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 10 

Abstract: In the context of cancer, clonal hematopoiesis of indeterminate potential (CHIP) is 11 

associated with the development of therapy-related myeloid neoplasms and shorter overall 12 

survival. Cell-free DNA (cfDNA) sequencing is becoming widely adopted for genomic screening 13 

of cancer patients but has not been used extensively to determine CHIP status due to a 14 

requirement for matched blood and tumor sequencing. Here we present an accurate machine 15 

learning approach to determine clonal hematopoiesis (CH) status from cfDNA sequencing alone 16 

and apply our model to 4,096 oncology clinical cfDNA samples. Using this method, we 17 

determine that 26% of patients in this cohort have evidence of CH and CH is most common in 18 

lung cancer patients. Matched RNAseq data shows signals of increased inflammation, especially 19 

neutrophil activation, within the tumor microenvironment of CH-positive patients. Additionally, 20 

CH patients showed evidence of neutrophil activation systemically, pointing to a potential 21 

mechanism of action for the worse outcomes associated with CH status. Neutrophil activation 22 

may be one of many mechanisms however, as estrogen positive breast cancer patients harboring 23 

TET2 frameshift mutations had worse outcomes but similar neutrophil levels to CH-negative 24 

patients. 25 

 26 

One Sentence Summary: We train an accurate machine learning model to detect clonal 27 

hematopoiesis in cancer and characterize associated changes in the tumor microenvironment. 28 

 29 

Main Text:  30 

INTRODUCTION 31 
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Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-associated phenotype 32 

found in about 10% of healthy individuals over 70 years of age(1) and is characterized by clonal 33 

expansion of hematopoietic stem cells (HSCs) or other blood progenitor cells in the absence of 34 

an overt malignancy. Despite this, the presence of CHIP has been associated with numerous 35 

adverse health outcomes, including increased risk for cardiac events and progression to overt 36 

blood malignancies such as acute myeloid leukemia (AML). CHIP and therapy-related 37 

myeloproliferative neoplasms (tMNs) are seen at higher rates in oncology patients, and CHIP is 38 

associated with poorer overall survival in the oncology setting.(2) 39 

In seminal studies analyzing exome data from individuals without cancer, CHIP was 40 

defined by the presence of mutations in recognized hematological neoplasm driver genes (most 41 

commonly DNMT3A, TET2, ASXL1, JAK2, PPM1D, and SF3B1) with variant allele frequency 42 

(VAF) of >2% in the absence of severe cytopenia or other overt malignancies.(3) However, with 43 

increasing sequencing depth, somatic variants in these same genes have been detected at much 44 

lower VAFs in ‘healthy’ individuals.(4) However, the clinical impact of these low allele fraction 45 

variants is not well understood.  46 

In an oncology setting of patients with advanced-stage solid cancers, Bolton et al(5) 47 

showed that therapy could influence the clonal dynamics of existing CHIP mutations, in addition 48 

to inducing new CHIP mutations. Specifically, cytotoxic and radiation therapy increased the size 49 

of clones with mutations in DNA damage repair pathway, leading to the hypothesis that therapy 50 

mediated neoplasms could occur as a result of selective pressures on pre-existing CHIP variants. 51 

Cell-free DNA (cfDNA) sequencing is gaining wide usage in the clinical trial setting as a 52 

non-invasive approach for determining the genomic landscape of cancer, monitoring minimal 53 

residual disease, and potential early cancer detection. As cfDNA is a mixture of circulating 54 

normal and tumor DNA, the biological source of a mutation detected in plasma can only be 55 

determined unambiguously by comparing matched sequencing of equal depth from white blood 56 

cells (WBC) and plasma. This approach is cost-prohibitive and commercial cfDNA assays do not 57 

routinely incorporate WBC sequencing. Therefore, developing computational approaches to 58 

annotate clonal hematopoiesis (CH) variants in cfDNA sequencing data would alleviate the 59 

requirement of matched WBC sequencing data, augment the value of plasma sequencing and 60 

enable investigation into the impact of CH on cancer trajectory and progression. Furthermore, 61 
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being able to make this determination from plasma sequencing alone would enable retroactive 62 

studies of CH where only cfDNA was sequenced. 63 

Here, we present an accurate machine learning approach able to discriminate between 64 

blood-derived and tumor-derived mutations in plasma cfDNA from oncology patients without 65 

using WBC matched sequencing. We then apply this method to over 4,000 cfDNA baseline 66 

plasma samples from patients with advanced cancer to characterize CH in an oncology setting 67 

and correlate patient CH status with other peripheral and tumor microenvironment (TME) 68 

biomarkers. Our analyses suggest that CH-positive patients have increased neutrophil and 69 

