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Abstract1

Sequence classification is valuable for reducing the complexity of metagenomes and providing a2

fundamental understanding of the composition of metagenomic samples. Binary metagenomic3

classifiers offer an insufficient solution because metagenomes of most natural environments are typically4

derived from multiple sequence sources including prokaryotes, eukaryotes and the viruses of both.5

Here we introduce a deep-learning based (not reference-based) sequence classifier, DeepMicrobeFinder,6

that classifies metagenomic contigs into five sequence classes, e.g., viruses infecting prokaryotic or7

eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. At different8

sequence lengths, DeepMicrobeFinder achieved area under the receiver operating characteristic9

curve (AUC) scores >0.9 for most sequence classes, the exception being distinguishing prokaryotic10

chromosomes from plasmids. By benchmarking on 20 test datasets with variable sequence class11

composition, we showed that DeepMicrobeFinder obtained average accuracy scores of 0.94, 0.87, and12

0.92 for eukaryotic, plasmid and viral contig classification respectively, which were significantly higher13

than the other state-of-the-art individual predictors. Using a 1-300 µm daily time-series metagenomic14

dataset sampled from coastal Southern California as a case study, we showed that metagenomic read15

proportions recruited by eukaryotic contigs could be doubled with DeepMicrobeFinder’s classification16

compared to the counterparts of other reference-based classifiers. In addition, a positive correlation17

could be observed between eukaryotic read proportions and potential prokaryotic community growth18

rates, suggesting an enrichment of fast-growing copiotrophs with increased eukaryotic particles. With19

its inclusive modeling and unprecedented performance, we expect DeepMicrobeFinder will be a20

useful addition to the toolbox of microbial ecologists, and will promote metagenomic studies of21

under-appreciated sequence types.22

keywords: metagenomic contig classification, microbial eukaryotes, eukaryotic viruses, phages,23

plasmids24

Introduction25

Microbes are omnipresent in all conceivable systems on earth, be it extreme environment such as deep-sea26

hydrothermal vent or host-associated ecosystem like human gut, exerting immense influence on the27

global biogeochemical cycles (Falkowski et al., 2008; Azam & Worden, 2004) and host physiology (Turn-28

baugh et al., 2007; Berendsen et al., 2012). Studies of microbial diversity and evolution were pioneered29

by the discovery of three domains of life using the universally conserved small subunit rRNA gene30
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sequences (SSUs) as the phylogenetic marker (Woese & Fox, 1977), which enabled biodiversity surveys of31

environmental microbial communities (Pace et al., 1986; Olsen et al., 1986) and gave rise to the discovery32

of abundant archaea lineages in the open ocean (Fuhrman, 1992; DeLong, 1992). Microbial coding33

potentials were further probed using cloning libraries of natural microbial assemblages (e.g., cosmid and34

fosmid libraries) (Olsen et al., 1986; Schmidt et al., 1991; Stein et al., 1996; Vergin et al., 1998; Rondon35

et al., 2000; Béjà et al., 2000; Legault et al., 2006), which were revolutionized by shot-gun metagenomes36

to infer ecological roles of uncultured microbes (Venter et al., 2004; Handelsman, 2004). Depending on37

where, when and how metagenomic samples were collected, the microbial richness within a sample can38

range from a consortium of several dominant strains to a conglomerate of thousands of species. The39

tremendous amount of ever-growing metagenomic data compound with its inherent heterogeneous nature40

not only provides opportunities to decipher the cryptic interactions of complex microbial communities41

and the genome-level evolutionary trajectory of individual species, but also poses challenges on how42

to reliably extract genomic/transposable fragments from metagenomic sequence pools. By assigning43

metagenomic contigs into distinct groups, the complexity of metagenomes can be reduced to certain44

taxonomic levels, from coarse domains to fine-grained consensus species or strains. Metagenomic applica-45

tions developed with the objective of computationally retrieving intended contigs can be briefly framed46

into two categories, supervised contig classification tools (i.e., viral contig predictors), and unsupervised47

contig clustering tools (i.e., metagenomic binners, see Sedlar et al., 2017 for a review of binning strategies).48

49

Microbial communities are a collection of diverse biological entities including the ribosome-encoding50

cellular organisms (REOs), the capsid-encoding organisms (CEOs, e.g., viruses) that can only reproduce51

within cells of REOs, and orphan replicons (plasmids, transposons, etc) that parasitize REOs or CEOs52

for propagation (Raoult & Forterre, 2008). Viruses are one of the most abundant entities on earth53

(Suttle, 2005, 2007), playing a crucial role in the global biogeochemical cycles by controlling nutrient flow54

via viral shunt (Fuhrman, 1999; Wilhelm & Suttle, 1999). Metagenomic contig classification has been55

heavily focused on the prediction of viral sequences. One of the state-of-the-art tools to identify viral56

contigs from metagenomic assemblies is VirSorter (Roux et al., 2015), which predicts viral contigs based57

on viral signal and categorizes them into three tiers with different confidence levels. VirFinder (Ren58

et al., 2017) is another viral contig predictor that employs k-mer frequencies and logistic regression to59

classify contigs to either viral or host sequences, which outperforms VirSorter at different contig lengths,60

especially for shorter contigs without detectable viral genes. The success of k-mer based methods has61

inspired the application of deep learning in viral sequence discovery, which leads to the development of62

DeepVirFinder (Ren et al., 2020) and PPR-Meta (Fang et al., 2019), both of which use one-hot encoding63

to convert DNA sequences into presence/absence matrices of nucleotides, and use neural networks to64

train virus-host classifiers at different contig lengths. Besides, PPR-Meta combines both nucleotide65

path and codon path in the encoding step, and classifies contigs into viruses, host chromosomes and66

plasmids (Fang et al., 2019). VIBRANT (Kieft et al., 2020) is a recently published tool that uses neural67

networks to distinguish prokaryotic dsDNA, ssDNA and RNA viruses based on “v-score” metrics, which68

were calculated from significant protein hits to a collection of Hidden Markov Model (HMM) profiles69

derived from public databases. Most of the aforementioned tools target bacteriophages. Eukaryotic virus70

predictors are emerging in recent years, and one of such tools is Host Taxon Predictor (HTP) (Gałan71

et al., 2019), which utilizes four machine learning methods to classify viral sequences to eukaryotic72

viruses or bacteriophages based on sequence features including mono-, dinucleotide absolute frequencies73

and di-trinucleotide relative frequencies. Beyond viruses, plasmids are also important players of shaping74
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microbial genome evolution and environmental adaptation. Plasmids are mobile genetic elements that75

can exchange genes with host chromosomes and shuttle between different hosts, leading to gene flows76

within microbial communities. Thus, by carrying genes related to environmental adaptations and77

defense systems, plasmids play a pivotal role in maintaining the host genetic and phenotypic plasticity,78

and increase the host fitness to the changing environments. This also poses a challenge in classifying79

chromosomal and plasmid contigs from metagenomes, which is particularly true for plasmids sharing80

a significant amount of genes with their host genomes. There are multiple dedicated tools developed81

besides PPR-Meta, such as cBar (Zhou & Xu, 2010), PlasFlow (Krawczyk et al., 2018), PlaScope (Royer82

et al., 2018) and PlasClass (Pellow et al., 2020). In principle, PlaScope employs a similarity searching83

approach based on species-specific databases, while cBar, PlasFlow and PlasClass use differential k-mer84

frequencies with different machine learning methods. Beyond viruses and plasmids, there is a paucity85

of applications targeting the classification of eukaryotic contigs from metagenomes, while eukaryotes86

are indispensable to the ecological functioning of natural microbial communities. Reference-based87

applications such as Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020a) search for88

close matches in reference databases, thus can be used to assign reads or contigs to taxonomic groups.89

