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Experimental studies of cell growth, inheritance, and their associated processes by microscopy4

require accurate single-cell observations of sufficient duration to reconstruct the genealogy. How-5

ever, cell tracking—assigning identical cells on consecutive images to a track—is often challenging6

due to imperfect segmentation, moving cells, or focus drift, resulting in laborious manual verifi-7

cation. Here, we propose fingerprints to identify problematic assignments rapidly. A fingerprint8

distance measures the similarity between cells in two consecutive images by comparing the struc-9

tural information contained in the low frequencies of a Fourier transform. We show that it is10

broadly applicable across cell types and image modalities, provided the image has sufficient struc-11

tural information. Our tracker (TracX) uses the concept to reject unlikely assignments, thereby12

substantially increasing tracking performance on published and newly generated long-term data13

sets from various species. For S. cerevisiae, we propose a comprehensive model for cell size control14

at the single-cell and population level centered on the Whi5 regulator. It demonstrates how highly15

precise tracking can help uncover previously undescribed single-cell biology.16

Introduction17

Live-cell imaging is the primary tool to study dynamics processes and their inheritance across gen-18

erations at the single-cell level. It also enables novel applications to identify and isolate cells with a19

dynamic phenotype of interest1 and to connect genotype with phenotype by imaging-based screening2.20

The analysis starts from often large sets of raw images (Fig. 1a), in which objects such as cells have to21

be identified by segmentation methods (Fig. 1b). One then needs to establish the temporal relationship22

between all the segmented objects in each image in a task termed tracking (Fig. 1c). Accurate tracking23
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is essential, especially when studying inheritance or differentiation, which requires complete cell lin-24

eages, that is, the genealogy (Fig. 1d). For example, lineage-based analysis recently revealed long-term25

memory linking cell growth and cell cycle progression in mammalian cells3 and suggested asymmetric26

inheritance as a key mechanism determining hematopoietic stem cell fate4.27

With important progress in cell segmentation methods that often involve deep learning approaches5
28

and generalize across cell types and imaging modalities6, cell tracking is the main current bottleneck29

for reliable image analysis at high throughput7. In addition to inaccurate segmentation results used for30

tracking, different events during the life of a cell, such as birth, division, changing morphology during31

growth, death, and migration (see Fig. 1e for examples) make tracking a challenging task. Importantly,32

incorrect assignments of cells to tracks propagate during lineage reconstruction, such that even minor33

tracking inaccuracies can impact the biological interpretation of the imaging data substantially.34

In addressing the well-recognized need for better tracking tools8–11, methods for the automated vali-35

dation of tracking results are critical. They could alleviate the limitations on accuracy and throughput36

imposed by the need for laborious manual curation. Current tools only allow for a software-assisted37

or user-driven detection of tracking errors based on a resulting lineage9 and for a manual inspection of38

tracking results8,11,12 with possible interactive correction13–15. First deep learning-based tracking meth-39

ods show great promise, for example, with 1% error rate when extensive training data was available, but40

non-competitive results with limited training data16. The problem of manual curation to establish a41

ground truth for cell tracking, hence, is a general one when large data sets need to be processed for anal-42

ysis or training purposes. It is even more extreme for real-time applications such as automated control43

of single-cell behavior using optogenetics17.44

To assess cell tracking results automatically, we took inspiration from approaches in image watermark-45

ing and matching that compare the structures of images18–20. We reasoned that we can compare a cell46

and its surrounding between consecutive images to identify correct cell-to-track assignments. Specifi-47

cally, we devised a cell region fingerprint (CRF) that captures the structural information, that is, basic48

image attributes representing the structure of depicted objects, and not luminance and contrast. It does49

not require extensive training because we need few parameters that have a direct physical interpretation50

and can be estimated from a few image frames. The approach allows to identify problematic tracking51

results even when the ground truth is unknown and it is independent of, for example, specific segmenta-52

tion or tracking algorithms. We use the CRF in a new tracker that, akin to kinetic proofreading, rejects53

linkages likely to be wrong. Performance tests of our methods with published data sets and newly54

acquired data for various cell types and image modalities demonstrate near-perfect tracking accuracy.55

This allowed us to reconstruct the genealogy of symmetrically and asymmetrically dividing cell types56

in general, and to analyze S. cerevisiae’s cell size regulation and homeostasis comprehensively.57
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Results58

Cell region fingerprints capture relevant structural information59

A cell region fingerprint (CRF) aims to characterize a cell and its surrounding such that we can use60

these characteristics to identify correct cell-to-track assignments. We calculate the fingerprint from61

the same raw images used for segmentation, by defining a square region around a cell’s centroid to62

also include the cell’s neighborhood (Fig. 2a; see Methods for details). Note that one can use any63

segmentation tool that creates a mask of the segmented objects (labeled segmentation mask) to derive64

the cell centroids. Individual badly segmented cells will be detected in a time series by a changing65

signature, but the CRF alone does not tell if a segmentation is good or bad. After cropping the rest of66

the image (Fig. 2b), we scale the image matrix to a defined size that is identical for all cells (Fig. 2c). To67

extract structural information, we Fourier transform the image using the discrete cosine transformation68

(DCT; Fig. 2d). The lowest frequencies of the DCT contain the structural information of the image, as69

demonstrated by the inverse DCT in Fig. 2e. We therefore define the CRF as a matrix that contains only70

DCT coefficients for the lowest frequencies (Fig. 2f). This procedure implies that the CRF computation71

depends only on three parameters: the size of the image window, the re-scaling factor, and the number72

of DCT frequencies to include.73

To compare any pair of cells in principle, but possible assignments between pairs of cells in two consec-74

utive images in live-cell microscopy for the tracking problem specifically, we next define a fingerprint75

distance as a scalar measure of similarity. It is the normalized sum of squared residuals between two76

CRF arrays, denoted by 𝑑𝑓 (see Methods). By construction, 𝑑𝑓 = 0 for identical image regions, and77

it increases the more the two regions differ. Fig. 2g indicates that the information condensed in the78

fingerprint distance may indeed be sufficient to distinguish between correct and incorrect tracking as-79

signments: the correctly assigned cell pairs on the diagonal have the lowest 𝑑𝑓 values of all possible80

assignments.81

To construct a classifier that distinguishes between correct and incorrect tracking results, we reasoned82

that the CRF is less likely to be unique for an entire microscopy image because geometrically simple83

cells such as round or rod-shaped cells show repeating patterns within a densely populated image. We84

therefore limit the comparison of fingerprints via the fingerprint distance to smaller regions, namely the85

neighborhood of a cell of interest. Specifically, we compute 𝑑𝑓 between a cell in the preceding frame86

and the assigned cell in the current frame as well as this cell’s neighbors. Our measure for classification87

is then the fraction of neighboring cells in the current frame that has a lower 𝑑𝑓 than the assigned cell,88

the neighborhood fraction denoted by 𝐹𝑓 (see Methods for details). We reason that higher values of 𝐹𝑓89

suggest more possible alternative assignments, and thereby a higher likelihood that the given assignment90

is incorrect. Overall, thus, we condense the structural information of cells and their surrounding into a91

simple and intuitive measure for the evaluation of tracking results for each cell.92
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Fingerprints classify tracking assignments reliably and generically93

A classifier for tracking assignments needs to reliably distinguish correct from incorrect assignments.94

It should also be generic (applying to multiple cell types and imaging modalities) and robust (insensi-95

tive to specific parameter settings and experimental artifacts). To assess these aspects of CRF-based96

classification, we obtained or constructed the ground truth for published data sets of different cell types,97

image modalities, and magnifications (see examples in Fig. 3a and Methods). We then randomly per-98

muted 1% of the assignments to create faulty tracks. Neighborhood fractions (𝐹𝑓 ) were computed with99

