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Abstract 31 

The efficiency of sensory coding is affected both by past events (adaptation) and by 32 

expectation of future events (prediction). Here we employed a novel visual stimulus paradigm 33 

to determine whether expectation influences orientation selectivity in the primary visual cortex. 34 

We used two-photon calcium imaging (GCaMP6f) in awake mice viewing visual stimuli with 35 

different levels of predictability. The stimuli consisted of sequences of grating stimuli that 36 

randomly shifted in orientation or systematically rotated with occasionally unexpected 37 

rotations. At the single neuron and population level, there was significantly enhanced 38 

orientation-selective response to unexpected visual stimuli through a boost in gain, which was 39 

prominent in awake mice but also present to a lesser extent under anesthesia. We 40 

implemented a computational model to demonstrate how neuronal responses were best 41 

characterized when adaptation and expectation parameters were combined. Our results 42 

demonstrated that adaptation and prediction have unique signatures on activity of V1 neurons.  43 

  44 
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Introduction 45 

There is often more information in the sensory environment than the brain has the 46 

capacity to fully process. To cope with this information overload, and to enhance the efficiency 47 

of sensory processing, neuronal circuits use strategies such as adaptation1,2 attention3,4, and 48 

prediction5,6. Sensory adaptation is known to increase neuronal coding efficiency by taking into 49 

account the statistics of past sensory input1,7,8. Likewise, selective attention enhances neural 50 

responses to task-relevant features3,9. Similarly, predictions about specific future stimuli, 51 

formed using Bayesian inference, could enhance information processing5,6. Based on this 52 

predictive coding view of sensory processing, the mammalian cortex is constructed as a 53 

predictive machine which iteratively generates an internal model of its external environment 54 

based on the statistical regularities of incoming sensory inputs.  55 

Predictive coding provides a simple theoretical view of perception which is supported by 56 

a body of work in human neuroimaging and behavioral studies10,11. The classic mismatch 57 

negativity effect has become a hallmark of this literature12,13. When encountering an 58 

unexpected stimulus, the brain generates a significantly larger M/EEG evoked response 59 

compared with the response following an expected stimulus11. Decoding of EEG activity in 60 

humans has revealed expectation shapes the representation of visual information in the 61 

response14–18. However, non-invasive neuroimaging techniques reflect overall population 62 

activity and it is unclear how sensory representations are affected by expectation at the single-63 

neuron level. Recent work suggests that prediction affects single neuron response across a 64 

number of sensory modalities19–24. Computational modelling suggests that predictions are 65 

inhibitory copies of the expected stimulus passed down the cortical hierarchy to the earliest 66 
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sensory regions6, where they are integrated with incoming sensory inputs. If a stimulus is 67 

expected, the inhibitory copy should minimize the neuronal response, allowing the stimulus to 68 

be efficiently encoded. By contrast, any mismatch between the expected and presented 69 

stimulus should result in a prominent response.  70 

Here, we tested key elements of predictive coding theory at the neuronal level in mouse 71 

primary visual cortex (V1). We used two-photon calcium imaging (GCaMP6f) in awake mice 72 

that were exposed to sequences of visual stimuli at different levels of predictability, to directly 73 

test how expectation affects the responses of individual V1 neurons.  We characterized how 74 

prediction shapes orientation selectivity in V1 neurons and how changes in orientation tuning 75 

affect the amount of information individual neurons and neuronal populations carry about the 76 

sensory input. We demonstrate that unexpected stimuli produce a higher gain in neuronal 77 

tuning to the preferred stimulus, resulting in increased information at the single-neuron and 78 

population level. This enhanced coding of unexpected stimuli was prominent in awake mice 79 

but also present to a lesser extent in anesthetized mice. Finally, we used a computational 80 

model to quantify the contribution of adaptation and expectation to neuronal responses at the 81 

single trial level.  82 

Results 83 

We combined experimental and modelling approaches to determine how prediction 84 

affects neuronal responses in V1 in mice. We asked whether orientation selectivity of individual 85 

neurons changes with the expectations about subsequent stimuli. To do this, we presented 86 

sequences of oriented gratings with different levels of predictability to awake mice (N = 5, 23 87 

sessions, 1693 neurons) while imaging Layer 2/3 V1 activity using two-photon excitation 88 
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microscopy (Figure 1ABC, Movie 1). The stimulus sequence was adapted from the Allen Brain 89 

Institute’s Brain Observatory paradigm25. This consisted of a sequence of full-screen gratings 90 

(0.0034 c/deg, 50% contrast) oriented between 0° and 150° in 30° steps, presented at 4 Hz 91 

with no inter-stimulus interval. In the Random condition (Figure 1B), the orientation of each 92 

grating was uncorrelated with the preceding gratings (i.e., white noise stimulation). To 93 

establish a prediction about grating orientation, in the Rotating condition the grating rotated 94 

either clockwise or anti-clockwise for 5 to 9 presentations (in 30° step), before jumping to an 95 

unexpected random orientation. In this condition, Expected events occurred during the rotating 96 

sequence whereas the Unexpected events occurred when the sequence made a random jump 97 

to an unpredicted orientation. For unexpected events the jump from the predicted orientation 98 

was to a random orientation, identical to the correlation statistics for the stimulus sequence 99 

embedded in the Random condition.  100 

 101 

 102 

  103 
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 104 

Figure 1. Experimental procedure for testing the predictive coding account of visual perception 105 
in mouse V1 neurons. (A) Schematic of the Random and Rotating sequences of oriented 106 
gratings. (B) In the Random condition, the orientation of each stimulus was drawn from a 107 
pseudo-random distribution (from 0 to 150° in 30° steps). In the Rotating condition, the gratings 108 
rotated clockwise (i.e., 0° -> 30° -> 60°) or anti-clockwise (0° -> 150° -> 120°) for 5-9 109 
presentations (black dots) before randomly jumping to an unexpected orientation (indicated by 110 
the red dots).  (C) The experimental apparatus for using two-photon calcium imaging in 111 
combination with visual stimulation. (D)  A mean motion-corrected two-photon image from a 112 
single session, with individual neurons highlighted in red. (E). Time course of activity in the 113 
corresponding neurons highlighted in D in response to different grating orientations. The right 114 
panels show the average response from 0 - 1000 ms after stimulus presentation. Points are 115 
fitted with a circular Gaussian with a baseline offset. The key parameters of the fits are given 116 
as the gain (height) and width of the Gaussians for each neuron. Shading and error bars show 117 
∓1 standard error over trials. (F). Distribution of orientation selectivity index (see Methods) for 118 
all neurons in the three stimulus conditions.  119 
 120 
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 121 

