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Abstract
Spatial transcriptomics is now a mature technology, allowing to assay gene expression
changes in the histological context of complex tissues. A canonical analysis workflow starts
with the identification of tissue zones that share similar expression profiles, followed by the
detection of highly variable or spatially variable genes. Rapid increases in the scale and
complexity of spatial transcriptomic datasets demand that these analysis steps are
conducted in a consistent and integrated manner, a requirement that is not met by current
methods. To address this, we here present SpatialDE2, which unifies the mapping of tissue
zones and spatial variable gene detection as integrated software framework, while at the
same time advancing current algorithms for both of these steps. Formulated in a Bayesian
framework, the model accounts for the Poisson count noise, while simultaneously offering
superior computational speed compared to previous methods. We validate SpatialDE2 using
simulated data and illustrate its utility in the context of two real-world applications to the
spatial transcriptomics profiles of the mouse brain and human endometrium.

Keywords: Spatial transcriptomics / spatially variable genes / variance component analysis /
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Introduction
Spatial transcriptomics technologies have gained considerable attention, as they enable the
exploration of cellular identity and function in a cell’s local environment. Driven by rapid
technological evolution, they now allow for the study of hundreds or thousands of genes in
parallel. Technologies based on multiplex imaging, such as SeqFISH+ or MERFISH (Eng et
al, 2019; Xia et al, 2019), allow for assaying hundreds of molecular parameters at the same
time, providing subcellular resolution. Methods based on RNA sequencing (RNAseq) use
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spatially barcoded primers and allow a resolution of a handful of cells and approaching
single-cell resolution. These methods include Spatial Transcriptomics (Ståhl et al, 2016),
HDST (Vickovic et al, 2019), and Slide-seq (Stickels et al, 2021), with a resolution of a
handful of cells and approaching single-cell resolution. In particular, 10x Visium, an improved
version of Spatial Transcriptomics, is seeing wide adoption in the community due to its
commercial availability and ease of use.

While initial studies were focused on proof-of-concept applications in small relatively
homogeneous tissue sections, these technologies are increasingly applied to complex
tissues or organs with distinct structure and regions, including the human brain,
endometrium, and the tumor microenvironment (Kleshchevnikov et al, 2020; Garcia-Alonso
et al, 2021; Baccin et al, 2020; Carlberg et al, 2019; Thrane et al, 2018; Foster et al, 2021;
Hudson & Sudmeier, 2021; Chen et al, 2021). While in principle these data permit
addressing a range of distinct questions, a canonical starting point of the spatial omics
analysis workflows is the identification of spatially variable genes (Maynard et al, 2021;
Wang et al, 2020b). This step yields genes that are most relevant for downstream analyses,
such as the definition of local niches in the tissue that support cellular differentiation and
function, but knowledge about spatial variability in its own right can often provide biological
insights, e.g. into cancer (Thrane et al, 2018). However, existing methods for spatially
variable gene detection typically consider the whole field of view within spatial
transcriptomics dataset. As the field of view of spatial transcriptomics is growing and the
methods are applied to increasingly complex tissues consisting of regions with different cell
type compositions, naively applied spatially variable gene detection can no longer yield
relevant insights, since the set of identified spatially variable genes primarily contains cell
type markers that are not inherently spatially variable (Cable et al, 2021). Thus, spatial
variance analysis needs to be coupled with suitable computational methods for the
identification of tissue regions.