(jointly) varying parameter values for window side length (𝑓𝑙), re-size factor (𝑓𝑟), and number of DCT100

coefficients (𝑓𝑞). Finally, we classified the assignments by whether 𝐹𝑓 exceeds a fixed, global threshold101

𝜏𝑓 . Specifically, we used 𝐹𝑓 > 𝜏𝑓 (𝐹𝑓 ≤ 𝜏𝑓 ) to predict incorrect (correct) assignments (see Methods).102

We conducted systematic performance tests by evaluating predictions against the ground truth, initially103

with a conservative 𝜏𝑓 = 0. Using the F-score (the harmonic mean of precision and recall; see Meth-104

ods) as performance metric revealed five features of our CRF-based classifier. First, it can achieve105

near-perfect performance for all our test cases, which include different cell types (bacterial, yeast, and106

mammalian) as well as imaging modalities (phase contrast, bright field, and fluorescence; Fig. 3b). Sec-107

ond, to capture enough structural information in the image, a low number of DCT coefficients (𝑓𝑞 ≈ 10)108

is optimal. Third and interestingly, the classifier performance increases monotonically with window109

size in the tested range (Fig. 3b), although the corresponding neighborhoods can include a hundred110

cells (Fig. 3c). Fourth, across all test cases, performance is consistently high for common parameter111

settings of 𝑓𝑞 = 8 and window size of twice the mean cell diameter (corresponding to≈2-10 neighboring112

cells; Fig. 3b,c). Finally, classifier performance does not depend on the re-size factor (𝑓𝑟; Fig. S1).113

Overall, our CRF-based classifier shows robust and generic high performance. Reliable classification114

requires only generic parameters, or parameters easily derived from the images, such as the cell diam-115

eter. Importantly, setting the threshold of a classifier without knowing the ground truth is a frequent116

problem—but as additional tests for all image modalities showed (Fig. S2), not for the CRF-based eval-117

uation of tracking assignments.118

Assignment proof reading improves tracker performance119

To demonstrate practical relevance of our classifier for live cell tracking, we aimed to improve an existing120

tracker to be able to handle imperfect input, such as missing or miss-segmentation and moving cells. The121

basic idea was to proofread (preliminary) assignments with the CRF-based classifier and to re-evaluate122

questionable ones. We termed the tracker TracX, analogous to our segmentation software 𝐶𝑒𝑙𝑙𝑋21,22.123

Briefly, we adapted a simple frame-by-frame tracker23 to obtain raw assignments. We use cell fea-124

tures such as position, size, and orientation to construct a cost matrix and then solve the linear as-125

signment problem (LAP) by minimizing the cost matrix between two consecutive frames with the126
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Jonker-Volgenant algorithm24, an improved version of Kuhn’s algorithm25. This yields assigned and127

non-assigned cells. Next, we classify the raw assignments. Those that do not pass the classifier are128

deleted and the corresponding cells are designated non-assigned. All non-assigned cell are then joined129

(for a certain ’lifetime’) with all cells in the next frame(s) for re-evaluation. However, this approach130

only works for cells with a slowly changing neighborhood. To capture when cells move rapidly or two131

growing colonies fuse, we built on the idea of neighborhood preserved motion: the motion of a single132

cell needs to follow the motion of its direct neighborhood26. Our tracking refinement module (Fig. S7)133

uses the assignments that pass the classifier to form a temporary ground truth. From it, we estimate the134

vector field of cell movement for the re-evaluation of assignments (see Methods and Supplementary135

Text for details).136

To evaluate the performance of TracX systematically in comparison to state-of-the-art trackers, we used137

the yeast image toolkit (YIT)11. It is a collection of manually curated S. cerevisiae imaging data sets138

with different numbers of cells and image frames, designed for systematic comparisons of segmentation139

and tracking tools. Specifically, we compared the long-term tracking performance of TracX measured140

by an F-score (see Methods for details) to the published results for the five best-performing trackers141

on these data sets10,11: CellTracer27, CellProfiler28, CellID29, CellStar11, and the algorithm by Wood et142

al.30. The comparatively simple TracX tracked all YIT data sets, and also quantitatively it outperformed143

all the other algorithms (Fig. 4a). A tracker based on the fingerprint distance alone (TracX
𝐶𝑅𝐹 ) did not144

yield consistent long-term performance. Data set YIT-TS3 stands out: only our algorithm assigns all145

cells correctly in this time series of densely growing cells with one colony translating and merging with146

two other colonies (exemplified in Fig. 4b).147

We also intended CRF-based classification to support targeted manual curation of results from any148

tracker—manual verification of each assignment is impractical for large data sets with thousands of149

linkages. TracX calculates post-tracking 𝐹𝑓 values for all assignments to highlight potentially problem-150

atic cell tracks or image frames. For the perfectly tracked (compared to the manual ground truth) data151

set YIT-TS3, classification with 𝜏𝑓 = 0 indicates 72 out of 2286 assignments as problematic (Fig. 4b).152

For example, it highlights potential issues in frames 12-14, which are challenging for tracking because153

two colonies merge and move. These are false positives, but their number is comparatively low. We154

tested this systematically for a yeast data set with many cells and high imaging frequency (TS-SC9; see155

Table S2). Fig. 4c shows fractions of false positives (and corresponding efforts for manual curation)156

in low percentages for conservative threshold choices. In addition, it emphasizes the importance of a157

sufficiently high imaging frequency, adapted to the tracking problem (see also Fig. S4). Hence, CRFs158

help for high-precision automatic cell tracking and for efficient manual curation.159
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Genealogies can be reconstructed with minimal additional information160

To study cellular processes and their inheritance over multiple generations, one needs to reconstruct161

the genealogy (or lineage). It is represented as a tree where the tracks of the offspring are linked to the162

tracks of their mothers. Since we obtain tracks of high quality, we reasoned that we can create heritage163

assignments with minimal additional input. For this purpose, we developed algorithms for different cell164

types and cell division types (see Methods for details).165

For asymmetrically dividing cells such as S. cerevisiae, we require an additional fluorescent marker166

that links mother and daughter cells. Here, we used Myo1, a protein localizing to the bud neck31.167

We determine assignments from the overlap of the marker with potential mother and daughter cells on168

each frame (Fig. 5a) and verify them using line profiles between mother and (future) daughter centroids169

(Fig. 5b,c and Fig. S3). With our own S. cerevisiae data (SC-TS7; see Methods), the algorithm correctly170

assigned all mother-daughter pairs (two seeding cells divided 122 times to a final 245 cells Fig. 5d and171

Movie S1).172

For rod-shaped or other sturdy, symmetrically dividing cells such as fission yeast or bacteria, the algo-173

rithm tries to solve the genealogy using simple geometry, without additional input. Assignments are174

based on the shortest distance between the poles of the potential pair of daughter cells and the centroid175

of the mother cell (Fig. 5e,f). Thereby, the genealogy and the pole age can be determined directly. We176

tested the algorithm using S. pombe data (Fig. 5g) as well as a published ground truth data set of grow-177

ing Bacillus megaterium cells32 (see details in Table S2). We obtained error-free lineages (4 seeding178

cells divided 66 times to a final number of 111 cells. All 111 tracks were correct (Fig. 5g, Movie S2),179

and 8 seeding cells divided 92 times to a final number of 160 cells; all 160 tracks were correct (Movie180

S3).181

For amorphous or convex-shaped, symmetrically dividing cells such as HeLa or embryonic stem cells,182

we modified this algorithm because one cannot easily determine cell poles. Without conserved cell183

shapes, we assume area conservation to solve the lineage via a linear assignment problem that incor-184

porates distances between centroid positions as well as differences in cell areas into the cost matrix185