Movie 1. Example sequence of gratings in the Rotating condition. The grating rotates in one 122 
direction for 4-9 presentations before jumping to a random orientation.  123 
 124 

Prediction affects single neuron activity 125 

In line with previous work, a large proportion (462/1693) of the imaged neurons showed 126 

orientation selectivity for this spatial frequency (one-way ANOVA p < 0.05). We first examined 127 

how orientation selectivity of individual neurons was affected by stimulus predictability (Figure 128 

2). The three example neurons shown in Figure 2A all exhibit orientation selectivity, which 129 

becomes evident from ~85-100 ms after stimulus onset. The first neuron responded maximally 130 

to gratings at 0° (horizontal), with slight suppression for the orthogonal orientations. During 131 

presentation of the Expected sequence, modulation of neuronal activity began (0 ms). This 132 

pre-stimulus modulation was most likely due to the rotating nature of the sequence: the 133 

stimulus presented at -500 ms was orthogonal to that presented at 0 ms, meaning that in the 134 

0° condition (the anti-preferred), the preferred stimulus was presented at -500 ms. The rotating 135 

nature of the stimuli during the Expected sequence thus produced a specific temporal profile in 136 

neuronal response. For this reason, here we focus on the Random and Unexpected stimuli 137 

where the stimuli presented immediately before 0 ms were uncorrelated with the current 138 

stimulus.   139 
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 140 
Figure 2. Expectation affects orientation-selective responses of individual V1 neurons. (A) The 141 
time course of three example neurons (each neuron is a row) in response to oriented grating 142 
stimuli in the expected, unexpected and random conditions. The right panels in each row show 143 
orientation tuning curves given by the averaged response from 250 to 1000ms after stimulus 144 
onset for that neuron (grey shading in other panels). The solid line is a fitted Gaussian function 145 
with a constant offset. (B) Same as A, but shows activity for all orientation-selective neurons 146 
(N= 463) aligned to their preferred orientation to allow averaging. Right panel: Same as B but 147 
showing the population response. (C)  Response to the preferred orientation across the three 148 
conditions for all orientation-selective neurons. The time courses are smoothed with a 149 
Gaussian with a 3.33 ms kernel for presentation. The color surrounding each box matches the 150 
colors in A. (D). Difference in response to the Unexpected minus Random condition at the 151 
preferred orientation for all neurons. Green dots show neurons (N=133) significantly modulated 152 
by expectation; grey dots are non-modulated neurons. (E) Time-course of orientation-153 
selectivity (circular mean) for the neurons significantly modulated by expectation (N = 263). 154 
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Black horizontal line indicates conditions are statistically different determined using non-155 
parametric cluster-corrected procedures (see Methods). (F). Summary statistics for fitted 156 
Gaussian parameters across the population for the different sequence types. * indicates p < 157 
0.05. Across all panels error bars and shading represent ± 1 standard error of mean.  158 
 159 

The main effect of prediction is evident from the example neurons illustrated in Figure 2. 160 

There was a systematic increase in neuronal responses to the preferred orientation, and a 161 

decrease to the anti-preferred orientation, in the Unexpected compared with the Random 162 

condition. This response profile is consistent with a positive gain modulation for unexpected 163 

gratings. The overall population response (aligned to the preferred orientation) showed the 164 

same pattern of results (Figure 2C), with an increased response to the preferred stimulus in 165 

the Unexpected versus Random condition. The response of 226 neurons (11%) was 166 

significantly modulated in the Unexpected condition relative to the Random condition (one-way 167 

ANOVA, p < 0.05). Of these, all but two showed a larger response in the Unexpected condition 168 

(Figure 2D), and this increase in selectivity emerged shortly after stimulus presentation (Figure 169 

2E). 170 

We next determined how orientation selectivity was affected by prediction. To do this, 171 

we fitted circular Gaussian tuning functions to separately extract amplitude and width 172 

parameters of orientation selectivity for each neuron (Figure 2E). The amplitude (or gain) of the 173 

tuning curve was significantly greater in the Unexpected condition than in the Random 174 

condition (t(961) = 34.01 p < 0.001). By contrast, there was no difference in the width between 175 

these two conditions, (t(961) = 0.45, p = 0.65). These results are consistent with our recent 176 

work examining how prediction affects orientation selectivity measured non-invasively in 177 
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humans14,15. A control condition showed these effects were not due to the systematic rotations 178 

that followed Unexpected gratings (Supplementary Figure 1).  179 

Prediction affects population coding of orientation 180 

In our initial set of analyses, we found that expectation affected orientation selectivity of 181 

single V1 neurons. We next examined how enhanced orientation selectivity for unexpected 182 

stimuli observed at the single-neuron level in turn shaped the information contained within the 183 

population response. Previous human neuroimaging studies using multivariate pattern analysis 184 

have shown that expectation affects classification accuracy14–17,26. To determine how these 185 

findings generalize across species, we applied a similar multivariate pattern analysis to the 186 

neuronal population data. We used all imaged neurons (N = 1954; 23 imaging sessions), 187 

including both orientation-selective and non-orientation selective neurons to decode the 188 

presented orientation using inverted/forward encoding modelling (see multivariate analysis 189 

section in Methods for details). We used a forward (or inverted) encoding approach to 190 

determine the amount of orientation-selective information contained in the population activity 191 

on a trial-by-trial basis (Figure 3A-D). In line with the human work14–17,26, this method uses an 192 

encoding model to estimate neuronal selectivity to each orientation, and in a second step 193 

inverts these weights to reconstruct the stimulus representation from the population response 194 

on each trial.  195 

We first examined the effect of different population sizes of neurons on decoding 196 

accuracy. To do this, we selected groups of neurons and used a 20-fold cross-validation 197 

procedure to train and test the classifier at each time point around stimulus presentation. This 198 

procedure was repeated 24 times with different subsets of neurons selected. The same 199 
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decoding procedure was used as in the previous analysis, except that it was performed on the 200 

average neuronal responses from 250 to 1000 ms (i.e., the post-stimulus epoch over which 201 

decoding accuracy was best), and different sized pools of neurons were selected (2 to 1600, in 202 