inflammatory activity in the TME. This is also reflected in increases in peripheral blood counts 70 

associated with systemic inflammation, such as absolute levels of monocyte and neutrophil 71 

counts. Furthermore, CH-positive status was associated with elevated neutrophil to lymphocyte 72 

ratio (NLR) and this signal was found predominantly in estrogen receptor positive breast cancer 73 

and melanoma patients. 74 

  75 

RESULTS 76 

Subhead 1: A machine learning approach to discriminate blood-derived from tumor-77 

derived single nucleotide variants in cfDNA  78 

In order to establish a ground truth dataset of variants detected in cfDNA and their known 79 

biological sources, we identified a published dataset containing matched WBC, plasma, and 80 

tumor sequencing from 124 metastatic cancer patients and 47 healthy controls.(6) (Table S1) 81 

Using the 1,386 single nucleotide variants (SNVs) in this dataset unambiguously derived from 82 

either tumor or blood, we trained random forest and logistic regression models to classify the 83 

source of these variants using plasma data alone (Fig. 1A). Features provided to the models 84 

included variant allele frequency, median allele frequency across all detected variants in the 85 

patient, and whether the variant occurred in a canonical CHIP gene. We expanded the variant 86 

annotations by including the frequency of the variant in public datasets including COSMIC(7), 87 

GnomAD(8), and ExAC(9)  in order to inform the model about the incidence of each variant in 88 

other cancer and healthy populations, since a variant seen often in cancer populations would be 89 

more likely to be tumor derived. Finally, we also calculated the 60 single base substitution (SBS) 90 

signatures(10) for each variant, as certain mutational signatures reflect environments associated 91 

with CH (aging) or with cancer (oncologic therapy). (Methods, Table S2) Due to the limited 92 
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number of insertions and deletions in this dataset that could be used for training and testing 93 

machine learning algorithms, likely CH insertions and deletions were classified using a rule-94 

based approach as described by Jaiswal et al 2014 and Svensson et al 2018 (11, 12). 95 

Both random forest (RF) and logistic regression (LR) models were trained using a 10-96 

fold cross validation paradigm with 15% of the data held out for testing. Both models performed 97 

well on the held-out test set, with 0.88 and 0.89 area under the receiver operator characteristic 98 

(auROC) and 0.91 and 0.90 F1 scores for the random forest and logistic regression, respectively 99 

(Figure 1B). Several methods were tested to rebalance the classes(13, 14), but they did not 100 

improve performance of the models, likely because the classes were not strongly imbalanced 101 

(2:1). Although the two approaches performed similarly when evaluated by auROC and F1 102 

scores, in an additional test in which SNVs from healthy controls were held out from training 103 

and tested separately (N=243 blood-derived variants), the logistic regression significantly 104 

outperformed the random forest with 13 misclassified control variants versus 29 (94.7% correct 105 

vs 88.1%, respectively, Table S3). Additionally, 8 of the 29 errors made by the random forest 106 

occurred in DNMT3A or TET2, whereas all the errors made by the logistic regression occurred 107 

in different genes. The logistic regression approach also placed importance on a broader set of 108 

features, including relevant SBS mutational signatures, than the random forest approach. 109 

Interestingly, several of the most informative mutational signatures for the logistic regression 110 

were associated with various therapies including SBS25 (chemotherapy treatment), SBS11 111 

(temozolomide treatment), and SBS32 (azathioprine treatment). In addition, several signatures 112 

associated with issues in DNA repair (SBS21, SBS30, SBS10b) and a signature associated with 113 

smoking (SBS4) were important in the model. In contrast, only three features were used 114 

predominantly by the random forest, all of which were measures of allele fraction. (Figure 1C, 115 

D)  116 

 117 

Subhead 2: Application of CH classification method to oncology clinical samples  118 

To further test our models and to investigate the role of clonal hematopoiesis in cancer, we 119 

curated a set of baseline cfDNA sequencing data from 4,296 advanced metastatic cancer patients 120 

enrolled in Novartis oncology clinical trials. Patients were predominantly diagnosed with 121 

estrogen receptor positive breast cancer (BRCA, 56.4%), cutaneous melanoma (13.6%), non-122 

small cell lung cancer (NSCLC, 11.4%), colorectal cancer (CRC, 5.7%), or triple negative breast 123 
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cancer (TNBC, 4.7%) (Table 1). Data was generated using two versions of a targeted DNA 124 

sequencing panel of about 564 genes (Methods). Although the lower limit of detection varied 125 

slightly between the two versions of this panel, there was no difference in the proportion of 126 

variants predicted to be blood-derived in canonical CHIP genes and no difference in the 127 

detection rate of CH at the patient level (Methods, Table S4).  128 

Both the LR and RF models were used to classify the 34,855 variants detected in this 129 

internal dataset. The logistic regression labeled more variants as blood-derived than the random 130 

forest (26% vs 17%). We split the predicted blood-derived variants into those within likely CHIP 131 

driver genes(11) (DNMT3A, TET2, ASXL1, JAK2, SF3B1, and PPM1D, 15.7%) and those 132 

within other frequently observed myeloid or hematological malignancy driver genes(5) (19.4%, 133 

