close 
together in the embedding, and have a larger radius than e.g. Escherichia coli clusters, 
despite harbouring much less genetic diversity. The non-linear nature of the embedding is 
therefore also able to capture structure across a range of genetic scales. This also 
demonstrates the points of cluster size not having a direct interpretation, but between cluster 
distances sometimes retaining meaning. 
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Figure 3: A Mandrake embedding of 662,406 bacterial genomes from the SRA with Jaccard 
distances calculated using sketches of 14-mers. Species with at least 10,000 genomes in 
the data set are coloured. 

Clustering ~1M SARS-CoV-2 genome alignments from public 
databases 
We next considered Mandrake’s ability to embed highly similar genomes into clusters by 
running the algorithm in its multiple sequence alignment mode on a cleaned subset of 
941,981 SARS-CoV-2 genomes downloaded from the ENA (covid19dataportal.org). Of the 
original 977,048 genomes downloaded, we filtered out 35,067 which had a length less than 
90% of the Wuhan.1 reference genome or were made up of more than 5% ambiguous 
nucleotide calls. Each genome was assigned to a SARS-CoV-2 lineage using Pangolin 
(5,41). After generating a multiple sequence alignment of the genomes using MAFFT v7.487 
we ran Mandrake in it’s ‘alignment’ mode which calculates the pairwise hamming distance 
between genomes ignoring ambiguous base calls. Mandrake was run for 1x1012 iterations on 
a GPU with 94,976 workers, which took 3.7 hours. The resulting embedding is shown in 
Figure 4 and supplementary video 3, with the major SARS-CoV-2 lineages comprising more 
than 10,000 genomes assigned different colours. Interestingly, the major variants of concern 
including the Delta and Alpha lineages are clearly visible in the embedding indicating that 
Mandrake is able to identify biologically meaningful structure within very large but highly 
similar genomes.  
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Figure 4: A Mandrake embedding of 941,981 SARS-CoV-2 genomes downloaded from the 
ENA. Points corresponding to genomes within large Pangolin lineages (>10,000 members) 
are coloured and variants of concern are manually labelled. 

Discussion 
Currently population genomics of pathogens is experiencing an unprecedented pace of 
genome sequencing on a global scale, which poses a challenge to many standard workflows 
for data analysis. As many downstream epidemiological or evolutionary analyses work within 
identified clusters, the first tasks in population genomics workflows are to understand the 
population structure and the extent of clustering of the input genomes, both of which are 
difficult to do with increasing data size. While some new highly scalable methods have been 
developed for this task, they are frequently species-specific (42). Doing this in a manner 
which can be visualised is particularly helpful, especially given the high dimensions and 
complex relationships inherent in genomic datasets. 
 
In this article we have presented the mandrake software, which meets these particular needs 
and offers programmatic plotting options and interactive exploration of the data. Our current 
software architecture scales well to even the largest available contemporary pathogen 
genomics data sets. However, in future it would clearly benefit from reducing the quadratic 
computational complexity of the input genome distance calculations, which could for 
example be achieved with subsampling of the data by picking representative samples 
among highly similar genomes. This has been achieved in other packages by assuming 
genetic distances generally obey the triangle inequality (18,43).  
 
Another interesting opportunity for further research and development stems from the 
challenge of optimizing output plots using models of human perception. Here, we used user-
guided training in SCE to determine a parameter s, which governs the display of clusters in 
the output embedding. Recent results in perception modeling for visualization have 
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demonstrated notable improvements over default software options for scatterplots, where 
optimized designs can much better adapt to an increase in data density (44). There are 
multiple display parameters that could be adjusted in order to give a human expert an 
enhanced view into the data structure, such as the marker size, their opacity and colors. 
Optimization of such parameters using models of human cognition has the potential to 
resolve the visualization challenges arising from extremely high dimensionality of the data, 
not only for cluster embedding as considered here, but also for other complex objects such 
as phylogenetic trees. An exciting opportunity for considering this untapped potential arises 
from combining cognitive models with recent developments in Approximate Bayesian 
Computation (ABC), which allows efficient fitting of simulator-based models to data when the 
likelihood calculations are intractable (45,46). Several successful examples of using ABC in 
cognitive model inference (47,48) suggest that this approach could be fruitful for making 
improved displays of high-dimensional population genomic data. 
 