(Fig. 5h,i; see Methods for details). For a subset of test data set of mammalian (HeLa) cells33, we186

again obtained the correct lineage (4 seeding cells, 8 divisions, 20 final cells with correct tracks, 5j,187

Movie S4; recall for the full data set of 0.89 (236 / 264 cells correct), Movie S5). Overall, this supports188

versatility and precision of TracX also for lineage reconstruction.189

Lineage analysis suggests a comprehensive concept for cell size homeostasis in S. cerevisiae190

To demonstrate the application potential of TracX, we revisited the fundamental question how yeast cells191

control their size depending on nutrient availability. It has the aspect of how individual cells define the192

set-point for size control, specifically for leaving the G1 phase of the cell cycle (in a transition termed193
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Start in S. cerevisiae) when they reach a critical size. Such size control with stochastic elements is well-194

established at the single-cell level34. An intriguing molecular hypothesis is that differential scaling of195

Start inhibitor (with Whi5 as a dominant actor) and activator (such as G1 cyclin Cln3) concentrations196

with cell volume establishes size control. In such models, high inhibitor concentrations allow new-197

born cells to grow sufficiently in G1 until the balance shifts to activators at Start35–37. Whi5 levels may198

also provide a memory of environmental conditions (growth rates), and thus modulate size set-points199

according to nutrient availability38. However, the other, largely elusive aspect is cell size homeosta-200

sis: irrespective of the presence of most known regulators, cell size distributions of yeast populations201

are equally narrow37. Because cell size control and homeostasis are highly multi-factorial39, focusing202

on (multiple) molecular regulators35,36,40, nutrient conditions38,41–43, or lineage analysis44 alone may203

therefore be too limiting.204

Aiming for a more integrative analysis, we acquired single-cell and corresponding lineage data for S.205

cerevisiae strains carrying fluorescent markers for Whi5 and Myo1 and growing in three different glu-206

cose concentrations (0.05 mM, 0.2 mM, and 100 mM) in a controlled microfluidic setup for up to six207

generations (see Methods for details). Fig. 6a shows the long-term dynamics of an example yeast cell208

at the highest glucose concentration. Parameters obtained by image analysis include cell and bud (i.e.,209

future daughter) volumes as well as spatially resolved maker concentrations. We defined the G1 phase210

as the time interval with nuclear Whi5, as in previous studies34,37. Because our interest was size control211

in G1, we subsumed the rest of the cell cycle under G2/M, noting that Myo1 marker and bud presence al-212

low for a finer discrimination in principle. Corresponding cell cycle annotations as well as the inference213

of cell states and rates were automated (see Methods and Fig. S11a for details).214

Regarding cell cycle phases, daughter cells (newborn cells with replicative age 0) spent significantly215

longer time in G1 than mother cells (replicative age > 0) and G1 duration decreased consistently with in-216

creasing nutrient availability (Fig. 6b) and correspondingly increasing single-cell growth rates (Fig. S11b)217

as previously reported41. Also G2/M duration decreased significantly with nutrient availability, albeit218

not always between mothers and daughters (Fig. 6c). This matches earlier observations with growth219

modulation by different carbon sources40,42,44 and suggests that it is not simply the nutrient type that220

sets the G2/M duration.221

Cell volumes at division showed a non-monotonic relation with nutrient availability: for both (future)222

mother cells at division (Fig. 6d) and their daughters (Fig. S11d), cells at the intermediate glucose con-223

centration were smallest on average. Increased volumes at low growth rates were not observed in recent224

studies focused on Whi538,41,42; we assume this is because they did not cover as long doubling times as225

our lowest glucose concentration (on average ≈16h and ≈6h for newborn and older cells, respectively).226

Our experiments, however, are consistent with a classical study’s results on minimal media45. This227

non-monotonic relation could explain at most weak linear associations between growth and cell size228

observed in yeast populations46 and it emphasizes the need for single-cell analysis along lineages.229

Because total Whi5 levels are positively correlated with G1 duration in different nutrients in a mother-230
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and daughter-specific manner37,38,41, we asked if a similar relation exists between cellular Whi5 concen-231

tration and cell volume at division. Consistent with previous data41, and except for the medium glucose232

concentration, these Whi5 levels were significantly higher in daughter than in mother cells (Fig. 6e).233

However, the most important difference existed between nutrient conditions, suggesting a negative as-234

sociation between cell volume and Whi5 levels that is not nutrient-specific (Fig. 6d,e, and similar for235

nuclear Whi5 in Fig. S11d). At the single-cell level, volumes at division and cellular Whi5 concen-236

trations at division showed inverse relations that were clearly separated for mother and daughter cells237

(Fig. 6f). These two distributions, however, merged primarily via daughter cell growth when considered238

at Start (Fig. 6g), in contrast to the separation between mother and daughter cells when considering the239

volumes at division and Start (Fig. 6h). Together with the high percentage of variance explained by the240

Whi5-volume relations (𝑟2 > 0.4, 𝑃 < 10−10 in all cases), this indicates that cellular Whi5 could be an241

important determinant for the cell size set-point in G1.242

To test this hypothesis, we estimated linear models to predict cell volumes at Start and at the end of243

the cycle, using the inverse of the cellular Whi5 concentration at division together with other plausible244

variables as predictors (see Methods). Both models provided excellent fits to the data (Fig. 6j-l). To245

predict the volume at Start, the model indicates independent and important effects of the volume and246

the Whi5 cellular concentration at the start of G1 (Fig. 6j). Growth in G1, cell age and nuclear Whi5247

concentration have only minor effects, and factors such as growth in G2/M (a negative control) do not248

reach significance. We observe a similar pattern for the entire cycle, providing further evidence for the249

predictive value of Whi5 concentration for the volume set-point in individual cells.250

With respect to cell size homeostasis and Whi5’s role in it, it was suggested that Whi5 levels memorize251

growth rates in earlier cycles, based on population data38. For single cells, we do not find such a corre-252

lation (Fig. S11e), and only weak positive correlations between volume at division and mother or bud253

growth rates (Fig. S11f,g). Memory of growth rates, in addition would not achieve size homeostasis254

because it would represent a positive feedback. Our data suggests that size homeostasis involves a re-255

turn to the mean in a stochastic process (Fig. 6i); daughters of small mothers tend to have higher Whi5256

concentrations than their mothers and thereby a higher volume set-point. The inverse holds for larger-257

than-average mothers, leading to a return to the mean size over successive generations. Clearly, we need258

additional factors to explain increasing daughter volumes with nutrient availability (Fig. S11d) and the259

duration of cell cycle phases is less well predicted than cell volumes (Fig. S11i,j) without incorporating260

activators such as cyclin Cln341.261

To estimate Whi5 concentrations, we followed previous studies38,41 by normalizing total cell fluo-262

rescence with cell area. Alternatively, one can normalize by cell volume35. This concentration es-263

timation had only two effects (Fig. S12): reducing the impact of cellular Whi5 on cell size predic-264

tions (Fig. S12g), and not providing evidence for the hypothesis on size homeostasis in the population265

(Fig. S12e). Hence, quantification methods for protein (Whi5) concentrations require future, detailed266

investigations. Overall, however, our multi-dimensional analysis of single-cell behaviors purely in glu-267
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cose media suggests that Whi5 concentration in the cell provides the volume set-point for yeast cells at268

Start, with Whi5 distribution along the lineage as a hypothesis for how size homeostasis of the popula-269

tion can be achieved.270

Discussion271

High-quality segmentation and tracking is key for any analysis of microscopy data. However, tracking272

is difficult due to different imaging modalities, changing growth environments, and different cell types.273