Fig. 2A, Methods, Table S5). The genes with the most predicted blood-derived variants from 134 

both approaches were DNMT3A and TET2, as expected. Other less common CHIP genes such 135 

as SF3B1, CBL, and KMT2C were also enriched for blood-derived variants. The LR approach 136 

classified many more TET2, SF3B1, and CBL variants as blood derived, relative to random 137 

forest, and called fewer blood-derived variants in known oncogenes KRAS and EGFR (Figs. 2B, 138 

S1). For these reasons, as well as the performance on the published data, we concluded that the 139 

logistic regression model was better able to classify SNVs as blood-derived or tumor-derived and 140 

we used this approach for the remainder of our analysis. 141 

In order to determine CH status at a patient level, we combined the SNV CH predictions 142 

from the logistic regression approach (regardless of VAF) with CH labels for indels derived 143 

using a rule-based approach (Methods)(12). A patient was labeled CH-positive if one or more 144 

blood-derived variants was present in the pre-defined set of canonical CHIP genes. If a patient 145 

did not have blood-derived variants in canonical CHIP genes but a blood-derived variant was 146 

found in a putative myeloid driver gene, the patient was labeled CH-myeloid. If a patient was 147 

neither CH-positive nor CH-myeloid, the patient was labeled CH-negative (Methods). Using this 148 

framework, we found that 28.9% of patients in our dataset were CH-positive (12.9% with >2% 149 

VAF). Similar to previous reports(11), most patients with CH mutations had only one variant 150 

(75.0%, Fig. S2).  The proportion of CH-positive patients increased substantially with age from 151 

10.1% in patients under 40 to 46.5% in patients over 70 years of age (N=365 and 747, 152 

respectively. P-value<2.2e-16, Fisher’s exact test). The proportion of patients with blood-derived 153 

variants in the putative myeloid driver gene set remained consistent regardless of age. (Fig. 2C) 154 
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In comparison with healthy individuals, the proportion of CH-positive cancer patients found here 155 

is higher, agreeing with previous reports of an increased incidence of CH in oncology cohorts 156 

(Fig. S3)(1, 5, 11). 157 

We next sought to determine if there was any difference in the incidence of CH in 158 

patients with different tumor types. Using a logistic regression model to account for differences 159 

in age between cohorts, we found that NSCLC patients were significantly more likely to have 160 

CH mutations than patients with other types of tumors (TNBC, BRCA, melanoma, CRC) with 161 

41.8% of patients classified as CH-positive versus 26.8% in other indications. This trend 162 

remained after correcting for age (Odds-ratio: 1.77 (1.40-2.25) relative to BRCA, p-value: 1.59e-163 

6). All other tumor types were equally likely to have CH after correcting for differences in 164 

patient age. (Fig. 3A, B) We considered the possibility that NSCLC patients had higher 165 

incidence of CH due to differences in prior therapy but including prior chemotherapy status as a 166 

covariate in the model did not change the odds of having CH for any indication (Fig S4A). Prior 167 

work by Bolton et al(5) showed an increase in CH in current and former smokers relative to non-168 

smokers, and this may contribute to the increased incidence we observe in this NSCLC cohort. 169 

Unfortunately, smoking status was not curated for enough patients to confirm this hypothesis in 170 

this cohort. When repeating this analysis comparing the odds of being CH-positive or CH-171 

myeloid versus having no evidence of blood-derived variants in either of these gene sets, 172 

NSCLC, CRC, and TNBC were all more likely to have these mutations than BRCA (Fig. S4B).  173 

Looking more deeply, NSCLC patients were more likely than patients with other cancer 174 

types to have blood-derived mutations in DNMT3A and JAK2, whereas patients with melanoma 175 

or NSCLC were more likely to have variants in TET2. Predicted blood-derived TP53 variants 176 

were most frequent in TNBC patients (Figs. 3C, S5). ASXL1 was found at a lower rate than 177 

previously reported, but this is because the ASXL1 gene is only included in one of the two gene 178 

panels used to generate our internal dataset.  179 

 180 

Subhead 3: CH status is correlated with increased expression of inflammation gene 181 

signatures in the tumor microenvironment 182 

Since CHIP status, particularly TET2 or DNMT3A mutation, has been correlated with increased 183 

systemic inflammation markers (circulating IL-6(5, 15) and IL-8, and increases in IL-1β, IL-6, 184 

and chemokine expression(16, 17)), we investigated the association of CHIP status with tumor 185 
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microenvironment gene expression. To explore the gene expression differences in the TME 186 

between CH-positive and negative patients, we explored matched baseline tumor RNAseq for 187 

