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Abstract 

The nematode worm, Caenorhabditis elegans, is a relatively simple neural system model for measuring the 

efficiency of information transmission from sensory organ to muscle fiber. With the potential to measure this 

efficiency, a method is proposed to compare the organization of an idealized neural circuit with a logic gate 

design. This approach is useful for analysis of a neural circuit that is not tractable to a strictly biological model, 

and where the assumptions of a logic gate design have applicability. Also, included in the results is an abstract 

perspective of the electrical-specific synaptic network in the somatic system of the nematode worm. 

 

 

Introduction 

McCulloch and Pitts [1] introduced the concept that a neural system processes information by a 

biologically plausible logic gate design. However, neural systems are dependent on a biological design that does 

not necessarily conform to a logic gate model [2-11]. A logic gate is a model for a boolean function, such as the 

logical operations AND, OR, or NOT. Another model, with an emphasis on biological realism, is based on 

electrotonic networks [12]. The advantage of a logic gate model and the electrotonic network model, where 

applicable to a small neural circuit, is explainability. In addition, these models provide a mathematical 

expression for the events in a hypothetical circuit. They offer a formal hypothesis to help unravel the workings 

of a neural circuit in animals. 

These models most often assume a static environment for an animal, whereas in nature the environment is 

changing and the neural system is organized for overlap in function. The overlap would remove the requirement 

for the existence of neural modules for each environmental condition. A non-overlapping system is not an 

efficient method for a design of an information-based system. At the least, an efficient design would require a 

large amount of reuse of these local clusters of neurons and synaptic links. However, in the case of a controlled 

environment and that the neural circuit is simple, it should be possible to map a neural circuit as a set of logic 

gates. 

This question of optimality in a neural system has been examined at the structural and functional level of a 

network of neurons [8, 12-17]. In the case of Caenorhabditis elegans, one type of optimization is observed in 

the neuronal wiring length for minimizing the path length to communicate information [14]. Given an 

organization of cells, it is expected that a neural system is optimized in the cost of development and its operation. 

One piece of evidence is that an organ system is typically adapated in its physiological and anatomical 

properties. Another supporting argument is the role of natural selection which will tend to disfavor those 

individuals in a population that use energy without benefit, such as for development of a larger neural system 

with a higher energy requirement that offers no advantage over the baseline form. Static properties of the larger 

neural network in C. elegans has also been described, such as the observation of a small world architecture [5, 

18-19], sparsity of neuronal connectiveness [11], along with commonly noted motifs that are observed in the 

network [3, 20]. 
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The simpler neural systems, particularly the neural circuits, are tractable for study and to measure 

efficiency across the life history of an animal. Past studies have examined the coding of animal behavior by the 

neural circuits of a system [4, 7, 9, 16, 21-24]. It is further possible to relate these neural systems to the 

communication of information in animals [5, 25]. The concept of information flow, efficiency, and the presence 

of neural circuits suggest a design that shows analogy with logic gates and their boolean functions [3, 26]. The 

application of engineered designs to a neural system has also been put forward by others, such as Yan and others 

[16], Karbowski [11], and Lysiak and Paszkiel [27]. In particular, Yan and others [16] proposed a model based 

on control theory to explain and predict the structure of a neural circuit for locomotion in C. elegans. Their 

predictions were supported by experiments in C. elegans. 

For understanding individual neuron behavior and dynamics in small clusters of neurons, a biologically 

justified model is an ideal choice. In the case of a larger network of neurons, and in unraveling a neural circuit, 

where the scale of interest is in the information flow and the corresponding theory, then it is of interest to test 

with a model of few assumptions with predictiveness on the network efficiency and flow. This approach is the 

rationale for use of this logic gate model, even though it models by abstraction the lower scale processes at the 

neuronal level. It also provides a formal procedure for developing hypotheses on the functioning of a neural 

circuit. The division of perspective at the small and large scale is also seen in the science of ecological systems, 

another non-linear dynamic system, where the living organism is abstracted away in favor of measurements of 

the efficiency and flow of energy and matter [28]. 

  

Methods 

Data retrieval 

Neuronal data obtained is from the adult hermaphroditic form of Caenorhabditis elegans which has two 

distinct nervous systems, a somatic system of 282 neurons [29] and a pharyngeal system of 20 neurons [30]. The 

neuronal connectivity data includes all nonpharygeal neurons except two neurons without synaptic data, CANL 

and CANR (WormAtlas.Org) [29, 31-34]. The data files were accessed by a web based interface at 

WormAtlas.Org. 