Nevertheless, we have been able to make mandrake useful across a range of scales and to 
a range of users, scaling from within-browser analysis, through multicore CPU use on the 
command line, up to high power graphics cards. The functions provided may also serve as a 
basis for the analysis of pairwise relationships between genomic data in other tools, such as 
phylogenetics (49), selection analysis (50) and mathematical modelling (51).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 
We would like to thank the many researchers who generated genomic data and then openly 
deposited it in databases free of usage restrictions (SRA and INSDC), without whom 
developing methods to analyse large microbial datasets would be considerably more 
challenging. In particular, we are grateful to the GPS consortium, Grace Blackwell and the 
COVID-19 data portal for making the genomic data and associated metadata from their 
analyses freely available and easy to access in a reproducible and reusable manner. 
JAL acknowledges funding from the MRC Centre for Global Infectious Disease Analysis 
(reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and 
the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO 
Concordat agreement and is also part of the EDCTP2 programme supported by the 
European Union. GTH was funded by the Norwegian Research Council grant no. 299941. 
JC was funded by the European Research Council grant no. 742158.   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
1.  Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, et 

al. Pathogen Genomics in Public Health. N Engl J Med. 2019 Dec 26;381(26):2569–80. 

2.  Brown B, Allard M, Bazaco MC, Blankenship J, Minor T. An economic evaluation of the 
Whole Genome Sequencing source tracking program in the U.S. PLoS One. 2021 Oct 
6;16(10):e0258262. 

3.  Oude Munnink BB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier 
RAM, et al. The next phase of SARS-CoV-2 surveillance: real-time molecular 
epidemiology. Nat Med. 2021 Sep;27(9):1518–24. 

4.  Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. 
International genomic definition of pneumococcal lineages, to contextualise disease, 
antibiotic resistance and vaccine impact. EBioMedicine. 2019 May;43:338–46. 

5.  O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of 
epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 
2021 Jul 30;7(2):veab064. 

6.  Black A, MacCannell DR, Sibley TR, Bedford T. Ten recommendations for supporting 
open pathogen genomic analysis in public health. Nat Med [Internet]. 2020 Jun 11; 
Available from: http://dx.doi.org/10.1038/s41591-020-0935-z 

7.  Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 
2008;9(Nov):2579–605. 

8.  van der Maaten L. Accelerating t-SNE using Tree-Based Algorithms. J Mach Learn Res. 
2014;15(93):3221–45. 

9.  Vladymyrov M, Carreira-Perpinan M. Entropic Affinities: Properties and Efficient 
Numerical Computation. In: Dasgupta S, McAllester D, editors. Proceedings of the 30th 
International Conference on Machine Learning. Atlanta, Georgia, USA: PMLR; 2013. p. 
477–85. (Proceedings of Machine Learning Research; vol. 28). 

10.  Abudahab K, Prada JM, Yang Z, Bentley SD, Croucher NJ, Corander J, et al. PANINI: 
Pangenome Neighbour Identification for Bacterial Populations. Microb Genom [Internet]. 
2018 Nov 22;4. Available from: http://dx.doi.org/10.1099/mgen.0.000220 

11.  Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality 
reduction for visualizing single-cell data using UMAP. Nat Biotechnol [Internet]. 2018 
Dec 3; Available from: http://dx.doi.org/10.1038/nbt.4314 

12.  Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 
2019 Nov 28;10(1):1–14. 

13.  Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population 
genetics. J Hum Genet. 2021 Jan;66(1):85–91. 

14.  Yang Z, Chen Y, Sedov D, Kaski S, Corander J. Stochastic Cluster Embedding 
[Internet]. arXiv [cs.LG]. 2021. Available from: http://arxiv.org/abs/2108.08003 

15.  Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, et al. Improved 
Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable 
Pangenome-Spanning Regressions. MBio [Internet]. 2020 Jul 7;11(4). Available from: 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


http://dx.doi.org/10.1128/mBio.01344-20 

16.  Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: 
fast genome and metagenome distance estimation using MinHash. Genome Biol. 
2016;17(1):1–14. 

17.  Zhao X. BinDash, software for fast genome distance estimation on a typical personal 
laptop. Bioinformatics. 2019 Feb 15;35(4):671–3. 

18.  Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, et al. Fast and 
flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019 Jan 
24;29(2):304–16. 