811 of the 4,295 patients with cfDNA sequencing. Within this set, 255 patients (31.4%) were 188 

predicted to be CH-positive, and an additional 265 patients (32.7%) were CH-myeloid. When 189 

comparing CH-positive against CH-negative patients, we found 153 genes were up-regulated and 190 

87 genes were down-regulated after correcting for tumor type, biopsy site, and a liver confounder 191 

score (FDR-corrected p-value < 0.05, Methods). When we performed gene ontology (GO) term 192 

enrichment analysis, we found the up-regulated genes to be significantly enriched in terms 193 

relating to neutrophil degranulation and extravasation and inflammatory response (p<0.05, Fig. 194 

4A). This effect was seen consistently in NSCLC, BRCA and CRC, but the effect was weaker in 195 

TNBC (Fig S6). We believe this was due to the smaller number of CH-positive TNBC patients, 196 

likely due to the lower median age of the cohort (52 years) in comparison with NSCLC (63 197 

years), ER+ BRCA (60 years), and CRC (59 years). Expression of IL-6 and mean expression of a 198 

neutrophil linage gene signature(18) were also up-regulated in the TME of CH-positive patients 199 

relative to CH-negative (log2 fold change = 0.03, 0.15, respectively). This signal was stronger in 200 

patients with >2% VAF in their CH mutations (log2 fold change = 0.08, 0.17, respectively), 201 

adding evidence that the effect is related to CH status (Fig. 4B).  202 

Finally, we wanted to determine if the observed increase in neutrophil and inflammatory 203 

activity seen in the TME of CH-positive patients, measured by RNAseq, was reflected in 204 

changes in peripheral blood counts associated with systemic inflammation. Looking at blood 205 

count data for patients classified as CH-positive, CH-myeloid, and CH-negative, we found 206 

differences in several blood analytes. Hematocrit and hemoglobin levels were lowest in CH-207 

positive (125 g/L and 0.37 (L/L), respectively), followed by CH-myeloid (125 g/L, 0.375 L/L) 208 

and CH-negative patients (127 g/L, 0.38 L/L). Furthermore, increased absolute monocyte and 209 

neutrophil counts were noted with respect to CH status, with the highest values found in the CH-210 

positive patient group (CH-negative: 0.4, 4. CH-myeloid: 0.43, 4.15. CH-positive: 0.45, 4.32, 211 

respectively. All units are 10e9/L. Fig. S7).  212 

Neutrophil-to-lymphocyte ratio (NLR) is associated with poor prognosis in many cancer 213 

types(19) and was elevated in both CH-positive and CH-myeloid patients (Fig. S7). When using 214 

a threshold of 3 to divide patients into high and low NLR groups(20), we similarly found that 215 

CH-positive status was associated with elevated NLR and that this signal was found 216 
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predominantly in BRCA (OR: 1.49, p-value: 0.00027, Table S6). Although age has been shown 217 

to be associated with NLR(19, 21), this association between CH status and NLR remained after 218 

correcting for age using a logistic regression model. We further split CH-positive patients into 219 

those with DNMT3A and TET2 mutations to determine if mutations in a specific CHIP gene 220 

were associated with increased NLR. We found that NLR was the highest in DNMT3A-mutated 221 

patients (median of 3.12 vs 2.84, p-value = 0.043 relative to wildtype (WT), Wilcoxon Rank-222 

Sum test) and lowest NLR in the CH-positive patients was found in the patients with TET2 223 

frameshift and nonsense mutations (2.95, Fig. S8).  224 

We also sought to explore whether CH-positive patients responded differently to therapy. 225 

As the strongest neutrophil effect was seen in ER+ breast cancer, and in our dataset the majority 226 

of ER+ BRCA samples belong to patients enrolled in the MONALEESA-2/3/7 phase III trials, 227 

we investigated these patients in particular.(22-24) In these trials, pre- and post-menopausal 228 

women treated with Ribociclib (Kisqali) in combination with endocrine therapy (ET) showed 229 

longer progression free survival (PFS) than those treated with placebo plus ET. In these 1,503 230 

patients, DNMT3A and TET2 CH mutations were detected at baseline in 14% and 6% of the 231 

cases, respectively (Fig. 5A). As expected, the age distribution was higher among patients with 232 