2 neuron steps). This analysis again showed that the presented orientation was decoded 203 

significantly better in the Unexpected versus the Random condition. This effect emerged in 204 

relatively few neurons (~20). The Expected condition also increased decoding accuracy 205 

relative to the Random condition, but there was a smaller increase than in the Unexpected 206 

condition and this did not emerge until a population of ~100 neurons was included.  207 

  208 
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 209 

Figure 3. Effects of prediction on information carried by multivariate population activity using 210 
forward encoding modelling. Encoding was performed separately on groups of 50 neurons and 211 
500 neurons) at a time (with 24 permutations of different neuronal combinations). (A). The 212 
basis function (grey lines) in response to two orientations (events) which produce the regressor 213 
weights. (B). Beta weights for four example neurons (each color is a neuron) for each of the 214 
regressors found from a training set of data. (C). Activity for the four neurons (color-matched 215 
with those in B) in three test trials. (D). Inverting the Beta weights (B) and multiplying them with 216 
the test data from the four neurons produces the predicted orientation response.  The 217 
difference between the predicted and presented orientation for a given stimulus is the 218 
orientation error. (E). Histograms of decoded orientations for the three conditions from the 219 
forward encoding results. The vector sum of these histograms was taken as the decoding 220 
accuracy for each condition. The colored numbers show the vector sum for the corresponding 221 
curves. (F). Decoding accuracy scales with the number of included neurons. The classifier was 222 
trained and tested on the average response from 250 to 1000 ms following stimulus 223 
presentation, with different numbers of neurons included (24 permutations of different 224 
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neurons). The colored horizontal lines indicate the sign-flipped cluster permutation (N=2000, 225 
cluster p < 0.05, alpha p < 0.05) comparing Random vs. Unexpected (green line) and Random 226 
vs. Expected (red line).  (G). Time-resolved classification from forward encoding modelling (N= 227 
500 neurons) with 24 permutations of different groups of neurons.  In all panels, shading/error 228 
bars indicates ±1 standard error of the mean across permutations.  229 
 230 

Predictive coding under anesthesia 231 

Previous work on expectation violations in humans has reported larger neural 232 

responses to unexpected than to expected stimuli during sleep27,28, in different attention 233 

states15,29, when individuals are in a coma30  or vegetative state31–33 or under anesthesia34. 234 

These findings suggest that the prediction errors can be generated across various states of 235 

consciousness but are modulated by global brain state. We therefore asked whether the 236 

prediction error effects we found here for individual neurons in area V1 were also present 237 

under anesthesia. The same stimulus paradigm was used but under isoflurane anesthesia (N = 238 

4 animals). Consistent with previous studies35, a lower proportion of neurons (273/ 577) 239 

showed orientation-selective responses in any of the experimental conditions relative to the 240 

awake experiments. Despite this, however, prediction errors had a similar effect on orientation 241 

selectivity when animals were anesthetized (Figure 4AB). The amplitude of orientation 242 

selectivity was significantly enhanced in the Unexpected relative to the Random condition 243 

(t(272) = 14.10, p < 0.0001). Again, as in the awake animals, there was a small but non-244 

significant decrease in the width of the tuning curve in the Unexpected condition relative to the 245 

Random condition (Figure 3D, t(272) = 1.67, p = 0.10).   246 

  247 
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 248 

Figure 4. Expectations affect the gain of orientation-selective V1 neurons under anesthesia.  249 
(A) The time course of all orientation-selective neurons (N = 273) aligned to their preferred 250 
orientation to allow averaging.  Shading indicates ∓ 1 standard error of the mean across 251 
neurons. (B) Orientation tuning curve of the population from the three expectation conditions, 252 
averaged across an epoch from 0 to 1,000 ms after stimulus presentation. The solid line is a 253 
fitted Gaussian function with a constant offset. Summary statistics for fitted Gaussian 254 
amplitude (C) and width (D) in the different conditions. (E) Comparison of the “surprise” effect 255 
(Unexpected events minus Random events) comparison between awake and anesthetized 256 
animals. Panels B-C error bars indicate ± 1 standard error of the mean across neurons. 257 
 258 
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In humans, anesthesia reduces the magnitude of the effect of prediction error on neural 259 

responses30. We therefore calculated the “surprise” effect by subtracting the amplitude of the 260 

Gaussian tuning curve for the Unexpected condition from that of the Random condition for 261 

each neuron (Figure 5E). A value larger than 0 indicates that the neuron’s orientation 262 

selectivity was enhanced in the Unexpected condition. There was a slightly, but non-263 

statistically significant, larger Surprise effect in awake animals than in those that had been 264 

anesthetized (t(733)=1.35, p = 0.18) . This suggests individual V1 neurons’ orientation-265 

selective responses to violations of expectation are modulated by conscious state.  266 

A computational model quantifies the relative contribution of adaptation and prediction 267 

on coding efficiency  268 

The models of predictive coding state that high-level cortical areas pass predictions, 269 

which are inverse copies of the expected stimulus, to the lower-level areas5,6. According to this 270 

framework, only a small neuronal response is required for representation if a stimulus matches 271 

the expectation. This is reminiscent of the effect of adaptation on neuronal representation1,8. 272 

Both adaptation and prediction rely on the statistics of the sensory input. While adaptation 273 

relies on the statistics of the recent history of stimulation, prediction is thought to use the 274 

statistics to extract future patterns. We created a computational model of orientation 275 

processing to quantify how adaptation and prediction interact to determine neural coding 276 

efficiency. The model is based on a number of tuned orientation-selective neurons maximally 277 

sensitive to different orientations (Figure 5A). The neurons respond proportionally based on 278 

their sensitivity to the presented orientation. We incorporated two sources of inhibition: 279 

adaptation (in response to the previously-presented stimulus) and expectation (in response to 280 
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the predicted future stimulus). Similar to previous work36–39, adaptation provides a gain 281 

modulation to neuronal orientation selectivity based on the response to the preceding stimulus 282 

(green dots Figure 5A). Prediction, on the other hand, affects neuronal responses by producing 283 

an inverse copy of the expected orientation (red line). The modulation of stimulus sensitivity is 284 

consistent with previous work which found that (i) uncommon stimuli result in stimulus-specific 285 

adaptation in auditory cortex40 and (ii) V1 population response adapts to high level stimulus 286 

statistics in a homeostatic manner41. To account for commonly seen long-lasting effects of gain 287 

modulation on orientation sensitivity42,43, the model allows sensitivity to recover gradually over 288 

a number of trials, and thus to predict serial dependency effects (Supplementary Figure 2).  289 