While the accuracy of these applications depends on the completeness of reference databases, their90

performance in classifying eukaryotic contigs is arguable due to the lack of a comprehensive microbial91

eukaryotic database (Keeling et al., 2014). EukRep (West et al., 2018) is a reference-independent92

application that uses k-mer frequency and linear-SVM to classify metagenomic contigs into eukaryotic93

and prokaryotic sequences. It has been proven that when combined with the conventional metagenomic94

and metatranscriptomic analyses, such as reconstructing eukaryotic bins and gene co-abundance analysis,95

biological and ecological insight can be readily obtained for uncultured eukaryotes (Vorobev et al., 2020;96

West et al., 2018).97

98

Despite the significant progress made in the past years, there isn’t one tool that can classify eukary-99

otic/prokaryotic genomes, eukaryotic/prokaryotic viruses, and plasmids in one shot. In fact, all these100

binary classifiers suffer from sequence types that are not modeled, such as eukaryotic contigs or plasmids101

can be misclassified as viruses by viral predictors, and viral contigs can be misclassified as plasmids by102

plasmid predictors, etc. Thus, in order to achieve a more reliable classification of the target sequences,103

one has to run several of these tools consecutively, each suffers from its own sensitivity and specificity,104

and the error rates propagate throughout the workflow, resulting in less accurate and biased classification.105

Here we introduce DeepMicrobeFinder, a versatile multi-class metagenomic contig classifier based on106

convolutional neural networks (CNN). We show that DeepMicrobeFinder outperforms all the existing107

tools by precision and sensitivity across all test datasets with different sequence type compositions.108

More importantly, DeepMicrobeFinder is superior to the other tools by classifying all sequence types109

simultaneously, which will greatly reduce the time and computation resource usage compared to the110

conventional way of pipelining a set of different predictors. Using a coastal marine metagenomic dataset111

as a case study, we show that DeepMicrobeFinder captures more eukaryotic contigs than reference-based112

classifiers. The higher eukaryotic read proportion is positively correlated with prokaryotic community113

growth rates, indicating the higher abundance of fast-growing copiotrophs might be involved in the114

recycling of particular nutrients during the spring bloom.115
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Materials and methods116

Training dataset preparation117

For prokaryotic chromosome sequences, we downloaded all the prokaryotic genomes from NCBI RefSeq118

on Jan 17, 2020. The prokaryotic genomes were cleaned up by removing all the sequences annotated as119

“Plasmid” according to the assembly reports. Plasmid sequences were downloaded from NCBI RefSeq120

plasmid database (available at ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/) on the same day. For121

eukaryotic hosts, we created a microbial genomic sequence database including all the bacteria and archaea122

sequences and selected microbial eukaryotic sequences based on the eukaryotic taxa used by Kaiju (Men-123

zel et al., 2016) (available at https://github.com/bioinformatics-centre/kaiju/blob/master/util/kaiju-124

taxonlistEuk.tsv) and PR2 database ](Guillou et al., 2013) (https://pr2-database.org/). Specifically, we125

downloaded all the bacteria and archaea genomes, and selected microbial eukaryotic genomes under126

taxa names: “Amoebozoa”, “Apusozoa”, “Cryptophyceae”, “Euglenozoa”, “Stramenopiles”, “Alveolata”,127

“Rhizaria”, “Haptista”, “Heterolobosea”, “Metamonada”, “Rhodophyta”, “Chlorophyta”, and “Glauco-128

cystophyceae” using genome_updater (available at https://github.com/pirovc/genome_updater) on129

Jan 19, 2020. In addition to these eukaryotic genomes, we also included 48,961,036 eukaryotic host130

sequences from the 678 marine eukaryotic transcriptomic re-assemblies (Johnson et al., 2019) of cultured131

samples generated by the MMETSP project (Keeling et al., 2014), which included 306 pelagic and132

endosymbiotic marine eukaryotic species representing more than 40 phyla (re-assemblies are available at133

https://zenodo.org/record/1212585).134

135

Complete and draft viral sequences and associated metadata were retrieved from the NCBI Viruses136

database (Brister et al., 2015) (https://www.ncbi.nlm.nih.gov/genome/viruses) on Jan 17, 2020, which137

contains 3,214,806 nucleic acid records in total. To include more viral sequences from the increasing138

metagenomic and single-cell genomic datasets, we also included more than 760,000 viral sequences from139

IMG VR2 (Paez-Espino et al., 2019). In total, there are 3,975,259 viral sequences included in this study.140

For viruses from NCBI, we classified them into eukaryotic or prokaryotic viruses according to their host141

domains based on the host taxonomy lineages using taxonkit v0.3.0 (Shen & Ren, 2021). Similarly, the142

IMG VR2 viruses were also classified into eukaryotic or prokaryotic viruses based on the “Host_domain”143

field in the sequence information file.144

Sequence preprocessing, model selection, training and validation145

Training sequences were randomly selected using seqtk (available at https://github.com/lh3/seqtk) from146

the collected host, virus and plasmid sequences, which contained 3,404 prokaryotic chromosome sequences147

(Prok), 5,515 prokaryotic virus sequences (ProkVir), 10,952 eukaryotic chromosome sequences (Euk),148

173,082 eukaryotic virus sequences (EukVir), and 2,390 plasmid sequences (Plas). Validation sequences149

were randomly selected from the same original dataset after removing the training sequences. Training150

and validation sequences were labeled as one of the five classes, e.g., Prok, ProkVir, Euk, EukVir, and151

Plas. In order to train models at different sequence lengths (500 bp, 1 kb, 2 kb, 3 kb, 5 kb), we first cut152

training sequences into fixed-length fragments for each model. This resulted in roughly an equal number153

of chopped sequence fragments for each class for different length models. Specifically, the numbers of154

training fragments are 400,000 at 500 bp, 200,000 at 1 kb, 90,000 at 2 kb, 66,000 at 3 kb, and 38,000155

at 5 kb, respectively. The validation dataset was ∼ 1/10 of the training dataset for each length model.156