19.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 
Machine Learning in Python. J Mach Learn Res. 2011;12(85):2825–30. 

20.  Bottou L, Others. Stochastic gradient learning in neural networks. Proceedings of 
Neuro-Nımes. 1991;91(8):12. 

21.  Walker AJ. An Efficient Method for Generating Discrete Random Variables with General 
Distributions. ACM Trans Math Softw. 1977 Sep 1;3(3):253–6. 

22.  Knuth DE. The art of computer programming, volume 2 (3rd ed.): seminumerical 
algorithms. USA: Addison-Wesley Longman Publishing Co., Inc.; 1997. 

23.  FitzJohn RG, Knock ES, Whittles LK, Perez-Guzman PN, Bhatia S, Guntoro F, et al. 
Reproducible parallel inference and simulation of stochastic state space models using 
odin, dust, and mcstate. Wellcome Open Res. 2021 Jun 10;5:288. 

24.  Blackman D, Vigna S. Scrambled Linear Pseudorandom Number Generators [Internet]. 
arXiv [cs.DS]. 2018. Available from: http://arxiv.org/abs/1805.01407 

25.  Inc. PT. Collaborative data science [Internet]. Montreal, QC: Plotly Technologies Inc.; 
2015. Available from: https://plot.ly 

26.  Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5. 

27.  Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: 
visualizing and sharing data for genomic epidemiology and phylogeography. Microb 
Genom. 2016 Nov;2(11):e000093. 

28.  McInnes L, Healy J, Astels S. hdbscan: Hierarchical density based clustering. The 
Journal of Open Source Software. 2017;2(11):205. 

29.  Jakob W, Rhinelander J, Moldovan D. pybind11 -- Seamless operability between C++11 
and Python. 2017. 

30.  Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian 
analysis of population structure. Nucleic Acids Res [Internet]. 2019 May 11; Available 
from: http://dx.doi.org/10.1093/nar/gkz361 

31.  Wattenberg M, Viégas F, Johnson I. How to use t-SNE effectively. Distill [Internet]. 2016 
Oct 13;1(10). Available from: http://distill.pub/2016/misread-tsne 

32.  Lo SW, Gladstone RA, van Tonder AJ, Lees JA, du Plessis M, Benisty R, et al. 
Pneumococcal lineages associated with serotype replacement and antibiotic resistance 
in childhood invasive pneumococcal disease in the post-PCV13 era: an international 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


whole-genome sequencing study. Lancet Infect Dis. 2019 Jul;19(7):759–69. 

33.  Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, et al. 
Dense genomic sampling identifies highways of pneumococcal recombination. Nat 
Genet. 2014 Mar;46(3):305–9. 

34.  Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population 
genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013 
Jun;45(6):656–63. 

35.  Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, et al. 
Frequency-dependent selection in vaccine-associated pneumococcal population 
dynamics. Nature Ecology & Evolution. 2017 Oct 16;1. 

36.  Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, et al. Frequency-
dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 
2020;18(10):e3000878. 

37.  Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing 
polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020 Jul 
22;21(1):180. 

38.  Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially 
explicit clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013 
May;30(5):1224–8. 

39.  Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, et al. Exploring 
bacterial diversity via a curated and searchable snapshot of archived DNA sequences 
[Internet]. Cold Spring Harbor Laboratory. 2021 [cited 2021 Mar 4]. p. 
2021.03.02.433662. Available from: 
https://www.biorxiv.org/content/10.1101/2021.03.02.433662v1 

40.  Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole 
genome-based population biology and epidemiological surveillance of Listeria 
monocytogenes. Nature Microbiology. 2016 Oct 10;2:16185. 

41.  Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic 
nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. 
Nature microbiology. 2020;5(11):1403–7. 

42.  Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al. Ultrafast 
Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the 
SARS-CoV-2 pandemic. Nat Genet. 2021 May 10;1–8. 

43.  Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat 
Commun. 2018 Jun 29;9(1):2542. 

44.  Micallef L, Palmas G, Oulasvirta A, Weinkauf T. Towards Perceptual Optimization of the 
Visual Design of Scatterplots. IEEE Trans Vis Comput Graph. 2017 Jun;23(6):1588–99. 