This makes quality control critical, so far by tedious manual curation that does not scale. Cell region274

fingerprinting (CRF) overcomes this limitation because it reliably discriminates between correctly and275

incorrectly assigned cells on consecutive images without ground truth or fine-tuning of parameters.276

Importantly, we showed that CRFs generalize to different cell types and imaging modalities. Their277

major limitations are dealing with fast-changing regions (which can be well-controlled by adequate278

imaging frequency) and ’unnecessary’ manual curation when false positives occur (but these are a few279

percent of all assignments and they do not influence the tracking performance). An avenue for future280

development is to extend the CRF to higher spatial dimensions.281

Our tracker TracX, which is based on established ideas but includes our new automated CRF-based282

proofreading concept, underlines both generality and performance of the concept. For example, it is not283

trivial that a ’simple’ tracker out-competes established algorithms also for very challenging problems,284

while additionally flagging suspicious results at the single-cell level. Apart from general limitations285

due to inaccurate inputs (primarily bad segmentation results), specific limitations arise again from fast-286

changing neighbourhoods. However, the latter can be overcome by good experimental designs to keep287

the cells in position, for example, with microfluidic culturing devices or increased imaging frequency.288

Highly accurate tracking then also helps to reconstruct the genealogy with high precision for symmet-289

rical and asymmetrically dividing cells. Importantly, the modular design of TracX makes it a valuable290

tool in image analysis pipelines, for example. Because one can choose the-best suited segmentation291

algorithm for each cell and division type. Alternatively, the CRF classifier can be applied with other292

tracking algorithms to subset or manually curate tracking data. One could, for example, thus efficiently293

create training sets for neural networks or increase the statistical power in biological applications.294

Finally, TracX’s capabilities enabled us to revisit the classic question how yeast cells control their size295

depending on nutrient availability. Its output at the single-cell (lineage) level highlights complex re-296

lationships between nutrient availability, replicative age, cell cycle progression, and cell size control,297

Specifically, the proposed model for Whi5-mediated control of cell size in single cells and at the popula-298

tion level may reconcile largely contradictory findings (or their interpretation based on few parameters)299

in previous studies. Evidently, future analyses are needed, for example, to assess in detail if dilution of300

Whi5 is central to size control35 or not36,39, and to what extent different methods of protein concentration301

estimation impact such conclusions. Such analyses will also need to include activators such as Cln3,302
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the counterparts of Whi5 and related inhibitors37. Overall, we argue that our application to cell cycle303

control of S. cerevisiae shows the need for better, more accurate analysis methods for live-cell imaging,304

such as achieved with TracX. We are confident that the possibility for mostly automated single-cell anal-305

ysis along lineages at large scale will allow further biological insights well beyond similar, cell cycle306

related questions.307
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Methods308

General notations309

We define a time-lapse microscopy dataset as an ordered set of 𝑇 images (or image frames) indexed by310

𝑡 = 1…𝑇 . An image contains a set 𝑡 = {𝑠𝑡,1,…𝑠𝑡,𝑛𝑡} of segmented objects (in our case, cells, which311

we use interchangeably). Note that different images can have different numbers 𝑛𝑡 of such objects.312

We denote by  =
⋃

𝑡𝑡 the set of all segmented objects over all images. Finally, we define the cell313

neighborhood of a segmented object 𝑠𝑡,𝑖 in the same image frame 𝑡 as the set  (𝑠𝑡,𝑖) ⊂ 𝑡 of objects314

adjacent to 𝑠𝑡,𝑖. Adjacent objects are those objects directly surrounding 𝑠𝑡,𝑖 in a fixed perimeter, which315

is a user-adjustable parameter.316

Object features317

For each segmented object, various features such as the object centroid position, the object’s area cov-318

ered and orientation in the image, and potentially quantified signals from additional channels (for exam-319

ple, fluorescence) are used. Internally we use the features defined by CellX21 as well as newly defined320

features for symmetrical lineage reconstruction (coordinates and ages of cell poles, cell orientation, and321

cell major axis). All segmentation masks from other algorithms are converted into this format prior to322

tracking.323

Cell region fingerprint and fingerprint distance324

The cell region fingerprint (CRF) is calculated as the precise descriptor of the local image information325

around a segmented object’s centroid position on a given image. We apply a cell region fingerprint326

window with constant side length (𝑓𝑙; see Table S1 for all methods parameters) to extract a squared327

subset image matrix from the raw image. It is resized by a constant factor (𝑓𝑟). The resulting matrix is328

Fourier transformed using the discrete cosine transformation (DCT). From the DCT transformed matrix,329

the coefficients for the 𝑓𝑞 lowest frequencies (DCT coefficients) form the CRF denoted by 𝑓 (𝑠𝑡,𝑖), where330

we set the direct current (DC) coefficient at (0,0) to zero due to its high intensity compared to the331

remaining frequencies. Hence, 𝑓 (𝑠𝑡,𝑖) is a 𝑓𝑞 ×𝑓𝑞 matrix.332

We measure the similarity of two objects (and their associated regions) by the cell region fingerprint333

distance 𝑑𝑓 ∶  × →ℝ. It is defined as the normalized Euclidean distance of the objects’ CRFs. For334

a pair of objects (𝑖, 𝑗) in consecutive frames:335

𝑑𝑓 (𝑠𝑡,𝑖, 𝑠𝑡+1,𝑗) =
‖𝑓 (𝑠𝑡,𝑖)−𝑓 (𝑠𝑡+1,𝑗)‖𝐹

‖𝑓 (𝑠𝑡,𝑖)‖2𝐹
, (1)
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where ‖𝑀‖𝐹 denotes the Frobenius norm of matrix 𝑀 with elements 𝑚𝑘𝑙, ‖𝑀‖𝐹 ∶=
√

∑

𝑘
∑

𝑙 |𝑚𝑘𝑙|
2.336

Neighborhood fraction337

Our criterion for the classification of cell-to-track assignments is based on the fraction of objects in the338

neighborhood of 𝑠𝑡+1,𝑗 that have a lower cell region fingerprint distance to the assigned object in the339

previous frame, 𝑠𝑡,𝑖, than 𝑠𝑡+1,𝑗 itself. Formally, with the subset of neighborhood objects and of their340

subset with lower 𝑑𝑓 specified as:341

 ′ ∶=
{

𝑠𝑡+1,𝑘 ∈
(

𝑠𝑡+1,𝑗
)}

,  ′′ ∶=
{

𝑠𝑡+1,𝑙 ∈  ′, 𝑑𝑓
(

𝑠𝑡,𝑖, 𝑠𝑡+1,𝑙
)

< 𝑑𝑓
(

𝑠𝑡,𝑖, 𝑠𝑡+1,𝑗
)}

, (2)

this neighborhood fraction is:342

𝐹𝑓
(

𝑠𝑡,𝑖, 𝑠𝑡+1,𝑗
)

=

⎧

⎪

⎨

⎪

⎩

| ′′
|∕| ′

| if  ′ ≠ ∅

0 otherwise.
(3)

We classify assignments using a constant threshold 𝜏𝑓 , where𝐹𝑓 ≥ 𝜏𝑓 indicates an incorrect assignment.343

Initial cell-to-track assignment344

We obtain initial cell-to-track assignments by solving a linear assignment problem (LAP) with the345