Both the training and validation sequence fragments were used as input to train a fully connected 3157
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layer one dimension multi-class CNN. Sequence fragments were first one-hot encoded strandwise into a158

binary matrix with the dimension of 4×L where L is the length of the fragment, which was used as the159

input layer of the neural network. The neural network comprises three convolutional layers, with 64, 128160

and 256 filters and kernel sizes of 6, 3, and 2, accordingly. To improve the model robustness and reduce161

overfitting, a max pooling layer and a batch normalization layer were added after each of the first two162

convolutional layers, and a global max pooling layer, a dropout layer and a flatten layer were added163

after the third convolutional layer. Two dense layers were connected after the convolutional layers, with164

the first one containing 500 hidden units and the second one containing 5 hidden units, corresponding to165

5 input classes (Fig. S1). Input sequences were encoded in both forward and reverse directions, and the166

predicted classes were determined by the average scores of both results. When preparing training and167

validation data, first the training data was sampled from the entire downloaded data, then from the left-168

over non-training data, we sampled the validation and test datasets with the size of 1/10 of the training169

data, respectively. The validation and test datasets were used to compute the model performance metrics.170

171

Two prediction modes were provided for user input sequences, the single mode and the hybrid mode.172

The single mode allows users to select a specific length model, then to cut input sequences into non-173

overlapping fixed-length chunks to fit the selected model, and finally to make predictions based on the174

cumulative scores of all chunks for each input sequence. Chunks smaller than the half of the model175

length will be discarded. In the hybrid mode, when possible, models with longer sequence length have176

the highest priority. Input sequences were first cut into chunks corresponding to longer models, the177

remaining part of the sequence were further cut into chunks corresponding to shorter sequence models if178

possible. This way, most part of the input sequences will be used for the prediction, and the longer179

models will be always preferred to maximize prediction accuracy. The final prediction scores will be the180

sum of predicted scores for all chunks.181

Custom benchmark dataset preparation182

To compare with the other state-of-the-art individual predictors, we have generated 20 equal-sized (1000183

contigs) test datasets with a variable composition of the 5 sequence classes (Supplemental Table S1).184

Briefly, the fractions of PROK (including prokaryotic hosts, prokaryotic viruses, and plasmids) to EUK185

(including eukaryotic hosts and eukaryotic viruses) sequences were determined using the ratios of 9:1,186

7:3, 5:5, 3:7, and 1:9. Then for each fixed PROK:EUK ratio, the PROK fraction was further split into187

prokaryotic hosts, prokaryotic viruses and plasmids based on the ratios of 5:1:1, 4:1:1, 3:1:1, and 2:1:1;188

and the EUK fraction was further split into eukaryotic hosts and eukaryotic viruses according to the189

ratio of 5:1, 4:1, 3:1, and 2:1. Finally, the corresponding number of sequences were drawn from the test190

sequence pool for each class using the ratios specified above.191

Use-case data preparation and analysis192

The daily time-series metagenomic samples were taken off the coast of Southern California using an193

Environmental Sample Processor (ESP), and the 1�µm A/E filters (Pall Gelman) collected during194

the day were used for DNA extraction as described previously (Needham et al., 2018). Metagenomic195

libraries were prepared using the Ovation® Ultralow V2 DNA-Seq library preparation kit (NuGEN,196

Tecan Genomics) under the manufacturer’s instruction using 10 ng of starting DNA and 13 PCR cycles.197

Metagenomic libraries were sequenced on an Illumina NovaSeq 6000 platform (2× 150�bp chemistries)198

at Berry Genomics Co. (Beijing, China). After demultiplexing, the raw reads were first checked with199
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FastQC v0.11.2, then adapter and low quality regions were trimmed using fastp v0.21.0 (Chen et al.,200

2018) with the following parameters: -q 20 -u 20 -l 30 –cut_tail -W 4 -M 20 -c. PhiX174 and sequencing201

artifacts were removed using bbduk.sh and human genome sequences were removed using bbmap.sh with202

default parameters, both scripts can be found in the BBTools package v37.24 (https://jgi.doe.gov/data-203

and-tools/bbtools). Metagenomic samples were assembled independently using metaSPAdes v3.13.0204

(Nurk et al., 2017) with a custom kmer set (-k 21,33,55,77,99,127). The assembled contigs were further205

coassembled as previously described (Long et al., 2021). Briefly, all the contigs were pooled and sorted206

into short (<2kb) or long (≥2kb) contig sets, the short contig set was first coassembled using Newbler207

v2.9 (Margulies et al., 2005), the resulting ≥2kb contigs were further coassembled with the long contig208

set (Treangen et al., 2011). A minimum overlap thresholds of 80 nt and 200 nt were set for Newbler and209

minimus2, respectively. For both coassembly steps, a minimum identity cutoff of 0.98 was applied. After210

co-assembly, contigs were further dereplicated at 0.98 identity using cd-hit v4.6.8 (Li & Godzik, 2006),211

the resulting contigs were used as reference contigs for sequence classification and read recruitment212

analysis. Reference contigs were classified using Kaiju v1.7.3 (Menzel et al., 2016) and MetaEuk v1213

(Levy Karin et al., 2020b), as well as DeepMicrobeFinder v0.1.0 (in hybrid mode), read counts assigned214

to each sequence class were summarized using custom Python scripts. Reads were mapped to reference215

contigs using bwa mem v0.7.17 with default parameters, and the number of reads aligned >30 nt to216

reference contigs were counted using bamcov v0.1 (available at https://github.com/fbreitwieser/bamcov)217

with default parameters.218

Community doubling time and growth rate calculation219

The prokaryotic community microbial growth rates were calculated using gRodon (Weissman et al.,220

2021) in weighted metagenomic mode with temperature adjustment. Specifically, prokaryotic contigs221

from each individual assembly were predicted using DeepMicrobeFinder and annotated using Prokka222

v1.14.5 (Seemann, 2014). Reads were mapped to predicted coding genes to get the coverage information,223

and genes encoding ribosomal proteins were used as highly expressed gene sets for growth rate prediction.224

The ambient temperature recorded by the sampler was used for growth rate prediction according to the225

user manual. The direct output of gRodon is doubling time, which was converted to growth rate per226

day using equation 1,227

µ = 24× ln(2)

d
(1)

where µ and d stand for maximal growth rate per day and minimal doubling time, respectively.228

Results229

A CNN-based multi-class classifier230

Microbial eukaryotes and viruses infecting them are not dispensable but indigenous in microbial com-231

munities of diverse ecosystems. Confidently identifying these sequences in metagenomes is crucial232

to understanding their ecological roles. Unfortunately, most of the eukaryotic viruses and hosts are233

underappreciated by current state-of-the-art tools. For instance, assessed by the predicted viral scores,234

the two popular viral contig predictors, VirFinder (Ren et al., 2017) and PPR-Meta (Fang et al., 2019),235

gave high scores to prokaryotic viral sequences and low scores to prokaryotic host sequences. However,236

the scores for eukaryotic host and eukaryotic viral sequences were more evenly distributed (Fig. S2).237
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Out of 500 randomly subsampled genomic sequences for each sequence type of prokaryotes, prokaryotic238

viruses, microbial eukaryotes, and eukaryotic viruses downloaded from NCBI, 454 prokaryotic viruses239

and 85 prokaryotic hosts had VF-score above 0.5, while 238 eukaryotic viruses and 157 eukaryotic240

hosts had VirFinder-score (VF-score) above this value (Fig. S2a). A similar trend can be observed241

for PPR-Meta (Fig. S2b), indicating these tools are not well trained to handle eukaryotic virus and242

host sequences, which calls for the development of novel predictors that take more sequence types into243

consideration in the model training step.244

245

Here we compiled a collection of training datasets and trained several CNN-based multi-class models246

using one-hot encoding at variable lengths (500 bp, 1 kb, 2 kb, 3 kb, and 5 kb) to simultaneously247

classify eukaryotic host, eukaryotic virus, prokaryotic host, prokaryotic virus and plasmid sequences248

in one shot (Fig. S1). Using test sequences randomly sampled from the datasets that were not used249

for training, we evaluated the model performance using the Receiver Operating Characteristics (ROC)250

curve for each sequence type for each trained model (Fig. 1). Overall, we showed that with the sequence251

length increased, the model performance improved based on the Area Under the Receiver Operating252