WormAtlas.Org documents the numbers of sensory and motor neuronal types in the adult hermaphroditic 

form of C. elegans. Several of these neurons are not fully characterized along with a set of neurons that are not 

easily assigned to one of these types, so the following assignments were made based upon the curated databases 

at WormAtlas.Org. Sensory: ADEL, CEPVL, CEPVR, IL1DL, IL1DR, IL1L, IL1R, IL1VL, IL1VR. Motor: 

URADL, URADR, URAVL, URAVR. Therefore, of the 282 somatic system neurons, 82 were assigned as a 

sensory type, 118 as a motor type, and the 82 remaining as interneurons. The neural circuit for gentle touch for 

locomotion is described by Yan and others [16] and Driscoll and Kaplan [21]. This study also assumes that any 

neural circuit operates by a forward feedback loop, a biologically reasonable assumption [20]. 

 

Data processing and visualization 

Minitab statistical software [35], version 14, was used for data organization and processing. The software 

Gephi version 0.9.2 was used to construct the graphical networks of neurons, generate random networks, and 

calculate the frequency distribution of numbers of degrees per node [36]. 

The diagram of the digital circuit was drawn in TinyCAD [37]. It contains software libraries named 74TTL 

and gen_Logic which have graphical symbols for many of the common types of logic gates. 
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Logic gate analysis 

The Espresso software was used to calculate the optimal number of logic gates given a number of inputs 

and outputs in a digital circuit [38]. Below is an example of input data for use by this software and it 

corresponds to the AND/NOT case (table 1) with 3 inputs and 4 outputs: 

 

.i 3 

.o 4 

.ilb A B C 

.ob E F G H 

000 0000 

100 0000 

010 0000 

001 0000 

110 1100 

101 0000 

011 0011 

111 0000 

.e 

 

The above data contains the formatted truth table where each of the lines of input (A, B, C) and output (E, 

F, G, H) values are separated by a space. The header information includes the count of input and output types 

along with a variable name for each of the types. The software resolves the truth table into a set of logic gates 

represented by boolean algebraic form. The result for the above data is: 

 

E = (A & B & !C) 

F = (A & B & !C) 

G = (!A & B & C) 

H = (!A & B & C) 

 

Espresso was run at the command line with parameters to print a solution in the above format: espresso.exe 

-oeqntott -Dso -S1 -t input_datafile. For a larger sets of inputs and outputs, the above truth table can be 

duplicated which corresponds to an assumption that each of the duplicated and original circuits are independent 

of each other (a binary state in one circuit will not affect a state in another circuit). For input values greater than 

12, the time complexity is exponential and so these can be estimated by the corresponding output value. This 

trend and its estimation is possible given the assumption of independence among the duplicated circuits. 

All possible input state values of a truth table may be obtained by enumeration and binary conversion. An 

example of this method is shown below in bash shell code for the case of 12 inputs and 16 outputs (212 

combinations of input states): 

for i in $(seq 0 4095); do echo "obase=2;$i" | bc | tr -d '\r' | xargs printf "%012d\n"; done 
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Table 1. Truth table for a digital circuit with three input and four output operations. Each row corresponds to one of 

the eight possible input and resultant output states. The binary digit 1 is an ON state and 0 is an OFF state. An OR 

operation resolves to an ON state if either of two specific inputs are ON, while an AND operation resolves to an ON 

state where two specific inputs are ON. NOT modifies the state from ON to OFF or OFF to ON. 

 

OR / NOT AND / NOT 

Inputs Outputs Inputs Outputs 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 1 0 0 1 1 0 0 1 0 0 0 0 

1 1 0 1 1 0 0 1 1 0 1 1 0 0 

1 0 1 0 0 0 0 1 0 1 0 0 0 0 

0 1 1 0 0 1 1 0 1 1 0 0 1 1 

1 1 1 0 0 0 0 1 1 1 0 0 0 0 

 

 

 

Results 

The network of neuronal connections in C. elegans 

Fig. 1 shows the network topology of the electrical connections (gap junctions) between neurons of the 

somatic nervous system of C. elegans. The shape and distribution of connections among neurons in this figure is 

also representative of the connections formed by a chemical synapse [5, 16]. For either synapse type, the 

network reflects a small world architecture of many distinct clusters of neuronal cells (nodes) and their 

interconnections (edges). This architecture is also consistent with a modularized structure of the nervous system 

[15, 19].  

The data set of all synapses includes 280 neurons of the somatic system and 4577 connections. A random 

network of this data is expected to average 16.3 connections, but the shape of the distribution is different 

between the neuronal data and the random network. The latter has a bell-shaped frequency distribution of 

number of connections per node, while the neuronal data has a distribution where the typical neuron has fewer 

than 16.3 connections, and a smaller proportion of neurons that are highly connected. These highly connected 

neurons range from 50 to ~200 in number of interconnections. These high values are not expected in a random 

network. 