Jonker-Volgenant algorithm that minimizes the total assignment cost24. For frame 𝑡 > 1, assignments346

are made between two sets of objects: cells in the previous frame together with previously unassigned347

cells, denoted by 𝑆 = 𝑡−1∪𝑂 with elements 𝑠𝑆𝑖 , and cells in the current frame, denoted by 𝑇 = 𝑡348

with elements 𝑠𝑇𝑗 . The set 𝑂 is initialized to be empty and changes during iterations by adding unas-349

signed cells and removing elements according to the number of frames a cell remained unassigned (see350

below). To account for frame skipping, we define 𝜎(𝑠) for a cell 𝑠 as the difference between the current351

frame 𝑡 and the last frame with assignment.352

The elements of the |𝑆
|× |𝑇

| total cost matrix 𝐶 result from contributions accounting for cell dis-
placement, cell size deviations, cell rotations, and frame skipping. Because only subsets of the contri-
butions may apply for an assignment problem, we use the general formulation:

𝐶𝑖,𝑗 =
𝑝
||

∑

𝑘∈
𝐶𝑘
𝑖,𝑗 ,

where  is the set of partial cost functions. The normalization makes costs comparable with different353

numbers of active partial costs, and the proportionality constant 𝑝 is adjusted for numerical efficiency354

in solving the LAP (typically, we adjust 𝑝 to obtain comparable maximal partial cost function values).355
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To compute the cost for cell displacement, let the vector-valued function 𝐱(𝑠) be the centroid positions356

of a cell considered for assignment (Fig. S5a,b). We predict movement of cell 𝑠𝑆𝑖 from the last preceding357

frames with assignment (e.g., 𝑡−2 and 𝑡−1), assuming that it is conserved; the vector function 𝛿(𝑠)358

denotes the estimated displacement filtered by the neighborhood  (𝑠). We use a simple Gaussian filter359

with a custom radius (default value 100 for x and y) to down-weigh displacements of distant neighbours.360

The displacement cost matrix is then defined as:361

𝐶disp
𝑖,𝑗 = 1

𝛿2𝑚𝑎𝑥
⋅

𝐴

𝐴+
√

‖𝛿(𝑠𝑆𝑖 )‖2
⋅‖𝐱(𝑠𝑆𝑖 )+𝛿(𝑠𝑆𝑖 ) ⋅𝜎(𝑠

𝑆
𝑖 )−𝐱(𝑠𝑇𝑗 )‖2 (4)

With the first term, centroid displacements are weighted symmetrically such that a unit cost is reached362

at the maximum allowed displacement 𝛿𝑚𝑎𝑥 (Fig. S5B). This parameter has a physical interpretation: it363

is the distance (in pixels) a cell centroid may move under normal growth between consecutive frames.364

This depends on cell type and acquisition system (e.g., magnification and pixel size). The second term365

relates the displacement to the average cell area, 𝐴 = 1
2

(

𝐴(𝑠𝑆𝑖 )+𝐴(𝑠𝑇𝑗 )
)

, where 𝐴(𝑠) gives the area of366

object 𝑠. The last term accounts for the distance between predicted and actual position of 𝑠𝑆𝑖 in frame 𝑡.367

A second cost matrix captures changes in cell size, where cell size deviation is weighted asymmetrically368

to account for balanced growth (Fig. S5c). The underlying assumption is that a young cell increases369

its size rapidly, whereas loss in size is often due to mis-segmentation in a crowded region. However,370

we allow for enough flexibility to reflect situations where a cell’s size might change due to environ-371

mental perturbations such as salt stress. With the cell area ratio 𝜌𝐴 =𝐴(𝑠𝑇𝑗 )∕𝐴(𝑠
𝑆
𝑖 ) and the asymmetric372

expansion functions373

𝐸𝑁 (𝜌𝐴) =

⎧

⎪

⎨

⎪

⎩

(

𝜌𝑑𝑒𝑐 −(1+𝜌𝜇)
)

⋅
(

(𝜌𝑖𝑛𝑐 −(1+𝜌𝜇)) ⋅𝜌𝐴−(1+𝜌𝜇)
)−1 if 𝜌𝐴 > (1+𝜌𝜇)

𝜌𝐴−(1+𝜌𝜇) otherwise
(5)

and374

𝐸𝐷(𝜌𝐴) =

⎧

⎪

⎨

⎪

⎩

𝜌𝑑𝑒𝑐 ⋅𝜌𝜇 if 𝜌𝑑𝑒𝑐 ≤ (1+𝜌𝜇)

𝜌𝑑𝑒𝑐 ⋅ (1+𝜌𝜇) otherwise
, (6)

the cell size cost matrix is:375

𝐶size
𝑖,𝑗 =

𝐸𝑁 (𝜌𝐴)2

𝐸𝐷(𝜌𝐴)2
, (7)

where the denominator adjust the costs around the growth rate. It uses parameters for maximal allowed376

relative size decrease (𝜌𝑑𝑒𝑐) and increase (𝜌𝑖𝑛𝑐) as well as an offset accounting for balanced growth (𝜌𝜇;377

see Fig. S5c).378

A cost matrix that takes cell rotation into account can help tracking cell types with non-convex shapes.379
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We denote by 𝜃(𝑠) the orientation of cell 𝑠 (in degrees). With the rotation cost matrix380

𝐶 rot
𝑖,𝑗 =

sin
(

𝜋
180 ⋅

[

𝜃(𝑠𝑆𝑖 )−𝜃(𝑠𝑇𝑗 )
])2

sin
(

𝜋
180 ⋅𝜃𝑚𝑎𝑥

)2
(8)

the rotation cost is symmetric and defined such that the maximum allowed rotation angle (𝜃𝑚𝑎𝑥) of the381

cell’s major axis on consecutive frames is where the cost reaches unity (see Fig. S5d).382

Finally, the cost matrix for frame skipping is defined as:383

𝐶skip
𝑖,𝑗 =

𝜎(𝑠𝑆𝑖 )−1
𝜎𝑚𝑎𝑥

, (9)

where 𝜎𝑚𝑎𝑥 is the maximum tolerated number of frames with a cell not being present (i.e., not segmented,384

see Fig. S5e).385

As stated above, the final cost matrix is the sum of the individual weighted cost matrices and reflects386

the physical differences of cells between consecutive frames (see Fig. S5f for an example).387

We also implemented a minimal version of the TracX termed 𝑇 𝑟𝑎𝑐𝑋𝐶𝑅𝐹 . The aim of this tracker is to388

track only based on the CRF: the cost matrix uses only the cell region fingerprint distances between389

consecutive frames.390

Assignment validation and refinement391

After solving the LAP using the above cost matrix, we get the best possible assignment for most of the392

cells. As a first independent proofreading step, we validate assignments by a neighborhood fraction393

𝐹𝑓 (Eq. 3) below the threshold 𝜏𝑓 . Valid assignments are kept and invalid assignments are deleted for394

re-evaluation.395

We refine assignments by first estimating the vector field of cell motions from validated assignments396

and then correcting or adding assignments iteratively by solving LAPs26 (see Fig. S6). During two397

refinement iterations, we first use Eq. 4 with its quadratic penalty, then we replace the displacement398

cost matrix by:399

𝐶 ref
𝑖,𝑗 = 1

𝛿2𝑚𝑎𝑥
⋅

𝐴

𝐴+
√

‖𝛿(𝑠𝑆𝑖 )‖2
⋅‖𝐱(𝑠𝑆𝑖 )+𝛿(𝑠𝑆𝑖 ) ⋅𝜎(𝑠

𝑆
𝑖 )−𝐱(𝑠𝑇𝑗 )‖1 . (10)

It allows for linear motion up to a defined distance (see Table S1) and uses the estimated vector field400

𝛿(𝑠). Next, we again use a modified Eq. 4 with a linear penalty to allow displacement only along the401

vectors.402
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Finally, we update the set of cells considered for future assignments with the set of unassigned cells403

up to frame 𝑡, 𝑈 , but remove cells that exceed the threshold 𝜎𝑚𝑎𝑥 for frame skipping, that is, 𝑂 ←404