45.  Lintusaari J, Gutmann MU, Dutta R, Kaski S, Corander J. Fundamentals and Recent 
Developments in Approximate Bayesian Computation. Syst Biol. 2017 Jan 1;66(1):e66–
82. 

46.  Lintusaari J, Vuollekoski H, Kangasrääsiö A, Skytén K, Järvenpää M, Marttinen P, et al. 
ELFI: Engine for Likelihood-Free Inference. J Mach Learn Res. 2018;19(16):1–7. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466232
http://creativecommons.org/licenses/by-nc-nd/4.0/


47.  Gebhardt C, Oulasvirta A, Hilliges O. Hierarchical Reinforcement Learning Explains 
Task Interleaving Behavior. Computational Brain & Behavior. 2021 Sep 1;4(3):284–304. 

48.  Kangasrääsiö A, Jokinen JPP, Oulasvirta A, Howes A, Kaski S. Parameter Inference for 
Computational Cognitive Models with Approximate Bayesian Computation. Cogn Sci. 
2019 Jun;43(6):e12738. 

49.  Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective 
stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015 
Jan;32(1):268–74. 

50.  Frost SDW, Magalis BR, Kosakovsky Pond SL. Neutral theory and rapidly evolving viral 
pathogens. Mol Biol Evol [Internet]. 2018 Apr 24 [cited 2018 Apr 24]; Available from: 
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy088/4983910 

51.  Vöhringer HS, Sanderson T, Sinnott M, De Maio N, Nguyen T, Goater R, et al. Genomic 
reconstruction of the SARS-CoV-2 epidemic in England. Nature [Internet]. 2021 Oct 14; 
Available from: http://dx.doi.org/10.1038/s41586-021-04069-y 

 

Figure and table captions 
Figure 1: Overview of the mandrake software. Firstly, a genomic dataset, which may be a 
multiple sequence alignment, gene presence/absence or sequence sketches is used to 
calculate all pairwise distances between samples. Each entry in the distance matrix X is then 
the number of different features between each pair of samples. Each row of X is sorted, and 
the lowest k values (excluding self-matches of zero) are retained in triplet format. Entropic 
affinity converts these sparse distances to conditional probabilities, which can be thought of 
as the probability of selecting sample xj as a neighbour, if probabilities are normally 
distributed. The user sets a perplexity parameter, which is used to set the variance of the 
distribution for each sample. Stochastic cluster embedding is run over a user-set number of 
iterations of stochastic gradient descent.  
 
Figure 2: A 2-dimensional embedding calculated using Mandrake from the accessory gene 
presence/absence matrix of 20,047 pneumococcal genomes. Points are coloured by the 
underlying Global Pneumococcal Sequence Cluster to which they belong. Those GPSCs 
with less than 50 isolates are coloured in grey. 
 
Figure 3: A Mandrake embedding of 662,406 bacterial genomes from the SRA with Jaccard 
distances calculated using sketches of 14-mers. Species with at least 10,000 genomes in 
the data set are coloured. 
 
Figure 4: A Mandrake embedding of 941,981 SARS-CoV-2 genomes downloaded from the 
ENA. Points corresponding to genomes within large Pangolin lineages (>10,000 members) 
are coloured and variants of concern are manually labelled. 
 
Table 1: Resource usage for mandrake on datasets used. The first row shows use of the 
static web app on a single core. All other reported times used 60 CPU cores, and where 
applicable an Nvidia 3090 RTX GPU was with double precision (fp64) or single precision 
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(fp32). Note, GPU distance calculations are supported for sketches, but the table reports the 
CPU time only. The HIV pol gene alignment used was a random 5,000 subset from the Los 
Alamos public database (30). 
 
Supplementary Table 1: Rand index between PopPUNK clusters (GPSCs) on the S. 
pneumoniae accessory data, and HDBSCAN clusters made from four different embedding 
methods. 
 

Method Rand Index 

Mandrake 0.98697 

UMAP 0.98660 

tSNE 0.98598 

PCA 0.84303 
 
Supplementary video 1: An animation of mandrake running on the S. pneumoniae 
accessory genome data, with the same parameters as figure 1. 
 
Supplementary video 2: An animation of mandrake running on the SRA bacterial genomes 
data, with the same parameters as figure 2. 
 
Supplementary video 3: An animation of mandrake running on the SARS-CoV-2 genomes 
data, with the same parameters as figure 3. 
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