DNMT3A (p=3.6e-06) and TET2 alterations (p=0.0008) consistent with CHIP. We correlated 233 

TET2 and DNMT3A alterations with PFS to test for a predictive or prognostic relationship 234 

between CH status and response to Ribociclib. Interestingly, we found that patients with TET2 235 

frameshift (FS) or nonsense alterations derived less benefit from Ribociclib than patients without 236 

these alterations (Fig. 5B, hazard ratio (HR) in TET2 FS/Nonsense patients: 0.96 (0.68-1.37, p-237 

value 0.84) vs HR in TET2 WT patients: 0.58 (0.51-0.66, p-value 1.72e-15)), even after 238 

accounting for potential dose reductions due to neutropenia, the most common adverse effect of 239 

CDK4 inhibitor treatment. This differential response was not observed for patients with TET2 240 

missense mutations or mutations in DNMT3A. These results combined with the results above 241 

point to different effects produced by different CH mutations, and provide multiple hypotheses 242 

for how a positive CH status could affect the progression and response of an oncology patient’s 243 

disease. 244 

  245 

DISCUSSION 246 
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Noninvasive molecular profiling of cancer patients by sequencing cfDNA from plasma 247 

samples is becoming a mainstay of modern precision medicine-based approaches in oncology. 248 

The ability to also detect CH status from these plasma sequencing assays without the need for 249 

sequencing of the matched blood sample will broaden the impact of these tests, reduce their cost 250 

by removing the need for paired WBC sequencing and give clinicians a more complete view of 251 

their patients’ health status. Here we present a machine learning method that allows for accurate 252 

detection of CH variants from plasma cfDNA without the requirement for additional sequencing 253 

of a matched blood sample.  254 

This machine learning approach accurately distinguishes between blood and tumor 255 

derived variants using only sequence-based information and annotations derived from public 256 

databases, removing any dependency on the matched blood NGS data. Using our ML classifier 257 

on an internally generated set of cfDNA sequencing from over 4,000 patients with advanced 258 

cancer enrolled in Novartis clinical trials, we found that about 29% of patients have blood-259 

derived mutations consistent with CH, and the incidence of these mutations increased with 260 

patient age. We also determined that the incidence of CH was similar across tumor types except 261 

for NSCLC where it was slightly higher, potentially due to higher smoking incidence. These 262 

results are consistent with earlier studies that have investigated CH in patients with solid cancers 263 

using tumor tissue and matched blood sequencing.(2, 5) 264 

Observational studies on self-reported healthy individuals have found increased levels of 265 

circulating blood biomarkers of inflammation in people with CH.(1, 16) Here, we show for the 266 

first time, signals of inflammation both systemically and in the tumor microenvironment of CH-267 

positive cancer patients. In CH-positive patients relative to those with no evidence of CH, we 268 

found increased expression of innate immune and inflammation pathways in the TME, as well as 269 

an increase in absolute neutrophil counts, indicating increased inflammation both locally and 270 

systemically. These data have established a relationship between CH mutation presence and 271 

inflammation, but the directionality of the relationship is not clear. Additional sequential cfDNA 272 

collections in patients may help determine the direction of this relationship. The clinical and 273 

biological impact of individual CH mutations and CH genes also remains to be determined. Here 274 

we show that nonsense and frameshift TET2 mutations are associated with poorer response to 275 

Ribociclib, but DNMT3A mutations are more strongly linked to increased NLR. These results 276 
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warrant further investigation of the impact of CH status on patients’ response to cancer therapies 277 

particularly in the domain of immune oncology. 278 

We have presented an accurate machine learning approach able to discriminate between 279 

blood-derived and tumor-derived mutations in plasma cfDNA from oncology patients. Our open-280 

source method provides a computational solution to labeling CH variants from cfDNA, 281 

alleviating the cost-prohibitive requirement of matched WBC sequencing for cfDNA sequencing 282 

in the clinical setting. Furthermore, we used this method to characterize CH in the oncology 283 

clinical setting and correlate patient CH status with peripheral and tumor microenvironment 284 

(TME) biomarkers. Our analyses suggest that CH-positive patients show an increase in 285 

neutrophil and inflammatory activity in the TME that is reflected in changes in peripheral blood 286 

counts associated with systemic inflammation. These findings suggest that clonal hematopoiesis 287 

status might be an additional biomarker of tumor microenvironment inflammation and its impact 288 

on cancer patients’ response to therapy requires additional investigation. 289 

 290 

MATERIALS AND METHODS 291 

Model features and training 292 

Logistic regression and random forest models were trained using 10-fold cross validation using 293 

the caret package on published data from Razavi et al. This data was subset to remove variants of 294 

unknown source (VUSOs), leaving 1,386 variants for training. Variants were classified as either 295 

blood-derived or tumor-derived. A table of features included in the model is provided in Table 296 