𝑈 (

𝜎(𝑠𝑈 ) ≤ 𝜎𝑚𝑎𝑥
).405

Lineage reconstruction406

To determine the parent of each symmetrically dividing cell with rod-shaped phenotype, we calculate407

the cell pole coordinates 𝑃𝑜1,2 from the cell’s centroid 𝑠𝑥,𝑦, major axis length 𝑙𝑚𝑎 and orientation 𝜃 via:408

𝑃𝑜1 =

(

𝑠𝑥+ 𝛿𝑥
𝑠𝑦+ 𝛿𝑦

)

,𝑃 𝑜2 =

(

𝑠𝑥− 𝛿𝑥
𝑠𝑦− 𝛿𝑦

)

, 𝛿𝑥 =
𝑙𝑚𝑎
2

⋅ 𝑐𝑜𝑠 (𝜃) , 𝛿𝑦 =

⎧

⎪

⎨

⎪

⎩

𝑙𝑚𝑎
2
⋅ 𝑠𝑖𝑛 (𝜃) if 𝜃 > 0

− 𝑙𝑚𝑎
2 ⋅ 𝑠𝑖𝑛 (𝜃) if 𝜃 ≤ 0

. (11)

We then minimize the Euclidean distance between poles of newly starting tracks and the cell centroid409

of tracks ending in the previous frame within reasonable distance (defined by the parent cell length)410

and overlap with the parent track. This directly establishes the parent relationship for newborn tracks411

as well as the cell pole ages (poles with minimal distance are set to zero, their opposites increase age by412

one). Cell pole ages in the first frame are undefined.413

To determine the parent of each track for symmetrically dividing cells with amorphous or convex phe-414

notype, we assume that a cell division of one ending parent track leads to the beginning of two new415

daughter tracks. Because this might not always apply (e.g., if a track is a continuation of a parent track416

with one daughter cell) TracX tries to detect cases with strong size decrease. Possible daughter candi-417

dates are evaluated iteratively, while infeasible ones (spatial distance above a threshold or both daughters418

in a continuous track) are excluded on consecutive frames with an infinite cost. Assignments are made419

by solving the linear assignment problem with the LAPV. The solution can contain the same daughter420

in more than one daughter-parent assignment. To resolve that, each daughter is assigned to only its421

closest assigned parent. However this might break daughter pairs, now lacking a daughter. Finally, the422

daughter parent assignments are set by setting the parent for each daughter. Wrong continuous tracks423

are now marked for splitting and single daughter parent pairs are marked for joining. See flowchart in424

Fig. 5i for details.425

To automate the bud (daughter) to mother assignment for asymmetrically dividing cells with a fluores-426

cent bud neck marker, we segment the marker by first de-noising the raw images with a total variation427

regularization filter (termed after the authors, ROF)47. Remaining speckles are removed by median428

filtering with a 3x3 kernel. We then compute the differential of Gaussian (DoG) with a rotationally429

symmetric Gaussian lowpass filter of equal size (21px) with standard deviations 𝜎 = [1,2]. The result-430

ing image is filtered by a canny edge filter with a user-definable parameter (edge sensitivity threshold;431

see Fig. S3) to detect the contours of the rod-shaped bud neck signal. We fill the holes in contours and432

dilate the image with a disk of 1px size to remove pixel fragment noise, followed by another round of433
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morphological dilation and erosion. We then mask with the cell segmentation mask to set the signal434

outside single cells and colonies to zero. The resulting image is converted into a labeled mask. We435

keep bud necks within a specified area range and track them with the same algorithm as the cells, but436

with independently adjustable parameters. Daughter-parent assignments are performed iteratively on437

consecutive frames by optimizing bud neck overlaps with exactly two cell masks until convergence. The438

corresponding two tracks form a daughter-parent candidate if we also detect the bud neck signal inde-439

pendently on a line profile between the centroids of daughter and parent. Finally, we compute the most440

likely daughter parent pair as the one with the highest occurrence probability throughout its detection441

in experiment.442

Implementation443

We implemented TracX in Matlab (MathWorks, Natick, MA) with a modular design, a command line444

interface (CLI), and a simple graphical user interface (GUI). Key features are: (i) TracX requires segmen-445

tation results in the format established by CellX; a module provides format conversions. (ii) One can test446

and modify default parameters on a subset of the data before batch processing. (iii) TracX provides tools447

to detect, visualize, and exclude segmentation artefacts such as cell debris and constrain input data by448

defining regions of interest, image border offsets, and thresholds on any segmentation feature, including449

fluorescence. (v) Tracking results are saved in tabular form, as control images for each frame to inspect450

the results, and as TracX state to resume work later. (vi) Image processing and visualization modules en-451

able display and export of, for example, animated movies and genealogy. (vi) The modular design allows452

to extend TracX as well as its use in larger workflows (TracX saves project details as machine-readable453

XML files). For details, see Supplementary Text, methods parameters in Table S1, algorithm descrip-454

tions in Figs. S7–S8, and the user documentation at https://tracx.readthedocs.io/en/latest/.455

Performance evaluation456

Performance evaluations focused on our CRF method’s ability to detect incorrect assignments in track-457

ing. We therefore classify assignments between objects in consecutive frames as positive (predicted458

incorrect) if 𝐹𝑓 > 𝜏𝑓 , and negative (predicted correct) otherwise. To measure accuracy of the binary459

classification with respect to the ground truth (manual tracking), we use the balanced F-score (𝐹1), the460

harmonic mean of precision and recall:461

F-score = 𝑇𝑃
𝑇𝑃 + 1

2 (𝐹𝑃 +𝐹𝑁)
,

with true positives (𝑇𝑃 ), false positives (𝐹𝑃 ), and false negatives (𝐹𝑁).462

To evaluate parameter influences on classifier performance, we determined F-scores for all combinations463

of window side length 𝑓𝑙 ∈ [20, 30, 40, 50, 60, 80, 100, 120, 150, 200, 300] (px), re-size factor 𝑓𝑟 ∈ [20,464
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25, 32, 40, 50, 64, 80, 121, 150, 200, 300] (px), and number of DCT coefficients 𝑓𝑞 ∈ [2, 4, 8, 10, 12,465

16, 20, 25, 30, 35, 40] (-). We used the following imaging data sets (see Table S2): 60mrnaCropped48,466

TS-SC9 (brightfield and fluorescence), and Fluo-N2DH-GOWT133.467

To assess TracX performance, we used the yeast imaging tool-kit (YIT)11 datasets summarized in Ta-468

ble S2. These ten datasets pose various challenges for cell tracking such as small colonies (YIT-TS1,469

2, 6), colony translations and merging (YIT-TS3), and large colonies growing out of the field of view470

(YIT-TS4, 5, 7)11. We included three recent transmission light and phase contrast data sets that contain471

dense colonies and cells with irregular morphology (YIT-TS7-10)11,30. To obtain the missing segmen-472

tation masks, we re-segmented using CellX22, CellStar11 or YeaZ49 and then benchmarked TracX with473

the manually curated ground truth from YIT and their published evaluation platform (EP).474

Strains and cultivation475

We used S. cerevisiae strains FRY2795 (a prototrophic haploid derivative of FY4 of genotype MAT𝛼476

bearing Myo1-mKate (3x) and Whi5-mKO𝜅 (1x) modifications inserted using an unpublished CRISPR477

protocol) and FRY2031 (an unmodified haploid prototrophic strain, FY4 of genotype MAT𝛼). Details478

are given in Tables S3-S5. Cells were cultured in synthetic minimal media (SDmin) unless stated oth-479

erwise. We used 1.7 g l–1 yeast nitrogen base (BD Biosciences, Germany), without amino acids or480

ammonium sulfate, 5 g l–1 ammonium sulfate (Sigma-Aldrich Co., Germany), and 20 g l–1 D-glucose481