  290 
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 291 

 292 
Figure 5. Computational model for explaining variance in the neuronal activity by incorporating 293 
gain modulation from prediction and adaptation effects. The model consists of a bank of six 294 
neurons maximally sensitive to different orientations.  (A) The four panels show four sequential 295 
trials (top to bottom) in the Rotating condition. The model’s sensitivity profiles (C, black curves) 296 
determine their response (red dots) to the presented orientation (black vertical line). The 297 
response to the previous stimulus is multiplied by the adaptation gain factor and modulates the 298 
sensitivity of the channels on the next trial (yellow line). The expectation gain (pink line) is 299 
given by the inverse copy of the response to the expected orientation which is given by a 300 
circular Gaussian function. (D) The model’s predicted response to orientations presented 301 
around their preferred orientation in the three stimulus conditions. All neurons were aligned to 302 
their preferred orientation and collapsed together. Dots indicate the responses of the neurons 303 
and the curves are fitted Gaussian functions. (E) Fitted Gaussian values to the model’s 304 
responses for the different stimulus conditions. (F) An example of regressors (generated by the 305 
model’s response to the oriented stimulus in one session). The response is determined by the 306 
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expectation and adaptation states as well as the presented orientation. The first 10 trials come 307 
from the Random condition, and the following trials come from the Rotating condition. (G) 308 
Ridge regression results from when the model was used to predict response to the stimulus in 309 
the Expected sequence with different levels of modulation from prediction. The regressor 310 
(orientation) with the highest beta weight was chosen for each neuron (N= 228 which showed 311 
a response modulated by condition (Figure 2)).  312 
 313 

We presented sequences of orientations in both Random and Rotating conditions to the 314 

model to determine whether the model accurately predicts the observed changes in orientation 315 

selectivity with expectation. Because there are two sources of gain (adaptation and 316 

expectation) the model assumes an equilibrium of gain modulation is available to the system to 317 

allow it to maintain population homeostasis41. To this end, in the initial model we implemented 318 

0.5 a.u. of gain available, which was varied in the two stimulus conditions. In the Random 319 

condition, the expectation gain was set to 0 a.u and the adaptation gain was set to 0.5 a.u. 320 

because the stimulus sequence did not contain any predictability. Whereas, in the Rotating 321 

condition, the gain for both expectation and adaptation were set to 0.25 a.u. We re-aligned 322 

neurons to their preferred orientation and determined their response to stimuli under different 323 

conditions (Figure 5B) by fitting the same Gaussian to the results (Figure 5C). Consistent with 324 

the data, in the model the gain of orientation selectivity increased in the Unexpected condition 325 

relative to the Expected and Random conditions. The Unexpected trials resulted in greater 326 

orientation selectivity compared with Unexpected trials as the sensitivity to the stimulus was 327 

reduced for a different orientation (the predicted grating orientation) than the one that was 328 

actually presented. There was no difference in the width of the representations. The model, 329 

therefore, produced a qualitative fit consistent with the effects of expectation on V1 orientation 330 

selectivity.  331 
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We next determined whether the model provided a quantitative fit to the neuronal 332 

activity (Figure 5E). This analysis assessed whether the model accurately predicted the trial-333 

by-trial variability in the observed neuronal response and determined the relative value of the 334 

expectation and adaptation gain parameters. To do this, we used the model to generate 335 

predictions about neuronal responses which we regressed against the actual data for each 336 

neuron. Specifically, for each experimental session for the awake mice, we presented the 337 

model with the same orientation sequence the mouse viewed and this in turn generated a 338 

predicted response for each simulated neuron on every trial.  339 

We found that more variance in the trial-by-trial activity of neurons could be explained 340 

when the model incorporated inhibition from expectation. We presented the orientation 341 

sequences from the Rotating condition to the model with three different gain responses for 342 

expectation. With no gain only the presented stimulus determined the response of the model, 343 

and as we increased the gain to 0.25 and 0.75 a.u. more inhibition from expectation increased 344 

the model’s fit with the data. We used ridge regression to determine beta weights for each of 345 

the six regressors (orientations) for the three different gain settings for each neuron. We 346 

focused our analysis on the neurons identified previously which were significantly modulated 347 

by the prediction condition (Figure 2DF).  348 

The adaptation model showed no increase in ability to explain neuronal activity with 349 

increasing gain (one-way ANOVA, F(4,900) = 0.52, p = 0.72). However, explanatory power of 350 

the expectation-only model greatly increased with increasing levels of gain (one-way ANOVA, 351 

F(4,900) = 6.18, p < 0.001). Furthermore, the model that incorporated a moderate amount of 352 

adaptation (0.25) with varying degrees of expectation gain best predicted the neuronal 353 
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response. A 3 (Model type; Adaptation, Expectation, Combined model) × 5 (Gain level; 354 

0,0.2,0.4,0.6,0.8,1.0) repeated measures ANOVA confirmed this observation showing that the 355 

type of model significantly affected variance explained (F(2,450) = 4.22, p = 0.02) in addition to 356 

the amount of Gain (F(4,900) = 11.55, p < 0.001). These factors significantly interacted 357 

(F(8,1800) = 2.03, p = 0.04) showing that the difference in explanatory power between the 358 

models increased with increasing gain. Follow-up tests showed while the expectation model 359 

did not explain significantly more variance than the adaptation model across all gain levels (p = 360 

0.13), the combined model did (p = 0.004).  361 

Predictions repels perception away from expected orientation 362 

Finally, we examined a unique prediction of the model; namely that the population 363 

representation of orientation should be biased away from the expected orientation. We 364 

reasoned that similar to the adaptation aftereffect37,44, predictions should inhibit the gain of the 365 

expected orientations and in turn produce a bias in the participant’s judgment of orientation. 366 