S2. 297 

To calculate the COSMIC variant frequencies, variants from COSMIC v83 (GrCh37) 298 

were first grouped by their primary site (haematopoietic and lymphoid tissue, lung, breast, skin, 299 

kidney, liver, pancreas, stomach, large intestine, prostate, ovary, other). Freq.heme_lymph was 300 

calculated by dividing the number of COSMIC variants in haematopoietic and lymphoid tissue 301 

by the total number of variants found in “non-other” tissues. Freq.solid was calculated by 302 

summing all variants found in “non-other” tissues and non-haematopoietic and lymphoid tissues 303 

and dividing by the total number of variants found in “non-other” tissues. 304 

 305 

PanCancer panel 306 
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Two versions of the Novartis Institutes for BioMedical Research (NIBR) Next Generation 307 

Diagnostics (NGDx) lab’s PanCancer (PC) cfDNA assay and panel were used to generate the 308 

data analyzed here. Samples generated with PanCancer v1.0 were run using the cfDNA panel 309 

version 3-1 (N=3,140) and samples generated with PanCancer v2.0 were run using the cfDNA 310 

panel version 4 (N=1067). For both, cfDNA was extracted from approximately 4�ml of plasma 311 

(QIAamp Circulating Nucleic Acid kit, Qiagen) and then constructed into sequencing libraries 312 

with end repair, A-tailing, and PCR amplification (TruSeq Nano Library Preparation Kit, 313 

Illumina). Samples generated with PC v2.0 and panel v4 also had unique molecular identifier 314 

(UMI) adapters (custom adapters, IDT) ligated before the PCR amplification step. The 315 

constructed cfDNA libraries were then hybridized to RNA baits (SureSelect, Agilent) targeting 316 

566 (panel v3-1) or 579 (panel v4)�cancer-relevant genes. The captured libraries were 317 

sequenced to achieve a mean unique coverage of at least 1000x using Illumina v.4 chemistry and 318 

paired-end 100-base pair (bp) reads (HiSeq, Illumina). 319 

For samples with UMIs ligated, UMIs were trimmed from the reads using UMI-Toolkit 320 

v.1 (https://github.com/angadps/UMI-Toolkit). Reads were then aligned to the human reference 321 

genome (PC v1.0: build hg19, PC v2.0: build hg38) using the Burrows–Wheeler Aligner (BWA-322 

MEM(25)). The alignments were then locally realigned and base quality scores recalibrated 323 

(GATK(26, 27)). For samples with UMIs, consensus reads were created using the UMI and 324 

alignment position to remove PCR-duplicate reads and sequencing artifacts (UMI-Toolkit). 325 

Single-nucleotide variants (SNVs) were identified with MuTect v.1.1.7 (28). Short 326 

insertion/deletion (indel) events were identified using Pindel v.1.0 (29). Structural variants were 327 

identified using PureCN v.1.8.1 (30). Chromosomal rearrangements were called using Socrates 328 

v.1 (31). 329 

A position-specific error rate was calculated based on the sequencing of plasma from 330 

24�healthy controls, and mutations were retained only if they had support significantly greater 331 

than the position-specific error rate. Additional potential artifacts were removed using the 332 

following filters: low allelic fraction (<0.005 unless known or probable oncogenic), poorly 333 

supported alignments (>50 MQ0 reads), low base quality (<20), low coverage (<100×) or in 334 

repetitive regions. Probable germline SNVs and indels were identified by their presence in the 335 

databases dbSNP�(https://www.ncbi.nlm.nih.gov/snp/), the Exome Sequencing Project 336 

(ESP6500SI-V2-SSA137.GRCh38-liftover, http://evs.gs.washington.edu/EVS/) and the Exome 337 
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Aggregation Consortium (release 0.3; now part of gnomAD, https://gnomad.broadinstitute.org/) 338 

at appreciable frequency (ESP minor allele frequency�>0.001 or ExAC count >3 unless a 339 

known hotspot mutation). SNVs and indels were assigned a functional significance based on 340 

their presence in the Catalog of Somatic Mutations in Cancer (COSMIC v.83, 341 

https://cancer.sanger.ac.uk/cosmic) and functional effect, with mutations reported in COSMIC in 342 

five or more tumors considered as ‘known’ oncogenic, mutations with COSMIC count <5 but 343 

predicted to lead to premature truncation of the protein considered as ‘likely’ oncogenic, and all 344 