Both spatially variable gene detection and identification of tissue regions have received
attention in the field. For example, SpatialDE1 (Svensson et al, 2018) was one of the first
computational solutions to detect spatially variable genes, which more recently has been
refined by the SPARK model (Sun et al, 2020). Both models are based on non-parametric
Gaussian Process (GP) regression, with SPARK additionally offering a count-based
likelihood and a more powerful statistical test. SVCA (Arnol et al, 2019), also based on GP
regression, and scHOT (Ghazanfar et al, 2020), based on distance-weighted nonparametric
regression, extend the principles of spatial variable gene detection to provide a more
fine-grained decomposition of spatial gene expression variation by accounting for
interactions between neighboring cells or voxels. All of these methods have in common that
they do not scale to large data sets however, in part due to CPU-bound implementations that
cannot take advantage of modern highly parallelized GPU architectures, and in part due to
inefficient algorithms. Similarly, a range of clustering methods exists, but they are not well
suited for identifying tissue regions in spatial gene expression data. ScanPy (Wolf et al,
2018) and Seurat (Stuart et al, 2019), two widely used frameworks for scRNA-seq analysis,
recommend Leiden clustering to identify tissue regions from spatial omics, an algorithm that
is unaware of spatial relationships. Giotto (Dries et al, 2021) proposes a method based on
hidden markov random fields for this task, thereby imposing a spatial smoothness constraint.
However, this model requires the user to pre-specify the number of tissue regions and it
employs a Gaussian likelihood model that is suboptimal for count data. Finally, we note that
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there is a lack of integrated software and workflows to be able to combine spatial variable
gene selection and the identification of tissue regions.

Here, we present SpatialDE2, a flexible framework for modeling spatial transcriptomics data.
SpatialDE2 implements two major modules, which together provide for an end-to-end
workflow for analyzing spatial transcriptomics data: a tissue region segmentation module
and a module for detecting spatially variable genes. The tissue region segmentation is fast
and provides improved usability compared to previous methods. In particular, the module is
capable of automatically determining the number of tissue regions while employing an
appropriate count-based likelihood. The module for the detection of spatially variable genes
extends previous methods such as SpatialDE and SVCA by providing technical innovations
and computational speedups. Calculations of SpatialDE2 can be accelerated using GPUs,
opening up the possibility to analyse larger datasets. We validate SpatialDE2’s segmentation
and spatial variable gene detection modules using simulated data and application to two
real-world datasets, containing 10x Visium data of the mouse brain and human
endometrium. In these applications, we demonstrate improved speed and robustness of both
modules compared to previous approaches. SpatialDE2 provides an integrated solution for
assessing spatial expression heterogeneity within tissue regions, thus providing a principled
strategy for dealing with complex tissues and large samples.

Results
SpatialDE2 implements an end-to-end workflow for the characterization of sub-regional
spatial heterogeneity, by implementing two seamlessly integrated analysis modules: a tissue
region segmentation module, and a module for spatially variable gene detection. (Fig. 1A).
Both modules directly model raw mRNA counts, as obtained from de-multiplexed spatial
transcriptomics workflows, or imaging technologies as input. Optionally, SpatialDE2 can also
operate on cell count estimates obtained from an additional deconvolution step
(Kleshchevnikov et al, 2020; Biancalani et al, 2020; Cable et al, 2021; Lopez et al, 2021;
Andersson et al, 2020; Elosua-Bayes et al, 2021).

Briefly, the spatial tissue region segmentation module is based on a Bayesian hidden
markov random field, which segments tissues into distinct histological regions while explicitly
accounting for spatial smoothness between neighbouring locations (Fig. 1B, Methods). The
key advantages of this approach compared to the currently most widely used workflows
based on Leiden clustering (Wolf et al, 2018; Palla; Stuart et al, 2019; Butler; Garcia-Alonso
et al, 2021) are twofold. First, unlike previous methods SpatialDE2 explicitly accounts for the
spatial information during the segmentation step. Second, SpatialDE2 provides a coherent
model for tissue segmentation implemented using a principled Bayesian approach, which
requires a single user-defined parameter that encodes a priori assumptions on spatial
smoothness (Methods). In contrast, the results from a Leiden clustering workflow are
affected in non-intuitive ways by the interplay of manually defined processing steps, each of
which is determined by multiple parameters. A common workflow that is referred to hereafter
as the Leiden clustering workflow consists of raw data normalization, dimensionality
reduction, k-nearest neighbor search, and the application of the Leiden clustering algorithm
itself (Methods).
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The spatially variable gene detection module models variance components of individual
genes within identified regions using an appropriate count-based likelihood. While
SpatialDE2 builds on Gaussian process regression, which is also used by methods such as
SpatialDE (Svensson et al, 2018), SVCA (Arnol et al, 2019), and SPARK (Sun et al, 2020),
the model generalizes these approaches by providing novel features, improved scalability,
supporting multiple variance components and GPU computations (Methods, Table S1). At
the core, the model decomposes the expression variation into distinct structured
components and a noise term that models random variability (Fig. 1C, Methods).
Depending on the design of one or multiple covariance matrices, different tests can be
formalized that either quantify spatially variable genes, or identify genes that are regulated
by cell-cell interactions. Detection of spatially variable genes is implemented as a special
case that permits further optimizations (Methods).