Characteristic (AUC or AUROC) measurements for most sequence types (Fig. 1). The AUC scores were253

higher for eukaryotic viruses and eukaryotic hosts, followed by prokaryotic viruses, plasmids, and lastly254

prokaryotic hosts (Fig. 1). When prokaryotic host and plasmid classes collapsed into one sequence type,255

the performance of all length models improved, indicating the misclassification between prokaryotic256

hosts and plasmids is a major caveat of DeepMicrobeFinder (Fig. 1).257
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Fig 1. The ROC curves and AUC scores of different length models assessed on validation datasets.
Left panel shows the ROC curves for 5 sequence classes at different model lengths (500bp, 1k, 2k, 3k and 5k), and
the right panel shows the performance when prokaryotic hosts and plasmids were collapsed into the “Prokaryotes”
class.
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DeepMicrobeFinder outperforms EukRep in eukaryotic host sequence prediction258

We compiled a list of benchmark datasets to cover 20 composition scenarios of different sequence types259

(Table S1). The five sequence types were first grouped into two umbrella classes: PROK (including260

prokaryotic hosts, prokaryotic viruses and plasmids) and EUK (eukaryotic hosts and eukaryotic viruses).261

Five large groups were first determined using the PROK:EUK ratios of 9:1, 7:3, 5:5, 3:7, 1:9, then262

within each group, the fractions of host sequences decreased gradually (the details of benchmark dataset263

preparation can be found in the Materials and methods section). This allowed us to compare the264

performance of DeepMicrobeFinder with the other state-of-the-art predictors under variable sequence265

composition of metagenomes.266
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Fig 2. Distribution of (a) accuracies and (b) F1 scores across 20 test datasets for
DeepMicrobeFinder and EukRep. The top panel shows the sequence composition of 20 test datasets, the
composition ratios of different sequence types can be found in Table S1. The dashed black lines indicate where
accuracy or F1 score equals to 0.8. Please note a decreasing tendency in both accuracy and F1 score for EukRep
along with the increasing eukaryotic fractions.

Microbial eukaryotes are understudied by current metagenomic studies, and EukRep (West et al.268

2018) is currently the most popular tool to identify eukaryotic contigs from metagenomic assemblies269

without prior knowledge of microbial phylogenetic affiliation. With the compiled test datasets, we first270

benchmarked the performance of DeepMicrobeFinder and EukRep in classifying eukaryotic contigs271

(Fig. 2). DeepMicrobeFinder persistently outcompeted EukRep in all scenarios in terms of accuracy272

(Fig. 2a, S3a) and F1 score (Fig. 2b, S3b), and DeepMicrobeFinder was robust to the different273

compositions of test datasets (Fig. 2). The average accuracy and F1 score across all test datasets for274

DeepMicrobeFinder were both 0.94, which are significantly higher than these metrics of EukRep (0.69275

and 0.65, pairwise Wilcoxon test p-values ≤ 1.9e-06 for both accuracy and F1 score; Fig. S3). EukRep276

had accuracy or F1 score lower than 0.8 in most cases (Fig. 2), and for those datasets EukRep achieved277

accuracy or an F1 score higher than 0.8, the EUK fraction (including eukaryotic hosts and viruses,278

Table S1) of the test datasets were less than 10% (Fig. 2, Table S1), suggesting the performance of279

EukRep decreases with the increase of the eukaryotic contig proportion. This trend also holds for each280

fixed EUK fraction, the performance of EukRep increases with the eukaryotic host:virus ratios decrease281

from 5:1 to 2:1 (Fig. 2, Table S1). In contrast, the accuracy and F1 score of DeepMicrobeFinder are282

higher than 0.9 in all tested scenarios with smaller standard deviations (accuracy/F1 score: 0.02/0.019)283
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compared to EukRep (accuracy/F1 score: 0.17/0.18), indicating DeepMicrobeFinder is accurate and284

robust to all the tested scenarios.285

286

A further look into those misclassified sequence types revealed that the poor performance of EukRep is287

mainly due to its low sensitivity in recognizing eukaryotic contigs, though some plasmids and prokaryotic288

viruses were also misclassified into eukaryotes when the PROK fractions were high (Fig. S4).289

DeepMicrobeFinder outcompetes PlasFlow and PPR-Meta in plasmid sequence290

prediction291

Plasmids are mobile genetic elements of diverse prokaryotes and are one of the major agents of horizontal292

gene transfer (HGT) among hosts. Here we compared the performance of DeepMicrobeFinder to293

PlasFlow (Krawczyk et al., 2018) and PPR-Meta (Fang et al., 2019) using the same benchmark datasets.294

The F1 scores of DeepMicrobeFinder and PPR-Meta were higher than those of PlasFlow in all tested295

scenarios (pairwise Wilcoxon test adj. p-values ≤ 5.7e-06; Fig. S5), and DeepMicrobeFinder showed296

significantly improved results than PPR-Meta in all tested cases (pairwise Wilcoxon test adj. p-value ≤297

1.7e-05; Fig. 3 & S5). Moreover, DeepMicrobeFinder showed a conspicuous increment in performance298

metrics when the EUK fractions were high, while the performance of PPR-Meta and PlasFlow were299

severely impaired, which is particularly perceptible for PlasFlow (Fig. 3). For each fixed PROK fraction,300

the performance of DeepMicrobeFinder was roughly the same or slightly decreased with the increase of301

non-host sequences, while marginally improved for PPR-Meta and PlasFlow.302
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Fig 3. Distribution of (a) accuracy and (b) F1 scores across 20 test datasets for
DeepMicrobeFinder, PlasFlow and PPR-Meta on plasmid classification. DeepMicrobeFinder achieved
the highest performance in respect to accuracy (a) and F1 scores (b). Same benchmarking datasets were used as
in Fig. 2.