others considered to have ‘unknown’ oncogenic status. Copy number variations were considered 345 

as amplifications if the estimated copy number was ≥7, or as homozygous deletions if the 346 

estimated copy number was ≤0.5. PureCN uses a combination of the B�allele frequency of 347 

single-nucleotide polymorphisms in copy number variants and the allele frequency of somatic 348 

point mutations to determine the proportion of cfDNA derived from the tumor. The same 349 

approach was used to estimate tumor content (purity) in tumor DNA-seq. TMB was also 350 

calculated by PureCN(30), using the tumor content and allelic fraction information to remove 351 

germline variants and artifacts. TMB was then calculated as the number of somatic mutations per 352 

megabase of ‘callable’ coding sequence (that is, with sufficient coverage and quality). 353 

The lower limit of detection (LLoD) in the two cfDNA panels is different (PanCancer 1.0 354 

LLoD = 1%, PanCancer 2.0 LLoD = 0.5%). When comparing the proportion of variants 355 

classified as likely blood-derived from the two assays, more PC1.0 variants were labeled “blood-356 

derived” than PC2.0 variants (27% vs 23%, respectively, p=6.942e-10, Fisher’s exact test). 357 

Within canonical CHIP genes there was no difference in the proportion of blood-derived variants 358 

predicted, with 88% of PC1.0 variants classified as blood derived, compared with 89% of PC2.0 359 

variants (p=0.71, Fisher’s exact test). When looking at the patient level, 26.6% of patients tested 360 

with PC1.0 were determined to be CH+ based on their SNV status, versus 26.4% of patients 361 

tested with PC2.0 (p=0.93, Fisher’s exact test) (Table S4). 362 

 363 

RNA extraction and sequencing 364 

Sections of thickness 5�µm (±1�µm) were cut from all blocks received. A pathologist visually 365 

inspected archival formalin-fixed, paraffin-embedded (FFPE) slides and freshly cut slides from 366 

the tumor blocks to identify and notate the approximate percentage of tumor content in the 367 

region of interest and total tumor area (mm2). Depending on the tumor cell content, 4–12�slides 368 
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were macrodissected and used for RNA isolation. If the region of interest contained <10% tumor 369 

content, further processing was canceled. RNA was coextracted from all samples available using 370 

the AllPrep RNA Extraction from FFPE Tissue Kit (Qiagen). 371 

Ribosomal RNA from extracted total RNA was depleted using RNAseH. The rRNA-372 

depleted sample was then fragmented, converted to complementary DNA and carried through the 373 

remaining steps of next-generation sequencing library construction—end repair, A-tailing, 374 

indexed adapter ligation and PCR amplification—using the TruSeq RNA v.2 Library Preparation 375 

kit (Illumina). The captured library was pooled with other libraries, each having a unique adapter 376 

index sequence, and applied to a sequencing flow cell. The flow cell underwent cluster 377 

amplification and massively parallel sequencing by synthesis using Illumina v.4 chemistry and 378 

paired-end 100-bp reads (Illumina). 379 

Sequence data were aligned to the reference human genome (build hg19) using STAR 380 

v.2.4.0e (32). Mapped reads were then used to quantify transcripts with HTSeq v.0.6.1p1 (33) 381 

and RefSeq GRCh37 v.82 gene annotation.  382 

 383 

CH variant and patient classification 384 

Classified blood and tumor-derived variants were further classified as CH-positive, CH-385 

myeloid, or CH-negative. CH-positive variants were either SNVs classified as blood derived or 386 

indels classified as CHIP as described above and fell into one of six canonical CHIP genes 387 

(TET2, DNMT3A, ASXL1, JAK2, PPM1D, SF3B1). CH-myeloid variants were either SNVs 388 

classified as blood derived or indels classified as CHIP and fell into a putative myeloid driver 389 

gene, as described by Bolton et al, 2020 (5) (Table S5). All other variants were labeled CH-390 

negative. 391 

Patients were classified as CH-positive if they had at least one CH-positive variant 392 

detected. They were classified as CH-myeloid if they had at least one CH-myeloid variant 393 

detected, and no CH-positive variants detected. Finally, CH-negative patients were those with no 394 

CH-positive or CH-myeloid variants detected. 395 

 396 

Computational analysis and visualization 397 

All analyses were performed in R 3.6.1 except some visualizations which required R 4.0.0. 398 

Differential expression analysis was performed using DESeq2. Plots were generated using 399 
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ggplot2 and ggpubr. GO term clustering and visualization was performed using the 400 

simplifyEnrichment package. Oncoprints were generated using the ComplexHeatmap package.  401 

