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Abstract
The Weber-Fechner law proposes that our perceived sensory input increases
with physical input on a logarithmic scale. Hippocampal “time cells” carry
a record of recent experience by firing sequentially during a circumscribed
period of time after a triggering stimulus. Different cells have “time fields” at
different delays up to at least tens of seconds. Past studies suggest that time
cells represent a compressed timeline by demonstrating that fewer time cells
fire late in the delay and their time fields are wider. This paper asks whether
the compression of time cells obeys the Weber-Fechner Law. Time cells were
studied with a hierarchical Bayesian model that simultaneously accounts for
the firing pattern at the trial level, cell level, and population level. This
procedure allows separate estimates of the within-trial receptive field width
and the across-trial variability. The analysis at the trial level suggests the
time cells represent an internally coherent timeline as a group. Furthermore,
even after isolating across-trial variability, time field width increases linearly
with delay. Finally, we find that the time cell population is distributed
evenly on a logarithmic time scale. Together, these findings provide strong
quantitative evidence that the internal neural temporal representation is
logarithmically compressed and obeys a neural instantiation of the Weber-
Fechner Law.

Introduction

The Weber-Fechner law states that there is a logarithmic relationship between the per-
ceived intensity of a sensory stimulus and the actual intensity (Fechner, 1860). The Weber-
Fechner law provides a good description of a wide range of phenomena in psychology in-
cluding perceptual phenomena (Moore, 2012), the non-verbal numerosity system (Feigenson,
Dehaene, & Spelke, 2004; Gallistel & Gelman, 2000), and psychological studies of time per-
ception (Rakitin et al., 1998; Gibbon, Church, & Meck, 1984). It has been proposed that
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these psychological phenomena reflect logarithmically compressed neural representations of
time, space, and number (Gallistel, 1989; Dehaene & Brannon, 2011). It has long been
known that the representation of visual space in the retina and early visual cortical regions
do not map visual space veridically. Rather, the representation of visual space has been
argued to be logarithmically compressed as a function of distance from the fovea (Schwartz,
1980; Van Essen, Newsome, & Maunsell, 1984; Glezer, 1965). Moreover, neurons in mon-
key parietal cortex recorded during numerosity judgements have receptive fields organized
as a function of the logarithm of numerosity rather than simply numerosity (Nieder &
Miller, 2003). Similar findings are observed in human fMRI (Cantlon, Brannon, Carter,
& Pelphrey, 2006), suggesting a common system across species (Nieder & Dehaene, 2009;
Brannon, 2006). A recent paper from a cerebellar slice preparation argues that unipolar
brush cells form a logarithmically-compressed set of temporal basis functions (Guo, Huson,
Macosko, & Regehr, 2021). In hippocampus, it has been argued that a wide range of bi-
ological markers are expressed in log-scales (Buzsáki & Mizuseki, 2014). This paper asks
the question whether hippocampal time cells form a logarithmic code for the time of past
events, consistent with a Weber-Fechner representation of the past.

So-called “time cells” in the hippocampus fire sequentially during unfilled delay inter-
vals (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lepage, Eden, &
Eichenbaum, 2011). Because the sequence is reliable across trials, one can reconstruct the
time at which the delay began (e.g., Mau et al., 2018) and, in many cases, the identity of a
stimulus that initiated the delay (Taxidis et al., 2020; Cruzado, Tiganj, Brincat, Miller, &
Howard, 2020) such that at the population level hippocampal time cells construct a record
of what happened when (Fig. 1a). It is well-established that time cells do not provide a
veridical record of the past; rather the accuracy of the representation of time within the de-
lay decreases with the passage of time (Kraus, Robinson, White, Eichenbaum, & Hasselmo,
2013; Mau et al., 2018; Taxidis et al., 2020). However, unlike the visual system, which
clearly shows logarithmic compression, the quantitative form of the compression for time
expressed in hippocampal time cells is not known. This question is central to our under-
standing of the function of the hippocampus in memory. Computational models of human
episodic memory built from populations of time cells require that the compression of the
time axis is precisely logarithmic (Howard & Eichenbaum, 2013; Howard, Shankar, Aue, &
Criss, 2015). This form of compression is necessary to enable an account of the finding that
the temporal properties of episodic memory are very similar over a very wide range of time
scales, whether manipulated over seconds to minutes in the laboratory (Howard, Youker,
& Venkatadass, 2008; Unsworth, 2008), over hours in experiments outside the laboratory
(Mack, Cinel, Davies, Harding, & Ward, 2017), or studied using real-world events extending
over much longer periods of time (Arzy, Adi-Japha, & Blanke, 2009; Uitvlugt & Healey,
2019). Logarithmic compression of memory makes sense of this observation for essentially
the same reason that log(at) = log a + log t. More precisely, logarithmic time compression
means that the effect of rescaling time (taking t→ at) is to translate the memory to a new
location rather than change the relative timing of events.