We further examined the misclassified sequences and found PlasFlow had high sensitivity but low304

specificity, the dominance of misclassified sequence types was in line with the composition of benchmark305

datasets (Fig. S6a). PPR-Meta might benefit from its modeling of chromosomes and phages, while306

it still had a low specificity mainly due to the misclassification of prokaryotic and eukaryotic host307

sequences into plasmids (Fig. S6b). It’s noteworthy that DeepMicrobeFinder might further benefit308

from its modeling of eukaryotic hosts and viruses since eukaryotic host sequences were rarely classified309
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as plasmids, though the misclassification rates between plasmids and prokaryotic hosts were still high310

(Fig. S7a). The performance of DeepMicrobeFinder can be improved by collapsing prokaryotic hosts311

and plasmids into one sequence class as demonstrated previously (Fig. 1), which also greatly reduced312

the total misclassified cases (Fig. S7b). This suggests that current tools are inefficient in distinguishing313

plasmids from prokaryotic hosts, and further improvements on the neural network structures or using314

additional features extracted from gene or operon centric approaches might yield a better classifier.315

DeepMicrobeFinder achieves improved results in viral sequence prediction316

Viruses are ubiquitously found in every natural system where cellular organisms colonize. Significant317

advances have been made in recent years in developing tools to identify viral contigs from metagenomic318

assemblies, using essentially gene-centric (e.g., VirSorter, VIBRANT) or oligonucleotide-centric (e.g.,319

VirFinder, DeepVirFinder, PPR-Meta) approaches. Here we compared the performance of DeepMi-320

crobeFinder to VirSorter, VIBRANT, and PPR-Meta on viral contig prediction using the aforementioned321

benchmark datasets. DeepMicrobeFinder achieved better performance in terms of accuracy and F1322

score than all the other tools in all tested datasets (pairwise Wilcoxon test p-values ≤ 1.1e-05; Fig. 4323

& S8). The accuracies and F1 scores of DeepMicrobeFinder were rarely lower than 0.9, while none324

of the other tested tools had an accuracy or F1 score higher than 0.9. In addition, with the share325

of EUK sequences increasing, the accuracies and F1 scores of VIBRANT, VirSorter, and PPR-Meta326

decreased, while DeepMicrobeFinder kept constant or slightly increased. VIBRANT and PPR-Meta327

showed slightly higher accuracy scores than VirSorter in most cases, while within each fixed PROK328

fraction, both of them showed a decreasing tendency in both accuracies and F1 scores with the increasing329

of non-host sequences, suggesting higher proportions of virus and plasmid sequences can degrade the330

performance of VIBRANT and PPR-Meta (Fig. 4a). In contrast, the performance of VirSorter was331

less variable within each fixed PROK:EUK group, and the accuracy and F1 scores could be higher332

than VIBRANT and PPR-Meta in cases where the host percentages were lowest (host:virus:plasmid333

ratio of 2:1:1 for PROK, and host:virus ratio of 2:1 for EUK) (Fig. 4). This is particularly true for334

PPR-Meta in terms of F1 scores, which could rapidly decline to lower than 0.7 when the host sequences335

were less dominant (Fig. 4b). A previous benchmarking study showed that VirSorter had a slightly336

higher specificity than VIBRANT on distinguishing plasmid sequences (Kieft et al., 2020), indicating337

the higher plasmid fraction in the benchmark datasets might degenerate the performance of VIBRANT338

and PPR-Meta. The misclassified sequences by VirSorter were mainly bacteriophages and eukaryotic339

viruses, indicating it suffered from low sensitivity (Fig. S9a). VIBRANT also showed low sensitivity340

in predicting bacteriophages and eukaryotic viruses, while it also frequently classified plasmids and341

prokaryotic genomes as viruses (Fig. S9b). The rapid deterioration of PPR-Meta with increasing342

EUK fraction can be attributed to its low specificity by misclassifying eukaryotes to phages and its low343

sensitivity by misclassifying eukaryotic viruses to chromosomes (Fig. 6b).344

345

Both DeepMicrobeFinder and PPR-Meta are multiclass classifiers, here we also compared the accuracies346

and F1 scores of them on these custom test datasets (Fig. S10). Although DeepMicrobeFinder can347

classify more sequence classes than PPR-Meta, it still outperformed PPR-Meta in all tested cases in348

both accuracies and F1 scores (pairwise Wilcoxon test p-values ≤ 1.9e-06; Fig. S10 & S11).349
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Fig 4. Distribution of (a) accuracy and (b) F1 scores across 20 test datasets for
DeepMicrobeFinder, VirSorter, VIBRANT and PPR-Meta on viral contig classification.
DeepMicrobeFinder received the highest scores in both accuracy and F1 score in all tested scenarios compared to
the other predictors. Increasing the fraction of eukaryotic related sequences didn’t impaired the performance of
DeepMicrobeFinder, but did for the other tools. The dashed black lines indicate where accuracy or F1 score
equals to 0.8. Same benchmarking datasets were used as in Fig. 2.

DeepMicrobeFinder predicted more eukaryotic and viral contigs than reference-based350

predictors351

Reference-based classifiers can suffer from incomplete genomic databases, particularly for complex352

natural environments such as marine or soil systems. To test the performance of DeepMicrobeFinder in353

real metagenomic context, here we examined its performance with the other two sequence classifiers,354

Kaiju (Menzel et al., 2016) and MetaEuk (Levy Karin et al., 2020a), using a 1-300 µm size fraction355

marine metagenomic dataset sampled off the coast of Southern California (Needham et al., 2018). Using356

the co-assembled contigs as the reference, we show DeepMicrobeFinder classified less prokaryotic but357

more eukaryotic, eukaryotic viral and prokaryotic viral contigs than Kaiju and MetaEuk (Fig. 5a).358

Among all the prokaryotic contigs classified by both Kaiju and MetaEuk, 73.6% of them were predicted359

to be prokaryotic by DeepMicrobeFinder, and 11.88%, 10.39%, and 4.14% of them were predicted to360

be eukaryotic, prokaryotic viral and eukaryotic viral sequences, respectively (Fig. 5b). Contigs that361

couldn’t be taxonomically determined by Kaiju (16.41%) or MetaEuk (10.01%) are mainly dominated by362

eukaryotic sequences (57.13% / 38.3%) as predicted by DeepMicrobeFinder (Fig. 5c & 5d). Although363

MetaEuk classified more eukaryotic contigs than Kaiju (21.88% vs 15.26%, Fig. 5a), the latter classified364

more prokaryotic viral contigs (4.38% vs 1.51%, Fig. 5a). This is consistent with the higher percentage365

of prokaryotic viral sequences in the unclassified contigs of MetaEuk than Kaiju (28.86% vs 14.87%,366

Fig. 5c & 5d). By mapping reads to reference contigs, we calculated the read percentages recruited367

by different sequence types. The average eukaryotic read percentage recruited by DeepMicrobeFinder368

(17.86%) is considerably higher than by MetaEuk (13.74%) or Kaiju (9.88%), at the expense of lower369

prokaryotic read percentages (17.24%, 34.36% and 33.71%, respectively, Fig. 5f-h). Similarly, the average370

read percentages of prokaryotic viral and eukaryotic viral sequences recruited by DeepMicrobeFinder371

(7.89%/3.24%) are also higher than MetaEuk (0.75%/0.31%) and Kaiju (2.49%/0.64%) (Fig. 5f-h).372