 402 

Supplementary Materials 403 

Fig. S1. SNV classification frequency by random forest. 404 

Fig. S2. Number of predicted CH variants per patient in CH-positive patients. 405 

Fig. S3. Comparison of CH incidence in cancer patients and healthy controls. 406 

Fig. S4. Odds of CH-positivity by tumor type. 407 

Fig. S5. Log-odds ratio of CH gene incidence. 408 

Fig. S6. Enriched GO terms in genes up-regulated in CH-positive patients. 409 

Fig. S7. Circulating blood cell count distributions by predicted CH-status. 410 

Fig. S8. Neutrophil to lymphocyte ratio (NLR) vs CH mutation type 411 

Table S1. Description of training data (Razavi et al, 2019) 412 
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Table S3. Model misclassifications on held out variants from healthy controls 414 

Table S4. CH detection between PanCancer versions 3-1 and 4 415 
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Figures  628 

 629 

630 

Fig. 1. Machine learning approach and performance discriminating blood from tumor 631 

derived variants. (A) Variants found in both blood and tumor cells contribute to the variants 632 

found in cfDNA (plasma). It is difficult to determine the source of variants in cfDNA without 633 

matched blood and tumor sequencing. (B) ROC indicating performance of two machine learning 634 

approaches on a held-out test set. (C, D) Relative importance of features used in the random 635 

forest and logistic regression models, respectively. 636 
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 638 

Tumor type Baseline 

cfDNA 

Matched 

baseline RNA 

Median age of 

cohort (years) 

ER+ Breast cancer 2423 103 60 

Cutaneous melanoma 585 43 56 

Non-small cell lung cancer 491 130 63 

Colorectal cancer 248 190 59 

Triple negative breast cancer 204 157 52 

Other or Unknown 343 188 - 

Total 4294 795 - 

Table 1. Summary of clinical data. Shown are only indications with at least 100 cfDNA 639 

samples. Other indications include anal cancer, anaplastic thyroid cancer, bladder cancer, 640 

cervical cancer, cholangiocarcinoma, chordoma, endometrial cancer, esophageal cancer, 641 

gallbladder cancer, gastric cancer, head and neck cancer, hepatocellular carcinoma, liposarcoma, 642 

malignant neoplasm of the thymus, merkel cell carcinoma, mesothelioma, nasopharyngeal 643 

cancer, neuroendocrine tumor, non-cutaneous/uveal melanoma, non-Hodgkin’s lymphoma, 644 

ovarian cancer, pancreatic cancer, prostate cancer, renal cell carcinoma, sarcoma, squamous cell 645 

carcinoma, testicular cancer, thyroid cancer. 646 
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  648 

 649 

 650 

Fig. 2. Characterization of CH in oncology patients. (A) Proportion of SNVs classified by the 651 

logistic regression approach (left) and indels classified with pre-defined rules (right) as either 652 

biopsy-derived or WBC-derived. Colors indicate whether the variant appeared in a canonical 653 

CHIP gene (orange), myeloid-driver gene (blue), or other gene (grey). (B) Proportion of SNVs 654 

within each gene classified by logistic regression as WBC-derived (dark grey) vs biopsy-derived 655 

(light grey). (C) Proportion of patients in each CH category plotted by age.  656 
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 657 

 658 

 659 

Fig. 3. Characterization of CH in patients with advanced cancer. (A) Percent of patients 660 

predicted to be CH-positive split by tumor type (left) with corresponding distribution of patient 661 

ages(right) (B) Odds-ratio of CH by tumor type relative to breast cancer accounting for age of 662 

patients. (NSCLC p-value =2.96e-7) (C) Proportion of patients with mutations in common CH 663 

genes split by tumor type. 664 

665 
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666 

667 

 668 

Fig. 4. Gene expression changes in the TME related to CH status. (A) Significantly enriched 669 

GO terms in CH-positive patients relative to CH-negative patients clustered by GO-term gene 670 

membership similarity. Differential expression was calculated across all patients correcting by 671 

tumor type. (B) Expression of IL-6 and mean expression of a neutrophil lineage gene signature 672 

by tumor type (p-values calculated by T-test comparing to CHIP-negative patients, AF=allele 673 

fraction) 674 
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 677 

 678 

Fig. 5. Breast cancer patients with TET2 frameshift or nonsense mutations derive less 679 

benefit from Ribociclib+ET treatment. (A) Incidence of canonical CH mutations in 680 

MONALEESA breast cancer patients. (B) Progression free survival of patients treated with 681 

ribociclib + ET (red) vs placebo + ET (black), with and without TET2 frameshift (FS) or 682 

nonsense (NON) mutations. 683 
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