(Sigma-Aldrich Co., Germany) for the 100mM (2%) D-glucose condition. For the other media condi-482

tions with 0.2 mM (0.004%) and 0.05 mM (0.001%) D-Glucose, the liquid D-glucose stock was serially483

diluted for higher precision. Prior to imaging, cells were streaked on YPD plates at room temperature484

directly from the freezer. Single colonies were picked and diluted into the respective liquid media at485

30°C in an orbital shaker days before the actual experiment. Using a Z2 Coulter Counter (Beckman486

Coulter, Nyon, Switzerland) and custom software, the liquid cultures were diluted to a cell density of487

3−5 ⋅106 cells per ml before loading them onto the microfluidic device (CellClamper50).488

Imaging and image analysis489

In all experiments, we loaded the first two chambers with FRY2795 and the last two chambers with490

FRY2031, serving as growth control and to estimate background fluorescence. 3𝜇l of cell suspen-491

sion were loaded into each chamber of the microfluidic device before covering it with a glass slide492

and connecting it to the media perfusion pumps. Pads of various sizes with at least one seeding cell493

were selected for imaging. During imaging, the respective medium was perfused with a flow rate of494

15𝜇l/min by a Nemesys pump (Cetoni GmbH, Germany). A custom climate chamber around the Nikon495

Ti-E inverted microscope (Nikon Europe B.V., Amsterdam, Egg, Switzerland) kept the environment at496

constant 30° C. Medium reservoir and pumps inside the chamber kept the media at the same temper-497

ature. We equipped the microscope with a Nikon CFI Super Fluor 40X Oil, 1.3NA objective (Nikon498
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Europe B.V., Amsterdam, Egg, Switzerland) and SpectraX light engine (Lumencore Inc., USA) light499

source. To excite the fluorophores, we assembled the following filter cubes: #1 EX: 600/14nm, BS:500

STHC 624nm, EM 655/40nm for mKate2 and #2 Ex: 546/6nm BS: ST565nm EM: 577/25nm for mKO𝜅501

(AHF Analysetechnik, Tuebingen, Germany). The imaging interval was chosen such that cells do not502

suffer photomorbidity51 based on the expected average cell cycle time (5, 12, and 10 min for 100, 0.2503

and 005mM D-glucose). Microscope and peripherals were controlled by YouScope52. We performed504

at least two independent experiments per glucose concentration.505

We used CellX22 for signal quantification and cell segmentation. For each experiment, a matching506

parameter file was tested on a few images to ensure best segmentation before batch analysis jobs were507

submitted using a custom job scheduler to a multi core machine (Power Edge T20 with Intel Xenon508

2.1Ghz, 96 cores, 200 GB Ram, Dell Inc, USA). Segmented cells were tracked and assigned to a lineage509

using TracX. Further analysis was performed with custom scripts in MATLAB (Mathworks Inc, USA).510

Cell cycle analysis511

Per experimental condition (glucose concentration), we corrected CellX output for background fluores-512

cence first by pixel-wise subtraction of the average fluorescence outside segmented cells and then by513

volume correction based on the control strain’s fluorescence. For the latter, we used a polynomial inter-514

polant over all control cells. Concentrations of Whi5 in the respective cellular compartment (entire cell515

or nucleus) were then calculated as the total corrected fluorescence divided either by the compartment’s516

area or by its estimated volume. Volume growth rates were estimated for G1 and G2/M separately, using517

linear models (exponential models yielded the same estimation quality with our data).518

To identify the phase of nuclear Whi5 (defined as G1 here), we derived a Whi5 signal by normalizing519

the median nuclear by the median cellular fluorescence to improve the signal-to-noise ratio. Then,520

per chamber, we fitted a two-component Gaussian mixture model to the Whi5 signal distribution and521

identified a common maximum likelihood threshold for classification of all corresponding cells and522

time points (see (Fig. S11a for an example). For the identification of budding and cell division events,523

we used the segmentation and Myo1 data as described above, except when Myo1 at the bud neck could524

not be detected (in that case, the start of Whi5 nuclear localization was used). Volume outliers were525

detected via the 1% quantile of cell volume differences between time points and discarded. Finally, we526

retained only complete cycles (showing the sequence cell division, G1, Start, budding, and subsequent527

division) and complete G1 phases (showing the sequence up to Start) for further analysis.528

To test for significant differences between groups, unpaired two-sided t-tests for means were used with-529

out correction for multiple testing; we considered comparisons between conditions only significant530

when all individual group tests were significant at 𝛼 = 0.05. For one-dimensional regressions, linear531

(𝑦 = 𝑏0+ 𝑏1 ⋅𝑥+ 𝜀) and inverse linear (𝑦 = 𝑏0+ 𝑏1 ⋅𝑥−1+ 𝜀) models were used. For multidimensional532

models, we used robust linear regression (Matlab function fitlm) after discretizing the cell age into533
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newborn and old (replicative age = 0 and > 0, respectively). For predictor variable selection, phase534

durations were not included because they directly depend on growth rates and volumes when a size535

set-point is assumed. For all regressions, unadjusted coefficients of determination (𝑟2) are reported.536
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Figures553
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Time-lapse microscopy
raw data

Image segmentation

Tracking
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Missing segmentation

Mis-segmentation

Cell movement

Image frames

Time

Generalogy
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Figure 1. Cell tracking pipeline and common problems. a Typical time-lapse microscopy dataset: bright field
images from various time-points as input. b Image segmentation for the detection of cells (colored). c Tracking of
segmented objects over (consecutive) time-points. d Reconstruction of the genealogy. Colors in b-d indicate cell
identity. e Common difficulties during cell tracking over consecutive frames (columns) illustrated by individual
cells (colored) and their track associations (colors). First row: Missing segmentation in frame 3 leads to premature
track termination in frame 2, resulting in two separate short tracks (frames 1-2 and 4-5) without assignment in
frame 3. Second row: Mis-segmentation in frame 3 leads to the restart of a new track in frame 3, resulting in two
short tracks (1-2 and 3-5). Third row: Cell displacement due to cell growth or culturing creates artificial track
ends (frame 1) and starts (frame 2).
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Figure 2. Cell region fingerprint (CRF). a Raw images of two frames 𝑡 and 𝑡+1 of a S. cerevisiae cell cul-
ture. Numbers: cell identifiers; red squares: cropping regions of approximately twice the cell diameter around
the centroid of cell 6. b Cropped image regions. c Re-sized image crops (32 x 32 pixels). d Discrete cosine
transformation (DCT) of images in c. Green squares: lowest frequencies (8 x 8) used as cell region fingerprint. e
Inverse DCT (iDCT) of the 8 x 8 frequencies. f Superimposed, arrayed 8 x 8 frequencies of the CRF. Solid line:
frame 𝑡; dashed line: frame 𝑡+1. g Cell region fingerprint distance (𝑑𝑓 ) matrix for all pairs of cells in frames 𝑡
and 𝑡+1 from a. Green boxes highlight lowest distances between a cell in 𝑡 and any cell in 𝑡+1.
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Figure 3. Cell region fingerprint parameter evaluation for different cell types, image modalities and magni-
fications. a Example images for bacterial (E. coli48; left), yeast (S. cerevisiae; middle) and mammalian (N2DH-
GOWT1 mouse embryonic stem cells;33 right) cells acquired as indicated. Scale bar: 32 pixels. b F-scores
depending on CRF window sizes (𝑓𝑙) and CRF frequencies (𝑓𝑞) for a fixed resizing factor (𝑓𝑟 =121 px or 4.66
± 0.05 neighbouring cells; the value did not influence the F-score, see Fig. S1). Dotted cyan lines: mean cell
diameters. c. Numbers of neighbour cells depending on window size (Box plots). Numbers of neighbours for
computing the fraction (𝐹𝑓 ) are given as mean (red solid line) and 95% confidence interval (red dashed lines).
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Figure 4. Performance of TracX. a Performance assessment (long-term tracking quality characterized by the
F-score) of TracX based on yeast image toolkit data sets YIT-TS1-10 compared to the five best-performing algo-
rithms10 on these data. See Methods for details. Compared to the final implementation (TracX), TracX