Notably, though DeepMicrobeFinder assigned less prokaryotic and more eukaryotic reads than other373

classifiers, the relative abundance profiles across the whole time series are highly correlated (Fig. 12a374
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& 12b), and to a less extent for the prokaryotic viral read percentage profiles (Fig. 12c). This is not375

the case for eukaryotic viral read abundance profiles, where Kaiju and MetaEuk are highly correlated,376

but not to DeepMicrobeFinder (Fig. 12d). To sum up, DeepMicrobeFinder is more correlated with377

MetaEuk in eukaryotic read profiles, and more correlated with Kaiju in prokaryotic and prokaryotic378

viral read profiles.379
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Fig 5. Sequence classification and read abundance of a 1-300 µm size fraction marine
metagenomic dataset sampled off the coast of Southern California. Metagenomic contigs were classified
using DeepMicrobeFinder, Kaiju and MetaEuk at a length cutoff of 2 kb, and percentages of different sequence
types were calculated (a). Contigs predicted as Prokaryotes by both Kaiju and MetaEuk (b), and contigs that
were not classified by Kaiju (c) or MetaEuk (d) were further broken down into DeepMicrobeFinder’s classification.
Clean reads were aligned to metagenomic contigs and percentages of mappable reads were calculated (e). Mapped
read percentages were further summarized according to sequence types of reference contigs as predicted by
DeepMicrobeFinder (f), Kaiju (g) and MetaEuk (h). Prokaryotes included both prokaryotic hosts and plasmids.
UnclassifiedViruses were sequences predicted to be viruses but their taxonomy couldn’t be further resolved by
Kaiju or MetaEuk. Same benchmarking datasets were used as in Fig. 2.

Abundant microbial eukaryotes are correlated with potential prokaryotic community380

growth rates381

If we assume higher eukaryotic read percentages can be a proxy of higher eukaryotes-derived particles,382

will higher percentages of eukaryotic reads result in faster prokaryotic community growth? Here we383

calculated the prokaryotic community maximum doubling time using gRodon with species abundance384

correction (Weissman et al., 2021) and found a significant positive correlation between centered log-ratio385

(CLR) transformed eukaryotic read percentages and prokaryotic potential community growth rates386

(Fig. 6a & 6b), suggesting higher relative abundances of eukaryotes might brew more fast-growing387

particle-attached copiotrophs. Significant correlations (p-values < 0.01) can also be observed between the388

relative abundance profiles of prokaryotic and eukaryotic viral sequences, as well as between eukaryotic389

and prokaryotic viral read profiles (Fig. 6a). In contrast, the relative read abundance profiles of390

prokaryotic and prokaryotic viral sequences were negatively correlated with prokaryotic community391

potential growth rates, though this correlation relationship was less significant (Fig. 6a & 6b).392
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Fig 6. Positive correlation of prokaryotic community potential growth rates and eukaryotic read
percentages. Correlation coefficients were calculated between relative abundances of different sequence types
and prokaryotic community potential growth rates (a). Prokaryotic community potential growth rates (b) as a
linear function of centered log-ratio (CLR) transformed read percentages of eukaryotes and prokaryotes. Numbers
in (a) were Pearson’s r correlation coefficients, only significant (p-values ≤ 0.01) correlations were highlighted in
colors. CLR transformation was performed using the mclr function from the SPRING package (Yoon et al., 2019)
before performing correlation or regression studies. The potential growth rate of sample Mar_20 were determined
to be outliers based on the Grubbs test (p-value = 5.4e-08), thus excluded from the regression analysis.

Discussion393

Microbial eukaryotes and viruses infecting them are understudied394

Microbial eukaryotes are prevalent in diverse ecosystems such as host-associated habitats (Parfrey395

et al., 2011), deep-sea benthos (Bik et al., 2012), and geothermal springs (Oliverio et al., 2018), etc.396

Due to challenges in cultivation and whole genome-sequencing of microbial eukaryotes, biodiversity397

surveys of microbial eukaryotes were commonly performed using marker genes, such as the 18S rDNA398

hypervariable V4 or V9 regions (Pawlowski et al., 2012; Amaral-Zettler et al., 2009). The amplicon-based399

analysis provides valuable information on the taxonomy of microbial eukaryotes, while in order to probe400

their metabolic potentials or ecological functions, genomic and transcriptomic information are essential.401

Despite several achievements in collecting microbial eukaryotic genes (Carradec et al., 2018; Vorobev402

et al., 2020), transcripts (Keeling et al., 2014) or single-cell amplified genomes (SAGs) (Sieracki et al.,403

2019) towards a comprehensive microbial eukaryotic database, our knowledge are still limited by the404

availability of diverse microbial eukaryotic genomes ](Burki et al., 2020). With the rapid accumulation of405

metagenomic datasets and availability of binning software, it’s appealing to recover eukaryotic genomes406

from natural microbial communities. EukRep was developed in such a context to identify eukaryotic407

contigs for metagenomic binning (West et al., 2018). This approach has enabled the genome-resolved408

analysis of fungi, protists, and rotifers from human microbiome studies (West et al., 2018; Olm et al.,409

2019). Similar approaches have been applied to marine microbiome studies (Duncan et al., 2020; Delmont410

et al., 2020), which recovered hundreds of microbial eukaryotic MAGs and provided insight into the411

functional diversity and evolutionary histories of microbial eukaryotes beyond the taxonomic information.412

413

Beyond microbial eukaryotes, current viromic studies are biased towards viruses infecting prokary-414

otes. This could be introduced by the skewed distribution of viral genomes in the RefSeq database,415

which is dominated by phages and pathogenic viruses. By Jan 23, 2021, among 10,161 viral reference416
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genomes, there are only 33 records belonging to algae-infecting Phycodnaviridae and 6 belonging to417

protists-infecting Mimiviridae. Both of the two viral families are subgroups of the Nucleocytoplasmic418

Large DNA Viruses (NCLDV) (Iyer et al., 2001). Since most of the commonly used viral predictors are419

trained on the RefSeq viral database, it’s expected that these tools suffered from identifying eukaryotic420

viruses from the test datasets (Fig. 4 & S2). Given the high diversity of protists (Foissner, 1999;421

Slapeta et al., 2005), high throughput metagenomes and single-cell genomes are expected to offer a422

culture-independent solution to rapidly expand the coverage of viral database. For instance, two recent423

studies reconstructed 2,074 and 501 NCLDV MAGs from global environmental metagenomes (Schulz424

et al., 2020; Moniruzzaman et al., 2020), dramatically increased the phylogenetic and functional diversity425

of NCLDVs. Single-cell metagenomics was also employed to identify viruses infecting marine microbial426

eukaryotes (Needham et al., 2019b,a), these studies provided insightful findings of the viral encoded427

proteins and metabolic pathways.428

429

These studies demonstrated that metagenomics and single-cell genomics can be promising in studying430

microbial eukaryotes and viruses infecting them. While most commonly used tools are not optimized in431

classifying eukaryotes (Fig. 2 & S3) or eukaryotic viruses (Fig. 4 & S2). Given the high performance432

of DeepMicrobeFinder and the evidence of abundant eukaryotic contigs in marine ecosystems (Fig. 5433