Logarithmic compression leads to two quantitative relationships (see Supplementary sec-
tion S1, Fig. 1b, c) that have been empirically demonstrated in the visual system. First,
the number of cells with receptive fields in a region of visual space goes down as the inverse
of distance from the fovea (Daniel & Whitteridge, 1961; Hubel & Wiesel, 1974; Van Essen
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Figure 1 . Temporal representation and the Weber-Fechner law. a. A compressed timeline
of the past. The horizontal line a b c . . . represents objective reality as the experimenter presents
a series of stimuli at regularly spaced intervals. At each moment, memory carries a subjective
representation of what happened and when (diagonal line). The time of more recent events are
represented more clearly while distant events are less distinguishable from each other, resulting in
a compression of the temporal memory. b. A schematic illustration of a neural implementation
of a logarithmically-compressed timeline. Each curve corresponds to a time field. When plotted
as a function of log time (bottom), the receptive fields appear evenly distributed. When plotted
as a function of linear time (top), the time-fields stretch out and become less numerous as time
passes. c. Heat map of hypothetical time cells firing pattern if time is represented logarithmically.
insert Time-field widths are linearly correlated with time-field peaks. Each row represents the
firing pattern of a time cell, sorted by the peak of its time-fields. Dark blue indicates low activity
while light yellow indicates high activity. Because time-fields follow logarithmic compression, the
sorted peaks form a specific curved line where more time cells fire at the beginning of the delay. In
the insert, the time-field widths are plotted as a function of their peaks. Logarithmic compression
predicts a linear relationship.

et al., 1984). Second, the size of receptive fields grows linearly with distance from the fovea
(Dumoulin & Wandell, 2008; Gattass, Gross, & Sandell, 1981). Although time cells are at
least roughly consistent with these observations, a quantitative relationship has not been
established. For instance, although it is well-established that receptive field widths go up
with the peak time (e.g., Kraus et al., 2013) it has not been established that the relationship
is linear and in any event prior work has estimated receptive fields by averaging over trials.
This leaves open the possibility that the apparent growth in temporal receptive field width
with the peak time is simply an averaging artifact (Fig. 5b).

The goal of the analyses in this paper is to rigorously test the hypothesis that time cells
form a logarithmically-compressed representation of past time. We recorded from dorsal
CA1 during a memory experiment in which rats had to remember the identity of an object
across an eight-second delay (Fig. 4). This task is known to produce robust time cells,
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which we identified using standard methods. We estimated the distribution of time field
parameters at the level of individual trials, individual unit (across trials), and the population
(across units) simultaneously using a hierarchical Bayesian model (Fig. 5). In hierarchical
Bayesian modeling, each level of the hierarchy serves as a prior for parameter estimates at
lower levels; parameters of the model at all levels are adjusted to maximize the likelihood
of the entire observed dataset (Lee, 2011).

Results

Rats learned the memory task well and time cells, identified using previous methods
(Tiganj, Cromer, Roy, Miller, & Howard, 2018), were identified in dorsal CA1. Because our
goal was to isolate the effects of variability across trials from the within-trial time field, we
restricted attention to time cells that fired on at least twenty trials. To mitigate edge effects
in the power-law fitting procedure (Clauset, Shalizi, & Newman, 2009) we also required the
peak time averaged over trials to be within 0.35 s and 7.6 s (see “Setting the bounds. . . ” in
Materials and Methods section for detail). A population of 131 robust time cells with time
fields within the eight-second delay period were studied further.

To interrogate the neural representation of time from the trial-level to the population-
level simultaneously, we applied a hierarchical Bayesian model to the selected time cells.
We modeled time fields on each trial as a Gaussian. For each unit on trial i, the time field
is centered at µi with standard deviation σw. We modeled µi as distributed according to a
normal distribution across trials (eq. 3). The mean and standard deviation of the normal
distribution were separately estimated for each time cell. Therefore, the mean M of this
distribution estimates each time cell’s average peak time. The standard deviation of this
distribution, σt, estimates the variability of the location of the time field’s location across
trials. Logarithmic compression predicts that time field width goes up linearly with time
field center. This will be evaluated by noting how the within-trial standard deviation σw
varies across units as a function of M . Although the Bayesian analysis returns a posterior
distribution for all of the parameters it estimates, to test hypotheses about relationships
between parameters we will simply consider the mean of the posterior distributions as the
model’s estimate and use traditional statistics on those means.

Finally, the distribution of time field locations M across the CA1 population was as-
sumed to follow a power-law distribution: P (M = τ) ∝ τ−α. The Bayesian model returns
the posterior distribution of α given the data. That means that this approach is capable of
observing logarithmic compression—a tight posterior distribution around α = 1—but also
other hypotheses as well. For instance, α = 0 corresponds to a uniform distribution of time
field locations (Fig. 1e); every other positive real number is also possible.