Finally, we note that SpatialDE2 provides downstream analysis tools to aid interpretation.
This includes an updated version of automated expression histology (AEH) (Svensson et al,
2018) to identify groups of genes that covary in space. AEH models expression of a
particular gene as coming from one of a defined number of smooth spatial patterns and
attempts to estimate both the patterns and the assignment of genes to patterns using a
Bayesian framework. The number of spatial patterns has to be specified by the user in
SpatialDE and can be determined automatically by SpatialDE2.

SpatialDE2 is implemented in Tensorflow (Abadi et al, 2016) and supports GPU
computations for efficient processing of larger data sets. Run time on a CPU is similar or
faster than alternative methods, whereas GPU acceleration not supported by previous
methodology enables orders of magnitude faster computations (Fig 1 D, E, Supplementary
Figure S1C).

Model validation using simulated data
First, we used simulated data under the null hypothesis of no spatially variable gene
expression (Methods) to confirm the statistical calibration of the spatially variable gene
detection module (Supplementary Figure S1A). Briefly, similar to SpatialDE and SPARK,
SpatialDE2 increases the sensitivity of its spatially variable gene detection by testing multiple
kernel matrices for each gene. SpatialDE2 implements two strategies to estimate statistical
significance: Each kernel matrix is tested separately and the p-values are combined using
the Cauchy combination (Liu & Xie, 2020), or all kernel matrices are tested simultaneously
using an omnibus test (Methods). The latter option is faster, since only a single test is
conducted, however this strategy results in marginally reduced power (Supplementary
Figure S1B). We confirmed that both strategies yielded calibrated results (Supplementary
Figure S1A). The omnibus test was used for all analyses in this paper.

Next, we simulated true spatially variable genes with variable length scales, adapting
empirical parameters from a 10x Visium mouse brain data set (Methods). We assessed the
sensitivity (statistical power) of SpatialDE2, SpatialDE, and SPARK to detect true spatially
variable genes. SpatialDE had the lowest sensitivity, whereas SpatialDE2 and SPARK
yielded comparable results (Supplementary Figure S1B). By default, SPARK enforces
positive definiteness of the kernel by performing an Eigen decomposition of the kernel matrix
and setting negative eigenvalues to zero. Since its default periodic kernel is not positive
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definite, this results in poorly defined and uninterpretable kernels. We therefore also included
SPARK without eigenvalue clipping in our benchmark, observing consistent results.

Figure 1 | Overview of SpatialDE2 and its computational complexity.

(A) Top: SpatialDE2 accepts input spatial transcriptome profiles from a tissue sample, either in the
form of a raw gene count matrix, or using cell type counts as provided from a computational
deconvolution step (e.g. cell2location). Bottom: input data processing workflow.

(B) SpatialDE2 segments the input tissue into connected and transcriptionally similar regions. Top:
Schematic output of the segmentation with colours denoting identified tissue regions. Bottom:
implementation of the spatial segmentation based on a Poisson Hidden Markov Random field to
encode the assumption of spatial smoothness. Nodes correspond to locations with colour denoting
the region label. The number of regions is determined by the model.

(C) SpatialDE2 models spatial variance components of individual genes within tissue regions. Top:
Schematic for the identification of spatial variance components of individual genes in specific tissue
regions. Bottom: SpatialDE2 models expression variation within tissue regions by partitioning gene
expression variation into one or multiple functional components (U1,..,Un). Each component is
characterized by a covariance matrix that is parametrized by spatial or non-spatial covariates. The
special case of spatially variable gene selection corresponds to a functional component parametrized
by distance between locations.