These gain modulation models predict the tilt-aftereffect, in which perception is biased away 367 

from a previously presented orientation. Furthermore, because the gain reductions are 368 

orientation-selective and the channels are 30 degrees, the bias should be largest when the 369 

expected orientation is approximately 30 degrees from the presented orientation. To determine 370 

whether this prediction holds, we separated the forward encoding results (Figure 3) by the 371 

difference from the expected orientation (Figure 6A) and determined whether the population 372 

encoding of orientation is biased away from the expected orientation. Consistent with the 373 

model, we found the representation of the presented orientation was indeed biased away from 374 

expectation with the largest effect when there was a 30-degree difference. This result was 375 
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accurately predicted by the model (Figure 6B). Finally, we sought to determine whether there 376 

was a corresponding change in human perception with expectation, analogous to the tilt-377 

aftereffect with adaptation38,44. For this, we had observers view sequences of 4 to 7 gratings 378 

from the rotating condition and asked them to judge the perceived orientation of the final Gabor 379 

(Figure 6C). Across trials, we presented conditions where the expected orientation varied from 380 

-90 to 60 degrees in 30° steps (see Supplementary Figure 3). We found that perception of 381 

orientation was indeed biased away from the orientation that was expected (Figure 6D). All 382 

subjects showed significant orientation tuned biases away from the expected orientation (all ps 383 

< 0.05). The effect was in line with the neuronal population response and consistent with the 384 

model’s prediction. Critically, unlike the classical tilt aftereffect, here perception is biased away 385 

from the expected orientation, rather than away from the previously-presented orientation.   386 
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 387 

 388 

Figure 6. Population decoding and human perception are both biased away from the expected 389 
orientation. For the rotating sequence, we found the difference from the expected orientation 390 
for each unexpected stimulus. For instance, if 0 was presented but 60 was expected, the 391 
difference is 60. (A) We used forward encoding modelling to estimate the population encoding 392 
of orientation) and separated by the difference from the expected orientation. (B) Results from 393 
the forward encoding modelling. The population response is biased away from the expected 394 
orientation (dots) with the largest bias at 30 degrees, as predicted by the model (shading). (C) 395 
The psychophysics experiment used to determine whether human subjects’ (N = 3) perception 396 
of orientation is biased away from the expected orientation. Each subject viewed a sequence 397 
(4-7 Gabors) using the rotating paradigm from mice. They were asked to judge whether the 398 
final item in the sequence was clockwise or anti-clockwise from vertical. The test orientation 399 
was varied across trials from -6 to +6 degrees using a method of constant stimuli to measure 400 
the change in perceived orientation. Cumulative Gaussian functions were fit to responses to 401 
determine whether perception was biased from vertical. (D) Bias results from vertical for the 402 
human subjects. The line is the fitted first derivative of a Gaussian function used to quantify 403 
whether the observer's bias results were significantly greater than chance and orientation 404 
tuned. Across all panels error bars indicate ± 1 standard error.		405 
 406 
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Discussion 407 

We provide an experimental test of how neuronal representation of visual information is 408 

affected by prediction in a primary sensory area. We presented a stream of gratings to awake 409 

mice in two conditions; (i) in Random condition one where there was no relationship between 410 

the current and previous trials (Random trials) and (ii) Rotating condition where the orientation 411 

could be predicted from the past sequence (Expected trials) but occasionally included a 412 

random orientation (Unexpected trials). We found consistent evidence that expectations 413 

modulate the gain of orientation responses in V1 activity, both at the single-neuron and 414 

population level. The increase in gain of orientation selectivity for unexpected trials appears to 415 

occur through an increase in the reliability of responses. While the magnitude of prediction 416 

error response was decreased under anesthesia, it was still present showing these effects 417 

were not caused by top-down arousal-related effects and instead reflect fundamental changes 418 

in sensory representation. Finally, we provide a computational implementation of a predictive 419 

coding model in V1 to better understand the interaction between adaptation and prediction. By 420 

varying the parameters of the model, we found that the best explanation of the neuronal 421 

activity needed both inhibition from adaptation in response to immediately preceding stimulus 422 

events, and expectations about future stimulus features. Finally, we describe a previously 423 

unreported phenomenon in human perception based on characterization of neuronal response 424 

in V1 of mice and their modelling. Both neuronal representation and human perception of 425 

orientation exhibited similar biases away from the expected orientation.  426 

While the notion that predictions about the future affect perception was first proposed by 427 

Helmholtz45, there has only been limited evidence showing the neuronal encoding of sensory 428 
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information of this top-down signal. A number of more recent theoretical models5,6 have 429 

proposed a ‘predictive coding’ framework with the common idea that the brain inhibits the 430 

sensory representation of the expected stimulus to increase coding efficiency. While there has 431 

been extensive evidence that predictions affect the magnitude of neural activity measured with 432 

neuroimaging10,46, few studies have determined how neuronal responses are affected even 433 

though this is a critical component of these models. The current results fit well with our 434 

previous findings using multivariate patterns of neuroimaging activity measured in humans to 435 

measure how orientation selectivity changes with expectation14–16,26. Similarly to the current 436 

work, forward encoding modelling of EEG activity revealed an increase in the gain, but not the 437 

width, of orientation tuning in human observers14.  438 

Our results add significantly to the understanding of how expectations affect the 439 

representation of sensory information. Previous work19,22,23, but see47 for a different 440 

interpretation, has suggested that the locomotion-induced increase in activity in primary visual 441 

cortex in mouse47,48. Under the predictive coding framework, the increased activity caused by 442 

locomotion creates an expectation that the stimulus should change size. A prediction error is 443 

generated if the stimulus remains static, as is typical when measuring orientation selectivity, or 444 

moves in an inconsistent direction. There is significantly less locomotion-induced increase in 445 

response if the stimulus is made to move as the animal moves. Our results are consistent with 446 

these but show the increase is due to a gain increase with a larger response to the neuron’s 447 

preferred stimulus.  448 

In the human literature, expectation appears to affect sensory response through 449 

different neural oscillatory frequency bands49,50. Recordings in macaques suggest visual 450 
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information is fed forward through high-frequency gamma (60-80 Hz) oscillations while 451 

feedback occurs through slow theta-band (14-18 Hz) activity51. As the recording was 452 

conducted using two-photon imaging with a relatively slow sampling rate we were unable to 453 

determine the role of different frequency bands in expectation. Future work, potentially 454 

simultaneously recording multiple areas using electrophysiology, could use the current task to 455 

determine the role of top-down and bottom-up processing for these gain modulations by 456 

expectation.  457 

Methods 458 

Mouse information 459 

A total of 8 wild type mice (C57BL) were used in this experiment. All methods were 460 

performed in accordance with the protocol approved by the Animal Experimentation and Ethics 461 