& 6), we expect it will be a valuable addition to the toolbox of marine ecologists.434

The challenge of classifying prokaryotic host and plasmid sequences435

DeepMicrobeFinder has a relatively lower accuracy in classifying plasmids when compared to the436

classification of eukaryotic or viral contigs (Fig. 2, 3 & 4). The majority of the sequences that were437

misclassified as plasmids were from prokaryotic host genomes (Fig. S7), confirming classifying prokary-438

otic chromosomal and plasmid sequences is a caveat of DeepMicrobeFinder (Fig. 1). In comparison,439

the other tested plasmid classifiers suffered from both prokaryotic and eukaryotic sequences as we have440

benchmarked (Fig. 3, S5 & S6). It’s noteworthy that this marginal advantage can be crucial in441

natural environments, such as the marine environments as we mentioned here (Fig. 5 & 6), where442

eukaryotic sequences can have a substantial impact on the performance of plasmid sequence classifiers.443

This also indicates that it is achievable to separate plasmid sequences from eukaryotic sequences solely444

based on patterns of oligonucleotides, and current plasmid predictors can benefit from using a more445

comprehensive training dataset including eukaryotic sequences.446

447

It is understandable given the higher genome complexity of eukaryotes than prokaryotes (Lynch &448

Conery, 2003), such as the coding density, prevalence of introns and repetitive sequences, etc. In contrast,449

it’s challenging to classify plasmids and prokaryotic chromosomal sequences for all the tested plasmid450

predictors (Fig. 3). The reasons can be manifold, but plasmid transmission among microbial hosts and451

plasmid-chromosome gene shuffling can be two fundamental ones. The host range of plasmids is variable,452

it can be within closely related species for narrow host range plasmids, or across distant phylogenetic453

groups for broad host range plasmids (Jain & Srivastava, 2013). Broad host range plasmids can be454

important drivers of the gene flux among host microbes in natural environments (Heuer & Smalla,455

2007; Wolska, 2003; Davison, 1999). For instance, in natural soil microbial communities, the IncP- and456

IncPromA-type broad host range plasmids were found to be able to transfer from proteobacteria to457

diverse bacteria belonging to 11 bacterial phyla (Klümper et al., 2015). When plasmid carriage could in-458

crease the fitness of the hosts, such as improving host survival with antibiotic resistance, it can be rapidly459
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adopted and persistently maintained in natural microbial communities (Li et al., 2020; Bellanger et al.,460

2014). On the other hand, when the maintenance of plasmids imposed a high fitness cost on the hosts,461

plasmids or plasmid-borne genes could be lost as in the process of purifying selection (Hall et al., 2016).462

Interestingly, studies also suggested sometimes this fitness cost could be ameliorated by compensatory463

evolution (Millan et al., 2014; Harrison et al., 2015; Loftie-Eaton et al., 2017), which was hypothesized464

to be the major factor of plasmid survival and persistence (Hall et al., 2017). Plasmid carriage also465

increases the chance of plasmid-chromosome genetic exchange mediated by SOS-induced mutagenesis466

citeprodriguez-beltranHorizontalGeneTransfer2021 or mobile genetic elements such as transposons and467

integrons, etc citepfrostMobileGeneticElements2005,rodriguez-beltranHorizontalGeneTransfer2021. For468

instance, genes carried by transposons or in the variable regions were also frequently found on plas-469

mids (Eberhard, 1990; Zheng et al., 2015). Thus, the permissive transfer of plasmids across diverse470

hosts and the plasmid-chromosome gene flow pose a challenge for current plasmid classifiers. The471

oligonucleotide-based approaches might be complemented by gene-centric approaches using plasmid472

signature genes or enriched gene functions, such as genes involved in mobilization or conjugation. In473

addition, a comprehensive plasmid database is also crucial for model training, and plasmid enriched474

metagenomics (plasmidome) can be a promising way to screen plasmids from environmental samples475

(Shi et al., 2018).476

477

Ecological influence of microbial eukaryotes on the prokaryotic community478

Marine water is a continuum of particles, which are aggregates of diverse planktonic detritus and479

minerals, providing nutrient rich microenvironments in the oligotrophic oceans (Simon et al., 2002).480

Size-fractionated metagenomes are commonly used to study microbial lifestyles in aquatic environments.481

Prokaryotes commonly found in larger size fractions (>1 µm) prefer a particle-associated (PA) lifestyle,482

while microbes dominating the smaller size fraction lead a free-living (FL) lifestyle (Grossart, 2010).483

Bacterial production experiments showed that though PA microbes were less abundant, their growth484

rates could be 20-fold higher than their FL counterparts (Friedrich et al., 1999). Fast-replicating PA485

bacteria were also tightly linked to chlorophyll a, suggesting their growth might be fueled by particulate486

organic matter (POM) derived from phytoplankton (Friedrich et al., 1999). PA microbes are also found to487

be associated with the degradation of hydrocarbons and lipid materials derived from eukaryotic plankton488

(Yoshimura et al., 2009; Wei et al., 2013; Fontanez et al., 2015), playing an important role in the POM489

remineralization and biogeochemical cycles. Nutrient-demanding copiotrophs (here Vibrio, Roseovarius,490

Polaribacter, etc, according to Needham et al. (2018)) are usually PA microbes, while oligotrophs (here491

SAR11, Prochlorococcus, etc) are FL adapted to nutrient poor environments (Giovannoni et al., 2014).492

Copiotrophs encode more genes involved in carbohydrate and amino acid transport and metabolism493

than oligotrophs (Weissman et al., 2021), and can be classified solely based on the minimum doubling494

time (<5 hours), which correlates with the codon usage bias (CUB) of highly expressed genes (such as495

ribosomal genes) due to the selection for translational efficiency (Vieira-Silva & Rocha, 2010; Long et al.,496

2021; Weissman et al., 2021). Thus, the increase of eukaryotic read proportion can be used as a proxy of497

higher POM availability, which promotes the growth of fast-growing particle degraders and changes the498

prokaryotic community composition. Conversely, using a species abundance aware community growth499

rate prediction method (Weissman et al., 2021), as we have done here, one can also probe the relative500

nutrient or POM status of given samples based on the predicted potential community growth rates from501

metagenomes.502
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Conclusions503

DeepMicrobeFinder as a versatile multi-class classifier enables the accurate classification of five different504

metagenomic sequence types in one shot, meanwhile, it avoids the time-consuming and error-prone505

preprocessing steps that could potentially propagate errors to the final classification. The inclusive506

modeling of all common sequence types in metagenomes also makes DeepMicrobeFinder attain better507

performance than the other state-of-the-art individual predictors due to reduced cross misclassifications.508

We also detected high abundance of marine eukaryotes in a daily time-series dataset, and further showed509

that eukaryotic read fractions were positively correlated with prokaryotic community growth rates.510