𝐶𝑅𝐹 bases
assignments only on the fingerprint distance (𝑑𝑓 ). b CRF-based track assignment score for each cell (track index)
over time (image frames) with corresponding counts (top and right histograms) in S. cerevisiae data set YIT-TS3.
Green lines: 𝑑𝑓 is lowest for the given assignment; red dots: cells with lower 𝑑𝑓 exist, indicating uncertain assign-
ments. Top right: example segmentation masks for the transition from frame 12 (outlines) to frame 13 (filled).
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by the total number of assignments) for yeast data set TS-SC9 as a function of neighborhood threshold 𝜏𝑓 and
imaging frequency.

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.26.465883doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465883
http://creativecommons.org/licenses/by-nc-nd/4.0/


36

23

29

13

 6

5.83 h

10 µm
0 1 2 3 4 5 6

Time (h)

6

13

29

23

36

a b

c

Merge 

Intersect 
w / 

segmentation 
mask

Segment
bud necks

Signal
detection

< 2 
cand. 
cells

> 2 
cand. 
cells

dilate
masks

erode
masks

M-D
candidate

peak
validation

Cost 
matrix

LAP solution

Daughter
pairs:

Pa
re

nt
s

4

3

3

2

4

2

1

2 midhigh

low 





Previous
frame

Ending
tracks Selection

Beginning
tracks

Current
frameOngoing

tracks

Parent
candidates

Daughter
candidates

Conflict
resolution

Preliminary
assignments

Final assignments

Distance 
to Parent:

D
au

gh
te

rs

4

2
3

3 4

1

3 2

2

3 4

1

2

2

far
near

near
near

1 2 243

Current frame

X

X

XX

X

X

X
4

3
2

Previous frame

X

X
X

XX

X

1

2

X

X

X

X

Merge

X

X

X

X

X

X
X

XX

4

3
2

1

2

: prohibited

x

x x

x

x
xx

x

x

x
x

x

x

x x

x

x
xx

x

x

x
x

x

x

x x

x
x

x x

x

Previous frame Current frame Merge

1
2 4p1

3p1

2p1

1
2

3p2
4p2

2p2
4p1

3p1

2p1

3p2
4p2

2p2

Daughter
pairs:

Pa
re

nt
s highmid

4p1

   

3p1

3p1

2p1

: prohibited

1

2

4p2

3p1

4p1

3p2

4p2

3p2

3p2

2p1

3p1

2p2

3p2

2p2

4p1

2p1

4p2

2p1

4p1

2p2

4p2

2p2

high low mid   high high  

           

17

18

19

20

46 h

10 µm
0 5 10 15 20 25 30 35 40 45 50

Time (h)

2

7

19

20

8

17

18

d

e

f

g

h

i

j

0 50 100
Line profile length (px)

100

200

M
ar

ke
r s

ig
na

l (
a.

u.
)Line profile rays

0 50 100

 91

110

 81

 88

101
 90

 85
115

105

 83

102

 61

103

 40

8.33 h

10 µm
0 1 2 3 4 5 6 7 8 9

Time (h)

2

9

16

47
90

91

48
83

85

18
37

81

88

40

10

28

50
103

105

52
101

102

29

61

62
110

115

Figure 5. Genealogy reconstruction. a-d Lineage reconstruction for asymmetrically dividing S. cerevisiae cells
using the bud neck marker Myo1. a Left: merge of segmentation masks for cells (grey) and marker (red). Right:
overlay of profile lines (white) between centroids (white dots) of candidate mother-daughter pairs. b Left: typi-
cal, re-scaled marker signal between two cell centroids along the profile line (black line) with detected peaks (red
crosses) and selected peak indicating bud neck marker presence (green square). Boundary regions (no gray back-
ground) are ignored. Right: marker signals for all cells in a. c Flowchart of the reconstruction. For each marker
signal, neighbouring cell masks are eroded or dilated up to a single candidate mother-daughter cell pair, which is
then validated by marker presence. d Cell lineage for a selected mother cell and all its offspring; cell identities
(numbers, colors) match between example image and lineage tree. e-g Lineage reconstruction for symmetrically
dividing, rod-shaped cells such as S. pombe using cell centroids and poles. e Segmented cells (black outlines
and indices) and their centroids (red crosses) of the previous frame are merged with segmentation results of the
current frame, including identified poles (cyan crosses; labels ’𝑥p𝑦’ specify cell 𝑥 and pole age 𝑦). f Schematic
cost matrix for the daughter pair - parent assignment based on the distance between pole coordinates of cells in
new tracks and centroids of cells in the previous frame. g Example lineage tree as in d. h-i Lineage reconstruction
for convex, symmetrically dividing cell types such as N2DL-HeLa cells33 based on (nuclear) fluorescent label.
h Similar to e, but with consideration of centroids in previous (red crosses) and current (blue crosses) frame.
Black: candidate daughter cells. i Flowchart for reconstruction, example cost matrix, and assignment results after
conflict and linear assignment problem (LAP) solution. i Example lineage tree as in d. Scale bars: 10 𝜇m.
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Figure 6. Effects of glucose availability on cell cycle regulation of S. cerevisiae. a Example single-cell track
for growth on 100 mM glucose. Volumes: mother including (blue solid) and excluding (blue dashed) bud, bud
(red solid), and initial volume dynamics of daughter cells (numbered) after division (red dashed). Markers (ar-
bitrary scaling): Whi5 nuclear concentration normalized by Whi5 cellular concentration (purple), Whi5 cellular
concentration (blue) and bud neck marker Myo1 (yellow). Automatically identified phases are indicated by black
horizontal lines in the lower panel, and corresponding vertical lines in all panels. Subscript: nuc, nuclear concen-
tration. b-e Cell cycle states grouped by newborn (blue) and older (red) cells and glucose concentrations. Purple
lines show mean ± s.d. Results of unpaired two-sided t-tests: *, 𝑃 < 0.05; **, 𝑃 < 0.01; ***, 𝑃 < 0.001; n.s., not
significant (𝑃 > 0.05). From left to right, group sizes for complete cell cycles were 𝑛= 41∕176∕189∕283∕54∕84,
and for additional G1 phases 𝑛 = 2∕22∕32∕116∕1∕30. f-i Correlations of cell cycle variables for newborn (blue)
and old (red) cells with data (points) and corresponding regressions (lines; inversely proportional for f,g and linear
for h,i). Purple line: regression for all cells. Subscripts: M, mother; D, daughter; cell, cellular concentration. j
Effect sizes in linear models for cell size at the end of G1 (volume at Start) and of the cell cycle (volume at next
division). Symbols: significant negative (red), significant positive (blue), and not significant (grey) at 𝛼 = 0.05.
Sizes are proportional to −𝑙𝑜𝑔𝑃 for two-sided t-tests of coefficients. All tested covariates are shown. Vertical
bars show 95% confidence intervals of estimates. k,l Model predictions vs data for individual newborn (blue) and
older (red) cells. Black line: identity. RMSE: root mean squared error.
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