Committee of the Australian National University (AEEC 2012/64; 2015/74). Mice were housed 462 

in a ventilated and air filtered climate-controlled environment with a 12-hour light–dark cycle. 463 

Animals had access to food and water ad libitum. No statistical methods were used to 464 

calculate the sample size, but these were consistent with other studies in the field.  465 

Expression of Ca2+ indicator (GCaMP6f) 466 

Mice were briefly anesthetized with isoflurane (~2% by volume in O2) in a chamber and 467 

moved to a thermal blanket (37°C, Physitemp Instruments) before the head was secured in a 468 

stereotaxic frame (Stoelting, IL). Thereafter, the anesthetic gas (isoflurane, ~2% by volume in 469 

O2) was passively applied through the nose mask at a flow rate of 0.6-0.8 L/min.  The level of 470 

anesthesia was monitored by the respiratory rate, and hind paw and corneal reflexes. The 471 

eyes were covered with a thin layer of Viscotears liquid gel (Alcon, UK). The scalp was opened 472 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.26.466004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

   
 

with ~5 mm rostrocaudal incision at the midline using scissors and the periosteum was gently 473 

removed. A circular craniotomy was made over the right visual cortex (3mm diameter; 474 

centered 2mm lateral and 4.5mm posterior to Bregma) with the dura left intact. A glass pipette 475 

(15-25µm diameter at tip) containing GCaMP6f (AAV1.Syn.GCaMP6f.WPRE.SV40, Penn 476 

Vector Core, The University of Pennsylvania, USA) was inserted into the cortex at a depth of 477 

230-250 µm below the dura using a micromanipulator (MPC-200, Sutter Instruments, Novato, 478 

CA, USA). GCaMP6f was injected at 4-6 sites (with 4 32nL injections per site separated by 2-5 479 

mins; rate 92 nLs-1) using a glass pipette. Injections were controlled using a Nanoject II injector 480 

(Drumont scientific, PA). After virus injection, the craniotomy was covered with a 3mm 481 

diameter cover-glass (0.1 mm thickness, Warner Instruments, CT). This was glued to the bone 482 

surrounding the craniotomy. Custom made head bars were fixed to the skull or Bregma using a 483 

thin layer of cyanoacrylate adhesive and dental acrylic. A small well was built surrounding the 484 

craniotomy window using dental acrylic to accommodate distilled water required for the 485 

immersion lens of the 2-photon microscope. 486 

Ca2+ imaging was performed using a two-photon microscope (Thorlabs Inc., Newton, 487 

NJ, USA) controlled by ThorImage OCT software. The cortex was illuminated with a 488 

Ti:Sapphire fs-pulsed laser (Chameleon, Coherent Inc., Santa Clara, CA, USA) tuned at 920 489 

nm. The laser was focused onto L2/3 cortex through a 16x water-immersion objective lens 490 

(0.8NA, Nikon), and Ca2+ transients were obtained from neuronal populations at a resolution of 491 

512 × 512 pixels (sampling rate, ~30 Hz). To abolish the effect of visual stimuli on the calcium 492 

signals, we secured the objective by filling the gap between the objective and the well with 493 

removable adhesive (Blu-Tack). 494 
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The images were processed using the Suite2p toolbox (https://github.com/cortex-495 

lab/Suite2P) for motion correction and segmentation. The surrounding neuropil signal was 496 

subtracted for each neuron’s calcium traces. These corrected traces were high-pass filtered 497 

before the median response for each neuron was subtracted to determine dF/F.  498 

Visual stimulus 499 

The stimuli were displayed on a 22-inch LED monitor (resolution 1920 x 1080 pixels, 500 

refresh rate 60 Hz) using the PsychToolbox presentation software for MATLAB. The mouse 501 

was placed next to a monitor, which subtended 76.8° x 43.2° (one pixel = 2.4’ x 2.4’) orientated 502 

30° from their midline. The visual stimulus sequence was based on the Allen Brain Institute 503 

Brain Observatory paradigm used to measure orientation selectivity in mice using two-photon 504 

imaging. The stimuli were full-screen gratings (0.0034 c/°, 50% contrast) displayed for 250 ms 505 

with no inter-stimulus interval giving a 4 Hz presentation rate with no inter-stimulus blank 506 

interval. The spatial frequency was chosen to be close to optimal sensitivity of neurons in V125. 507 

The orientations of the gratings were equally spaced between 0 to 150° in 30° steps so we 508 

could map each neuron’s orientation selective profile. 509 

  The predictability of the orientations of the gratings was varied in the two stimulus 510 

conditions. In the Random condition, the orientations of the gratings were drawn from a 511 

pseudo-random distribution with no relationship between the current orientation and the 512 

previous orientation. The Rotating control condition was introduced to determine whether the 513 

stimulus presented after the unexpected jump was affecting orientation selectivity. In this 514 

condition, after the unexpected orientation the stimulus made another jump to a random 515 

orientation before starting to rotate in the opposite direction as the previous rotation. The 516 
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number of events was increased from 7200 in each block to 8400 to have the same number of 517 

unexpected trials as the original Rotating condition, while all other details remained identical 518 

with the Rotating condition. We ran 13 sessions in 2 mice for all three conditions to compare 519 

the effect of the control. For all conditions, there was a balanced number of presentations of all 520 

the orientations.  521 

Data analysis 522 

To determine the effect of prediction, we averaged the calcium response from 250 to 523 

1000 ms after stimulus presentation to derive tuning curves for each condition. Orientation 524 

selectivity index was defined as (1):  525 

𝑂𝑆𝐼	 = 	 !"#$%	'	!(#)*
!"#$%	+	!(#)*

                                                          (1) 526 

Where Rpref was the response to the preferred orientation (defined by the largest calcium 527 

response) and Rorth was the orientation orthogonal to the preferred orientation. To ensure the 528 

OSI fell between 0 and 1, we normalized the lowest calcium response to equal 0 in the lowest 529 

condition. To quantify how expectation affected the gain and selectivity of orientation-selective 530 

neurons we fit circular Gaussian distributions with a constant offset (2) using non-linear least 531 

square regression.  532 

𝐺(𝑥) 	= 	𝐴𝑒𝑥𝑝 − (-'	.	'	/	∗123)!