(D) Run time of SpatialDE2’s tissue region segmentation module and a Leiden clustering workflow for
semi-synthetic dataset of increasing size and when using alternative compute environments.
Clustering/segmentation was based on 2,000 genes. Leiden denotes the scanpy workflow (Methods).
Only SpatialDE2 supports GPU computations.
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(E) Run time of SpatialDE2’s spatially variable gene selection module versus alternative methods.
Considered is a dataset consisting of 200 genes for increasing numbers of locations and alternative
computing environments. Only SpatialDE2 supports GPU computations.

Tissue region segmentation recovers known histological
features along a continuous resolution gradient
Next, we considered 10x Visium data from the mouse brain (Kleshchevnikov et al, 2020) to
assess SpatialDE2 and alternative methods for tissue segmentation. The mouse brain is well
suited for such benchmarking purposes, as it features well-defined and well-annotated
distinct regions. Using default settings on spatial smoothness, SpatialDE2 correctly resolved
major brain regions (Fig. 2A, B), and in particular separated the hippocampal
pyramidal/granule cells from the surrounding hippocampal formation (region 0) and identified
the lateral ventricle (region 3). For comparison, we also considered a Leiden clustering
workflow (Methods) applied to the same input data. The segmentation solutions as obtained
from Leiden clustering failed to resolve some of the expected brain regions, where in
particular both the hippocampal pyramidal/granule cells and the lateral ventricle were not
identified (Fig. 2A).

In an attempt to increase spatial resolution, we adjusted the spatial smoothness parameter
of SpatialDE2 and the resolution parameter for Leiden clustering. Notably, SpatialDE2
yielded consistent segmentations across a wide range of smoothness parameter settings,
providing a meaningful interpolation between coarse- and fine-grained solutions
(Supplementary Fig. S2A; representative setting shown in Fig 2A). As expected,
segmentations with a lower smoothness parameter resolved the isocortex layers as well as
the corpus callosum (Fig. 2A), and further split the hippocampal pyramidal and granule cell
layers into separate regions. On the other hand, when varying the resolution parameter of
the Leiden workflow, the results were highly variable and lacked intuitive transitions
(Supplementary Fig. S2B). Furthermore, irrespective of the setting of the resolution
parameter, the Leiden algorithm did neither resolve the corpus callosum nor the
hippocampal pyramidal/granule cells (Supplementary Fig. S2B).

Analysis of the regions identified by SpatialDE2 in the context of their transcriptomic distance
revealed that the solutions obtained by the model respected an appropriate balance between
spatial smoothness and transcriptional similarity. In particular, the model assigned the same
cluster label to spatially distinct regions if these were transcriptionally very similar. This was
particularly apparent in the case of the hippocampal formation and layer 1 of the isocortex,
which were assigned to the same cluster by SpatialDE2 (Supplementary Fig. S2C).

We also assessed the robustness of SpatialDE2 and Leiden clustering by bootstrapping
RNA-seq reads at individual locations (Fig. 2C), and we assessed the sensitivity of both
methods to variation in sequencing depth (Fig. 2D, Supplementary Figure S2D,E).
Collectively, these experiments indicated that SpatialDE2 is at least as robust as the Leiden
workflow.
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Finally, we used the SpatialDE2 spatially variable gene detection module to test for spatially
variable genes within the identified tissue regions. This identified up to 867 spatially variable
genes (FDR<0.1%; Fig. 2E), which were enriched for GO terms related to neurons and
nervous tissue, such as “nervous system development” or “synapse” (Methods,
Supplementary Fig. S2D). Several individual spatially variable genes have known
functions in the specific tissue regions, for example Synaptotagmin, Synaptogyrin,
Pro-thyrotropin releasing hormone, and Angiotensinogen in the thalamus (Fig. 2F).
Collectively, these results demonstrate that even within seemingly homogeneous tissue
regions, there exist spatial patterns of expression variability at the level of individual genes
and pathways, which may help us understand tissue function on a finer spatial scale.