Our case study indicates that both host and viral sequences are essential components in the cellular511

metagenomes, and robust ecological patterns can be obtained with DeepMicrobeFinder even for coarse512

sequence types. We argue that by using DeepMicrobeFinder as a preliminary classification step on513

metagenomic/viromic assemblies, one can further focus on the interested sequence types for the following514

analysis, such as metagenomic binning of prokaryotic or eukaryotic contigs, comparative genomic515

analysis of viral or plasmid sequences, etc. We conclude DeepMicrobeFinder achieves higher performance516

than the other benchmarked predictors, and its application can facilitate studies of under-appreciated517

sequence types, such as microbial eukaryotic or viral sequences.518

Availability of data and materials519

The source code and user guide are available at https://github.com/chengsly/DeepMicrobeFinder.520

Test datasets and scripts used to run different predictors have been deposited at figshare (available at521

dx.doi.org/10.6084/m9.figshare.14576193). Raw reads for case study were deposited at NCBI under522

the umbrella bioproject PRJNA739254. Additional details of data and analysis are available from the523

corresponding authors upon request.524
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List of abbreviations542

Abbreviations used in this manuscript:543

Abbreviations Definition
AUC area under the ROC curve
ROC receiver operating characteristics
SSU rRNA small subunit ribosomal RNA
REOs ribosome-encoding cellular organisms
CEOs capsid-encoding organisms
HMM hidden Markov model
CNN convolutional neural network
ESP environmental sample processor
HGT horizontal gene transfer
CLR centered log-ratio
NCLDV nucleocytoplasmic large DNA viruse
MAG metagenome-assembled genome
FL free-living
PA particle-associated
CUB codon usage bias
POM particulate organic matter

544

Supporting information545

Supplemental Table S1. The composition of test datasets used in this study for benchmark-546

ing different tools. PROK includes prokaryotic genomes, plasmids and prokaryotic viruses; EUK in-547

cludes eukaryotic genomes and viruses. Prok: prokaryotic genomes, ProkVir: prokaryotic viruses/phages,548

Plas: plasmids, Euk: eukaryotic genomes, EukVir: eukaryotic viruses. Test files were named using the549

number of sampled sequences from each sequence class following the rule: Prok_ProkVir_Plas_Euk_Eu-550

kVir_test.fasta, which can be found at dx.doi.org/10.6084/m9.figshare.14576193.551

Supplemental Figure S1. Schematic representation of the multi-class CNN structure used552

in this study. The hyperparameters used for each layer are: a) 64 filters with a kernel size of 6 were553

used for convolution layer 1, followed by relu activation, b) the stride and pooling size were set to 2 for554

max pooling layer 1, c) 128 filters with a kernel size of 3 were used for convolution layer 2, followed555

by relu activation, d) the stride was set to 1 and the pooling size was set to 2 for max pooling layer 2,556

e) 256 filters with a kernel size of 2 were used for convolution layer 3, followed by relu activation, f)557

a dropout threshold of 0.1 was used for drop out layers, g) 500 hidden units were chosen for the first558

dense layer, followed by relu activation, h) 5 hidden units were chosen for the last dense layer, followed559

by softmax activation.560

Supplemental Figure S2. The distribution of viral confidence scores for (a) VirFinder and561

(b) PPR-Meta. For both predictors, the same dataset was used and the predictions were performed562
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with default parameters. VirFinder uses VF-Scores to determine the likelihood of input sequences to be563

viral or not, and PPR-Meta uses phage scores to discern viruses from host chromosomes and plasmids.564

Both predictors achieved a high recall for prokaryotic viruses, while the confidence scores of eukaryotic565

viruses were more evenly spreaded across all confidence regions. Besides, both predictors achieved a566

high performance in distinguishing prokaryotic host sequences from prokaryotic viruses, but less so for567

eukaryotic host sequences.568

Supplemental Figure S3. Performance of DeepMicrobeFinder and EukRep on eukaryotic569

sequence classification. Both the accuracy (a) and F1 score (b) were compared based on 20 designed570

test datasets. The sequence class composition of the 20 test datasets can be found in supplemental table571

1. Values on top of the pairwise comparisons are Bonferroni adjusted t-test p-values.572

Supplemental Figure S4. The distribution of misclassified sequence types by EukRep. The573

sequence composition of these datasets can be found in supplementary table Supplemental Table S1.574

Supplemental Figure S5. Performance of DeepMicrobeFinder, PlasFlow, and PPR-Meta575

on plasmid sequence classification. Both the accuracy (a) and F1 score (b) were compared based576

on 20 designed test datasets. The sequence class composition of the 20 test datasets can be found in577

supplemental table 1. Values on top of the pairwise comparisons are Bonferroni adjusted t-test p-values.578

The significance of the overall ANOVA test was shown on the bottom left corner.579

Supplemental Figure S6. The distribution of misclassified sequence types by PlasFlow580

(a) and PPR-Meta (b). The sequence composition of these datasets can be found in supplementary581

table S1. For each dataset, the total number of test sequences is 1000.582

Supplemental Figure S7. The distribution of misclassified sequence types by DeepMi-583

crobeFinder. Sequences were classified into 5 classes (a) or 4 classes by collapsing prokaryotic hosts and584

plasmids into prokaryotes (b). The sequence composition of these datasets can be found in supplementary585

table Supplemental Table S1. For each dataset, the total number of test sequences is 1000.586

Supplemental Figure S8. Performance of DeepMicrobeFinder, VirSorter, VIBRANT,587

and PPR-Meta on viral sequence classification. Both the accuracy (a) and F1 score (b) were588

compared based on 20 designed test datasets. The sequence class composition of the 20 test datasets can589

be found in supplemental table 1. Values on top of the pairwise comparisons are Bonferroni adjusted590

t-test p-values. The significance of the overall ANOVA test was shown on the bottom left corner.591

Supplemental Figure S9. The distribution of misclassified sequence types by VirSorter592

(a) and VIBRABT (b). The sequence composition of these datasets can be found in supplementary593

table Supplemental Table S1. For each dataset, the total number of test sequences is 1000.594

Supplemental Figure S10. Distribution of (a) accuracy and (b) F1 scores across 20595

test datasets for DeepMicrobeFinder and PPR-Meta on multiclass contig classification.596

DeepMicrobeFinder received higher scores in both accuracy and F1 score in all tested scenarios compared597

to PPR-Meta. DeepMicrobeFinder showed improved performance with increasing fractions of eukaryotic598

related sequences, while the performance of PPR-Meta severely degraded.599
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Supplemental Figure S11. Performance of DeepMicrobeFinder and PPR-Meta on mul-600

ticlass sequence classification. Both the accuracy (a) and F1 score (b) were compared based on601

20 designed test datasets. The sequence class composition of the 20 test datasets can be found in602

supplemental table Supplemental Table S1.603

Supplemental Figure S12. Correlation coefficients of Prokaryotic (a), Eukaryotic (b),604

ProkaryoticViral (c), and EukaryoticViral (d) sequence relative abundances of different605

sequence classifiers. Coefficients highlighted in colors are significant ones (p-value < 0.01).606
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