56!
+ C                                                    (2) 533 

Where A is the amplitude of the Gaussian, 𝜙 is the preferred orientation of the neuron (in 534 

degrees), 𝝈 is the width (in degrees) and C a constant offset to allow for baseline shifts in the 535 

activity of the neuron. We searched for best fitting solutions with parameter j, with a search 536 

space from -4 to +4 in integer steps.  537 

Multivariate encoding analysis 538 
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We used a multivariate encoding approach (forward encoding modelling) to determine 539 

how the population activity carried information about the orientation of the presented grating on 540 

a trial-by-trial basis. This approach is based on human neuroimaging approaches examine 541 

orientation/feature selectivity from multivariate non-invasively recorded neural activity14,15,52–55, 542 

but is similar to encoding approaches used to describe neuronal response to sensory 543 

stimuli56,57. Compared to the encoding-only, forward encoding takes the individual neuron 544 

activity to reconstruct the stimulus representation from the population activity. The technique 545 

goes beyond more commonly used multivariate pattern analysis procedures by producing 546 

tuning curves showing the full representation (in both amplitude, width, and bias) relative to the 547 

accuracy-only score.  548 

The data were pooled across all experimental sessions with both orientation and non-549 

orientation selective neurons used. In the first instance, we examined how the number of 550 

neurons affected decoding on a fixed time interval (300 to 600 ms) and in the second we found 551 

the time-resolved selectivity by applying the decoding procedure at each time point around the 552 

presentation of the stimulus (-500 to 2000 ms). A 20-fold cross-validation procedure was used 553 

in both instances for test and training data. The procedure evenly splits each test block to have 554 

the most even distribution of stimulus in each fold.   555 

We used the presented orientations to construct a regression matrix with 8 regression 556 

coefficients. This regression matrix was convolved with a tuned set of nine basis functions (half 557 

cosine functions raised to the eighth power, Equation 5) centered from 0° to 160° in 20° steps. 558 

This helps pool similar orientations and reduces overfitting57. This tuned regression matrix was 559 
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used to measure orientation information across trials. This was done by solving the linear 560 

equation (3): 561 

B1= WC1                                                                                   (3) 562 

Where B1 (Neurons x N training trials) is the electrode data for the training set, C1 (8 channels 563 

x N training trials) is the tuned channel response across the training trials, and W is the weight 564 

matrix for the sensors to be estimated (Neurons x 8 channels). We separately estimated the 565 

weights associated with each channel individually. W was estimated using least square 566 

regression to solve equation (4): 567 

W = (C1 C1T)-1 C1T B1                                                                         (4) 568 

We removed the correlations between neurons, as these add noise to the linear equation. To 569 

do this, we first estimated the noise correlation between neurons (which stops finding the true 570 

solution to the equation) and removed this component through regularization by dividing the 571 

weights by the shrinkage matrix55,58. The channel response in the test set C2 (8 channels x N 572 

test trials) was estimated using the weights in (7) and applied to activity in B2 (Neurons x N test 573 

trials), as per Equation 5: 574 

C2 = (W WT) WT B2                                                (5) 575 

To avoid overfitting, we used 10-fold cross validation, where X-1 epochs were used to train the 576 

model, and this was then tested on the remaining (X) epoch. This process was repeated until 577 

all epochs had served as both test and training trials. We also repeated this procedure for each 578 

point in the epoch to determine time-resolved feature-selectivity. To re-align the trials with the 579 
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exact presented orientation, we reconstructed the item representation by multiplying the 580 

channel weights (9 channels x time x trial) against the basis set (180 orientations x 9 581 

channels). This resulted in an Orientations (-89° to 90°) × Trial × Time reconstruction. 582 

To quantify the orientation selective response, we found the vector sum of the 583 

orientation for each trial (Figure 3D) to determine the decoded orientation. The difference 584 

between the decoded and presented orientation was the orientation error.  For each condition 585 

(and time point where applicable) we found the distribution of orientation errors and calculated 586 

the histogram of responses.  587 

In the temporal classification analysis, groups of 500 neurons were used on each 588 

instance for both training and test data with the cross-validation procedure applied to each time 589 

point around stimulus presentation. We permuted new groups of 500 neurons 24 times. For 590 

the second analysis, we averaged the evoked activity from (250 to 1000 ms after stimulus 591 

presentation.  The same classification was then used as in the previous analysis but with 592 

different numbers of neurons (2 to 1944 neurons in steps of 2 neurons) to determine how 593 

decoding was affected by population size. Again, we selected different groups of neurons 24 594 

times so as not to skewer the results by the neurons that were selected.  595 

Computational model 596 

The analytic model is based on previous work accounting for feature (i.e. orientation, 597 

spatial) adaptation based on neuronal response and human psychophysical data36,38,39,59,60. 598 

The model consists of a bank of six orientation-selective information channels with preferred 599 

orientations evenly spaced between 0 and 150° (in 30° steps). Each channel’s sensitivity 600 

profile was given by a Gaussian function (6). 601 
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𝐺(𝑥) 	= 	𝐴𝑒𝑥𝑝 − (-'	.)!

56!
                                                    (6) 602 

Where A is the amplitude (set to 1 a.u.), 	𝜙is the channel’s preferred orientation, 𝜎is the width 603 

of the channel (set to be 40° consistent with the neuronal data). The number of channels, 604 

along with the width means the model is equally sensitive to all orientations. The population 605 

response to any presented orientated stimulus is given by the sensitivity profiles of the 606 

channels (See Supplementary Figure 4). In an unadapted state (Supplementary Figure 3A), 607 

the model will show a maximal response around the presented orientation with the vector 608 

average of the population response will be the presented orientation. 609 

To account for adaptation, the gain of the information channels is reduced by an inverse 610 

proportion to their response by the previous stimulus (Supplementary Figure 4B). For instance, 611 

if a 90° stimulus is the adapting stimulus the sensitivity of the channels around 90° will be 612 

maximally reduced while orthogonal channels will be unaffected. The magnitude of this 613 

reduction (adaptation ratio) can be varied to allow for greater or less adaptation and was 614 

included as a free parameter in the analysis. The adaptation aspect of the model is consistent 615 

with previous models used to psychophysical data36,38,39,59,60. The new model accurately 616 

predicts serial dependency effects (where the current orientation is biased away from the 617 

previous orientation) seen in human behavioral and neuronal data (Supplementary Figure 618 