Figure 2 | Evaluation of SpatialDE2 tissue region segmentation on the mouse brain.

(A) Clustering of mouse brain Visium data with SpatialDE2 using default parameters (left),
SpatialDE2 with adjusted parameters (reduced spatial smoothness; middle; c.f.
Supplementary Fig. S2A) and clustering results obtained using the Leiden workflow (right).
Identified tissue regions are annotated in colour. To avoid clutter, only selected regions that
are referred to in the main text are labeled in the legend (out of 18 in total) .
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(B) Corresponding reference annotation of the mouse brain regions obtained from the Allen
Brain Atlas (Lein et al, 2007).

(C) Assessment of the robustness of tissue region segmentations obtained using SpatialDE2
or Leiden clustering. Shown is the concordance across 100 bootstrap experiments, sampling
sequencing reads with replacement from the full dataset (N=4.5·107 reads total). Bar height
denotes the mean split/join distance compared to the results obtained on the full dataset;
error bars denote plus or minus one standard deviation.

(D) Assessment of the robustness of the SpatialDE2 tissue region segmentation to
downsampling of sequencing reads (out of N=45x10^6 reads total). The total number of
sequencing reads in the mouse brain dataset was downsampled to the indicated amount.
Shown are the segmentation results.

(E) Results from the identification of spatially variable genes within the tissue regions
identified from the segmentation step as in (A). Bar heights denote the number of spatially
variable genes within each region (FDR<0.1%; out of 12,682 genes assessed).

(F) Selected examples of spatially variable genes identified in the thalamus. Shown is
normalized relative expression of the indicated genes.

SpatialDE2 enables fine-grained analyses in complex human
tissue
Next, to test SpatialDE2 in a challenging use case, we applied the model to a Visium slide
from human endometrium (Garcia-Alonso et al, 2021), a highly compartmentalized tissue
where cell identity is dependent on spatial context that is just starting to be comprehensively
characterized (Garcia-Alonso et al, 2021; Wang et al, 2020a). Initially, we again applied
SpatialDE2 and Leiden clustering to segment tissue regions (Fig. 3A). To annotate the
regions identified using SpatialDE2, we combined cues from the tissue histology and cell
type annotations obtained from computational assignment of reference cell types (using
cell2location; (Kleshchevnikov et al, 2020)). This identified physiologically meaningful
annotations of fine-grained tissue substructures. For example, SpatialDE2 identified regions
corresponding to glands and their surrounding areas. In both of these regions, glandular
epithelial cells and fibroblasts are present, but in different proportions (Fig. S3A). These
observed gradual changes in cell type composition are expected and reflect the low
resolution of the Visium platform (10 to 50 cells per location). Manual inspection of canonical
markers of glandular cells, including EPCAM (an epithelial marker) and PAEP (a secretory
marker typical of glandular cells), confirmed these cell type annotations. Similarly, the
muscle cell markers ACTA2 and MYLK were primarily expressed in the myometrium
(Supplementary Fig. S3B), thus providing additional confidence that SpatialDE2 identified
physiologically meaningful tissue regions.

In contrast to SpatialDE2, the Leiden clustering workflow yielded results that were less
concordant to biological expectation. For example, the myometrium regions identified were
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considerably less smooth than those of SpatialDE2, and functionally distinct uterine regions
were assigned to the same cluster: parts of the endometrium basal layer clustered together
with a part of the myometrium, another part of the basal layer clustered with parts of the
functional layer, and glandular epithelium clustered together with the luminal epithelium (Fig.
3A). Critically, while adjustment of the Leiden resolution parameter resulted in partial
improvements for some regions - increasing the resolution yielded more fine-grained
clustering of the basal and functional endometrial layers and separated the luminal and
glandular epithelium – this adjustment simultaneously resulted in overclustering of the
myometrium (Supplementary Fig. S3C).