Of the 280 neurons in the somatic system, 253 neurons are specific to the network of electrical synapses 

(fig. 1). With the estimate of 1031 gap junctions across this system, there is an expectation of approximately 

four of these connections per neuron. The relationship between the properties of the neuronal and random 

network is consistent with that of the entire network of both chemical and electrical synaptic connections 

(N=4577). 
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Fig. 1. The network of gap junction connections (grey lines; N=1031) among neurons (open circles; N=253) of the 

somatic system in the nematode worm. The line thickness corresponds to the number of gap junction connections 

between any two connected neurons. 

 

Optimality of an idealized neural circuit 

Yan and others [16] examined a neural circuit in C. elegans of sensory neurons involved in gentle touch, 

interneurons for control, and motor neurons that synapse with muscle by neuromuscular junctions [21]. They 

isolated the members of this circuit that are predicted by control theory as crucial to its operation. The inputs 

include three sensory neurons while the outputs correspond to four motor neurons that synapse on locomotory 

muscles responsible for forward or backward motion. Interneurons may act as intermediaries for transmission of 

information between the sensory and motor neurons. 

In this study, the logic gate design was determined given the number of sensory inputs and motor outputs. 

Table 1 shows this data as represented by truth tables and posits two models of a hypothetical, but potentially 

plausible, neural circuit in animals (fig. 2). This scheme is analogous to the circuit used in C. elegans for gentle 

touch [16]. Each 1 or 0 in the truth table codes for an on or off state of a neuron in the circuit. A logic gate 

control scheme is fit to the inputs and outputs by use of the Espresso software [38], and a design is reported that 

reflects these models (fig. 2). The OR/NOT model allows for multiple neurons to independently code for 

forward or backward locomotion, while the AND/NOT model requires a neuron to depend on another for any 

locomotion to occur. 

This method is dependent on the validity of a logic gate model as representative of the flow of information 

from sensory organ to locomotory muscle, and that the information flows in one direction from sensory input to 

motor output. 
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Fig. 2. Diagram of a neural circuit with three sensory inputs and four logic gates that correspond to four motor 

outputs. The small grey circles represent a potential inverting of the input signal (NOT operator). 

 

 

Discussion 

Figure 1 supports prior findings about the structure of the C. elegans somatic neuronal network. There is a 

small world architecture with a significant amount of local clustering in the network. The often used analogy for 

this distribution is the system of world airports and the airplane flights that connect them. In this case, a small 

proportion of the airports serve as centers, or hubs, where the flights connect to many of the neighboring airports. 

This analogy and the case of the animal neural network support constraints on the design of the network and the 

modularity in its organization and structure. This effect may also be considered as an efficient design, given that 

the majority of the information flow in a neural system is local. 

Figure 2 shows the other result of this study, where a model of logic gates is used to explain an idealized 

neural circuit. This requires an applicability of the model to a problem and the assumptions with abstracting 

away the dynamics at the neuronal level [25]. In a large network, and for higher information processing, it is 

expected that other approaches are applicable, such as the use of non-linear dynamics for capturing the deeper 

complexity in a neural system, and by the use of comparisons between animal and artificial neural networks 

[39-40]. However, at these larger scales, there is typically a limitation on the explainability of a model at the 

neuronal and synaptic level. Use of a logic gate model may provide a guide on the flow and efficiency of 

information in a neural circuit, given the assumptions of the model to a circuit [25]. 

Another assumption of this model is that the environment is unchanging. If the environment is dynamic, 

and there is no control on its potential for change, then it is difficult to disentangle a neural circuit. It is a 

reminder that past studies have often identified roles of neurons in simple neural systems, but these roles are 

particular to an environment or a set of environments, notwithstanding the changes an animal experiences from 

other causes. Another way to express this complex problem is by describing it as a high dimensional system, 
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and a reason to use other approaches for understanding a neural system at this large scale perspective, such as 

the use of abstract patterns in a network of neurons. 

Apart from the applicability of this model, it is also a concept that information is flowing from sensory 

input to output, such as in the case of sensory to motor neuron [41]. The neural network and the circuits are 

expected to form based on the occurrence of inputs and outputs, especially in the formation of a neural system 

over an animal’s development. It is in essence a programmable system of neurons and synaptic links that 

connect the neurons. These links, at least as idealized features, are dynamic with respect to gain, loss, and 

strength of connection. The logic gate model, as described in an above section, does not capture these 

parameters of a dynamic system, but it does offer a static view of a neural system and the roles of neurons in a 

controlled environment. This is a view that does not exclude other sources of variability in the system. The logic 

gate model would serve as a tool, a null hypothesis, for helping to explain the optimality of a neural circuit. 
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