2)42,43,61.  619 

Prediction gain modulation works in a similar manner as adaptation except that the 620 

stimulus sensitivity, rather than channel sensitivity, is modulated. Furthermore, the gain 621 

modulation occurs before the stimulus and is for the orientation that is expected rather than 622 

actually presented. The modulation of stimulus sensitivity is consistent with a previous study 623 
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which found that uncommon stimuli result in stimulus-specific adaptation in the auditory 624 

cortex40. Stimulus-specific adaptation has been used in modelling neuronal adaptation41. To 625 

model stimulus-selective gain modulation, the tuned Gaussian function was found using 626 

Equation 1 and inverted before being applied to the channels. The amount of gain modulation 627 

by expectation was a free parameter (expectation gain).  628 

To account for long-lasting effects of gain modulation, the channel’s sensitivity was 629 

normalized by towards 1 (maximum sensitivity) on each trial. This causes the model to have 630 

adaptation for a number of stimuli back, with the number determined by the modulation factor 631 

and will lead to serial dependency-like effects for adaptation and prediction42,43. We regressed 632 

the adaptation-only model against the neuronal data and found a factor of 3.0 best fit the data 633 

which was set for other modelling experiments. This expectation factor means ~4 trials back 634 

lead to detectable adaptation effects (Supplementary Figure 2B).   635 

To determine the effects of the different stimulus conditions (Random, Expected and 636 

Unexpected) on the model’s channels, we presented sequences of orientations to the model 637 

and split the responses into conditions. To allow for easier comparison, we aligned the six 638 

orientation channels to their preferred orientation and collapsed the results across conditions. 639 

The same effects were evident before collapsing.  640 

Lastly, we examined how the actual neuronal responses could be predicted by the 641 

model’s predictions with different values of the free parameters. To do this, we used to model 642 

to predict responses to the orientations presented to the mice during the session for all 643 

stimulus conditions. For each neuron, we used the model’s responses to the stimuli as 644 

regressors to predict the neuron’s response (averaged from 250to 1000 ms) for each stimulus 645 
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condition. We iterated this procedure with different values for adaptation and expectation gain 646 

to determine what values best predicted the data.  647 

Psychophysics experiment 648 

Three observers (one naive to the experimental aims) participated in the experiment. 649 

The observers viewed sequences of rotating orientations with the same features as the rodent 650 

two-photon experiment, except that the full-field gratings were replaced with Gabors (3c/°) 651 

presented ~10° from fixation. The final item in the sequence was a low-contrast Gabor with an 652 

orientation presented around vertical. The observers were required to indicate whether the 653 

final item was rotated clockwise or anti-clockwise from vertical using the keyboard. The true 654 

orientation of the Gabor was varied using the Method of Constant Stimuli (MOCS) from -6 655 

(anti-clockwise) to +6° in 3° steps. A new trial began ~1 s after the response. Separate method 656 

of constant stimuli were used for each expected orientation (-90° to +60° from vertical, in 30° 657 

steps) with 30 repetitions of each point (a total of 300 trials) in each block. Each observer 658 

completed 4 blocks of the procedure.  659 

For each block, the proportion of total responses for each MOCS level and expected 660 

orientation was found. Cumulative Gaussian functions were fitted to these data for each 661 

expected orientation to determine the point of subjective equality (Supplementary Figure 3). 662 

This shows what orientation the observers perceived as being vertical.  The results are shown 663 

in Figure 6D. Following the tilt aftereffect literature, we fit first derivative of Gaussian (D1) 664 

functions to the points of subjective equality to quantify the orientation-selective bias results. 665 

This was done for each block, and a paired-samples t-test was applied to each observer’s 666 

results to determine whether they showed a significant expectation aftereffect.  667 
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Data availability  668 

The data are available at: https://osf.io/t2vb3. The code is available at: 669 

https://github.com/MatthewFTang/PredictionOrientationSelectivityMouseV1 670 
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 811 

Supplementary figures 812 

 813 

Supplementary Figure 1. Control condition to determine whether the rotation sequence 814 

caused the increased gain in the Unexpected trials. ( (B). Fitted gain values for each neuron 815 

for the three conditions. This subset of neurons showed the same effect in the original two 816 

conditions, with an increase in gain in the Unexpected compared to Random condition (t(129 = 817 

7.74, p < 0.001). This effect was maintained when comparing the Random to the Unexpected 818 

control condition (t(129) = 7.81 p < 0.001). There was no significant difference between 819 

Unexpected and Unexpected control conditions (t(129 = 1.81, p = 0.07 ).   820 
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 821 

 822 

Supplementary Figure 2.  A version of the model incorporating adaptation-only (expectation 823 

modulation set to 0) accurately predicts serial dependence effects seen in human 824 

psychophysical and neuronal data in response to oriented streams of gratings. A The 825 

magnitude of expected perceived bias (difference between the orientation presented and the 826 

orientation decoded from the population response by the vector mean) by the orientation of the 827 

presented and previous stimulus. B First derivative of Gaussian functions are fitted to the data 828 

to quantify the magnitude of the aftereffect (given by the amplitude parameter). The model 829 

predicts the immediately prior stimulus (N back = 1) elicits the largest aftereffect which 830 

decreases with larger N back steps.  831 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.26.466004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

   
 

 832 

Supplementary Figure 3. A single subject’s results from the psychophysical task using a 833 

Method of Constant Stimuli to determine how expectation affects the perceived orientation of a 834 

target. The true orientation of the target Gabor was varied from -6 (anti-clockwise) to +6 835 

(clockwise) degrees from vertical in 3 degree steps (x-axis). On each trial, the observer 836 

determined whether the orientation was clockwise or anti-clockwise. Cumulative Gaussian 837 

functions were fitted to the results to determine whether the point of subjective equality (i.e., 838 

the point at which the observer is equally likely to judge the orientation as clockwise or 839 

anticlockwise) is biased away from vertical. Separate functions are fit for each different 840 

expected orientation (-90 to +60 in 30 degree steps, different panels).  841 

 842 
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  843 

Supplementary Figure 4. A simple schematic example of the model. (A) The model in an 844 

unadapted state, showing its response to a 110° stimulus (yellow line). The green line shows 845 

the model’s response to the stimulus in each channel. (B)  Applying adaptation gain at 110° 846 

reduces the model’s sensitivity to nearby, but not distant, stimuli. The model’s response (green 847 

line) is reduced in magnitude relative to panel A when the same test stimuli are applied.  848 

 849 

 850 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.26.466004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/