Next, we set out to study spatial gene expression within individual tissue regions. The
SpatialDE2 test identified between 53 and 409 spatially variable genes per region
(FDR<0.001; Fig. 3B). GO enrichment analysis identified several GO terms related to metal
ions that for spatially variable genes in the epithelium (Fig. 3C). Seven of the eight spatially
variable genes that were contained in these terms were metallothioneins, which were almost
exclusively expressed in a small group of luminal epithelial spots (Fig. 3D). The luminal
epithelium is enriched in ciliated cells, whose identity depends on the ovarian hormones
estrogen and progesterone. Metallothioneins are a feature of the lumenal epithelium in
multiple tissues (Danielson et al, 1982) have been previously shown to be regulated by
progesterone (Burney et al, 2007; Slater et al, 1988).

We then sought to group genes into patterns of expression using SpatialDE2’s AEH module.
This approach is complementary to the segmentation of a tissue into discrete tissue regions,
and in particular allows for the identification of smooth transitions. We applied AEH to all
spots except those classified as myometrium. We excluded the myometrium for two reasons:
It is a relatively homogeneous tissue, and the low-quality region (Garcia-Alonso et al, 2021)
may interfere with our analysis. This identified five spatial patterns in the endometrium
(Supplementary Figure S3D). Four of these patterns appeared to recapitulate the
distribution of glands in the functional layer, but one pattern (pattern 1) was clearly distinct
and contained genes highly expressed in the most luminal part of the functional layer, just
below the epithelium (Fig. 3E). Among these genes was the progesterone receptor
PGRMC1, in agreement with the fact that the functional layer of the endometrium
differentiates (decidualizes) in response to hormones.

SpatialDE2 by design takes spatial omics profiles as input, thus rendering the model
applicable to a range of different technologies that yield expression estimates that can be
explained by a count-based likelihood. This includes both sequencing-based assays but also
imaging technologies (see discussion in SpatialDE1 (Svensson et al, 2018)). However, in
particular for Visium or other technologies that do not achieve true single-cell resolution, the
relatively coarse segmentation may result in limitations to assigning specific tissues to
clusters, as seen in the endometrium data set with the ‘glands (border)’ cluster. Motivated by
this limitation, we set out to explore how SpatialDE2 can be combined with cell type count
estimates obtained from computational deconvolution workflows that leverage reference
scRNA-seq datasets to estimate cell type abundance. Specifically, we applied SpatialDE2 to
the cell type abundance estimates obtained by cell2location on the endometrium dataset
(Garcia-Alonso et al, 2021). This resulted in a more fine-grained segmentation compared to
applying SpatialDE2 directly to gene-counts (Fig. 4A). For example, SpatialDE2 now split
the basal layer into three distinct regions (numbered 1,5, and 8 in the figure). Spots
belonging to these regions were also characterized by distinct clusters in the gene
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expression space (Fig. 4B), indicating that there exist relevant phenotypic differences
between these regions. Consistently, we observed marked differences in the cell type
composition between these regions; for example region 8 was strongly enriched in epithelial
glandular cells, whereas region 1 had more perivascular STEAP4 cells (Fig 4C). In general,
most regions showed a unique cell type composition (Supplementary Fig. S4A), allowing
for fine-grained dissection of tissue histology. Finally we note that the Leiden clustering
workflow again performed poorly if applied to cell2location output and incorrectly grouped
the epithelium and glands as well as parts of the functional and basal layers together, and at
the same time severely overclustered the myometrium (Fig. 4A).

Figure 3 | Application of SpatialDE2 to human endometrium tissue.
(A) Comparison of tissue segmentation obtained using SpatialDE2 (left) and Leiden
clustering (right). SpatialDE2 was used with default settings, and the Leiden resolution
parameter was selected to yield a biologically meaningful clustering (see Supplementary
Fig. S3C) for results using alternative parameters). Myometrium LQ denotes a region of the
myometrium with low data quality (Garcia-Alonso et al, 2021).

(B) Number of spatially variable genes within each region (FDR<0.01%).

(C) GO enrichment analysis of spatially variable genes in the named regions of C). GO
terms containing metal-binding genes are highlighted. To avoid clutter, only the GO IDs are
shown for the other terms.
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(D) Normalized relative expression of metallothioneins in the functional layer.

(E) Normalized relative expression of the progesterone receptor PGRMC1 and other genes
belonging to the same spatial pattern (top right)

Figure 4 | Application of SpatialDE2 to cell type abundance estimates using
deconvolution.

(A) Comparison of tissue segmentation obtained using SpatialDE2 (left) and Leiden
clustering (right) based on cell2location cell type abundance estimates. Number of clusters
was determined automatically for SpatialDE2, whereas the Leiden resolution parameter was
tuned by hand to yield a biologically meaningful clustering (see Supplementary Figure S4B
for Leiden clustering with different resolution parameters)
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(B) UMAP embedding of individual locations based on their expression profiles. Color
denotes the cluster labels assigned to one of three  basal layer clusters by SpatialDE2.

(C) Cell type composition of the three basal layer clusters as in (B). Shown are estimates of
cell type fractions from cell2location across individual locations assigned to either cluster 1, 5
or 8 (as in (B)).

Discussion
Here, we present SpatialDE2, a versatile toolbox for analyzing spatial transcriptomics data.
At the core of the method are two analysis modules - region segmentation and spatially
variable gene identification. Both modules offer important advantages compared to existing
methodology. Moreover, the modules are compatible and can be combined efficiently within
one coherent software workflow.

The region segmentation module uniquely allows to account for the spatial structure of
tissues, directly operates on RNA count data, and it can be adjusted by a single intuitive
parameter. At the same time the module is as efficient as conventional Leiden clustering,
which ignores the spatial coordinates. Additionally, SpatialDE2 offers the option of
GPU-accelerated computations. Similarly, the spatially variable gene direction module offers
orders of magnitude faster computation than previous methods like SpatialDE (Svensson et
al, 2018) or SPARK (Sun et al, 2020), while offering comparable or better statistical power.
SpatialDE2 also retains the distinguishing features of these kernel-based methods, such as
the ability to test for specific types of expression pattern by designing corresponding kernels.

The two modules work hand in hand, which allows efficient implementation of a workflow
consisting of first segmenting the tissue slice followed by detection of spatially variable
genes within each region. We illustrated this workflow on the mouse brain, a
well-characterized tissue suitable for assessment of performance. On this data set, tissue
region segmentation performed comparably to a Leiden clustering workflow and we were
able to recover known biology, such as the major brain regions. We also applied the
SpatialDE2 workflow to a human endometrium data set, a much less well-characterized
tissue. Here, our tissue region segmentation proved superior to Leiden clustering. In addition
to recapitulating known biology, SpatialDE2 also generated novel insights into this complex
tissue, such as the expression patterns of metallothioneins and several genes spatially
co-expressed with the progesterone receptor.

Finally, we showed how SpatialDE2 can be applied downstream of computational
deconvolution of spatial transcriptomics based on reference expression profiles, which
yielded tissue region segmentation with more fine-grained results, enabling detailed
dissection of tissue histology.

Our method is not free of limitations. For one, the size of the kernel and distance matrices
used by SpatialDE2 scales with the square of the number of spatial locations. GPUs have
only limited memory, which can limit the size of the spatial region that can be analysed using
efficient GPU computations. Furthermore, our model is currently designed to be used on one
slice at a time. As datasets consisting of multiple sequential tissue sections are becoming
more common, future work includes modeling multiple slices at a time.
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Data Availability
SpatialDE2 is available at https://github.com/PMBio/SpatialDE. Code to reproduce the
figures is available at https://github.com/PMBio/spatialde2-paper (note that the data are not
included in the repository and need to be downloaded separately from the respective original
publications – mouse brain data can be accessed at
https://cell2location.cog.sanger.ac.uk/browser.html?shared=tutorial/mouse_brain_visium_da

ta/rawdata/ST8059048/, endometrium data can be accessed at
https://www.reproductivecellatlas.org/).
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