The hierarchical Bayesian model provided a qualitatively satisfactory description of
time-specific spiking across trials and across neurons. Example model fits of individual cells
across trials can be found in Figure 2a (see also Supplementary Figure S2). For ease of
exposition, the results are presented in two sections. The first section (“The representation
of time varies . . . ”) focuses on variability in time fields across trials. The second section
(“Hippocampal time cells form a . . . ”) focuses on the properties at the population level and
provides direct tests of the hypothesis that the hippocampal time code is logarithmically
compressed. It should be emphasized that although these results are presented sequentially,
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the parameters of the model were estimated using data from both levels of description
simultaneously.

The representation of time varies from trial to trial and is internally consistent
across units

Our model fits allowed a close examination of the temporal representation at the trial-
level, which was ignored in previous studies of time cells. It is apparent that firing patterns
change from trial to trial. The model captures the trial variability both by providing trial
level time field estimation, µi on each trial i, and by quantifying the across trial variability
for each cell via σt.

There are three novel findings reported in this section. First, there was robust variability
in time field locations across trials. This is consistent with several hypotheses. It is possible
that time cells are simply noisy. A more interesting hypothesis is that the animal’s internal
sense of time, although correlated with clock time on average, varies from moment to
moment and from trial to trial. Second, the locations of time field centers for simultaneously-
recorded time cells recorded from different tetrodes were correlated across trials as if the
population cooperated to construct an internal sense of time. Finally, we found that across-
trial variability changed systematically as a function of time within the delay. This means
that compression observed in previous studies of time cells is at least partially attributable to
a trial averaging artifact. As we will see below, there is also robust evidence for compression
that is not attributable to a trial averaging effect.

Time field location varies from trial to trial. Our time field model revealed a
high degree of variability in the estimated time field location from trial to trial. Figure 3a
plots representative single units with trial-by-trial model fits for cells that fired at different
times during the delay interval. As a control to ensure that the time field location var-
ied meaningfully across trials we compared this model to an alternative model where the
between-trial variability was captured by varying the width of the time field, rather than the
peak time. A large majority of cells (91/131, χ2(1) = 19.1, p < .001) were better fit by the
model in which time field location varied across trials (see Supplementary section S2, S1).
We conclude that estimates of time field location across trials are a meaningful estimate of
variability across trials.

An internally coherent temporal representation in hippocampus. The vari-
ability in the location of time fields from trial to trial means that, to the extent time cells
are measuring time, this internal estimate does not precisely map onto the objective time
measured by the experimenter using a clock. On each trial, one could ask whether such
variability is a product of stochastic noise, or if it is the product of a meaningful fluctuation
in the internal state. If variability across trials is the result of a stochastic computation
at the level of the neuron, trial-level estimated time fields should not be correlated across
simultaneously-recorded cells. By contrast, if the population cooperates in constructing a
coherent estimate of time, albeit one that is not perfectly correlated with the readings on
the experimenter’s clock, this would predict that simultaneously recorded units vary their
time fields across trials in coordination with each other. To address this question, we inves-
tigated trial-by-trial correlations of simultaneously recorded pairs. To avoid spike sorting
errors we omitted pairs of time cells that were recorded from the same tetrode.
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Many simultaneously recorded unit pairs appeared to shift together from trial to trial.
Figure 2b plots the rasters of a pair of simultaneously recorded time cells across trials as an
example. This pair of time cells (and all pairs subsequently considered) were not recorded
from the same tetrode. Visual inspection of the raster suggests that the time fields move
together across trials. For instance on trial 19 both time cells fired relatively later than
usual. In the insert, we plotted the time field locations µi estimated by the model for both
members of the pair of time cells. Each point in the insert is one trial. It is clear that
the model estimates of µi for these two time cells are correlated across trials (r(24) = .83,
p < .001).

To test whether time field locations shifted from trial to trial in concert with one another,
we calculated the Pearson correlation between µi for all simultaneously recorded time cell
pairs that were not from the same tetrode. Of the 185 simultaneously recorded pairs, three
were excluded for low numbers of observations (< 10 simultaneously recorded trials). The
average number of shared trials between the remaining 182 pairs was 32.4. The Pearson
correlation between those pairs was positive for a majority of the pairs, ranging between
[-.51, .98] with the median at .108 (brown curve in Figure 2c). We applied one-sample t-test
(although the independent sampling assumption is violated because many cells appeared
in more than one pairs) and found the mean of correlation distribution is significantly
above zero: t(181) = 6.09, p < 0.001. As a negative control, we also performed the
same correlation test between randomly paired cells from different sessions as if they were
recorded simultaneously. When compared via Kolmogorov-Smirnov test, the simultaneous
pairs exhibited a higher correlation in shifts than the control pairs (p < .001, see Figure
2c). Because the randomly shuffled pairs still preserved the order of trials, the fact that
correlations between simultaneously-recorded pairs are significantly higher suggests that the
correlation is unlikely due to other variables confounded with passage of time within the
session (e.g., build-up of fatigue or satiety). These results suggest that the fluctuations in
the representation of time across trials reflect changes in a meaningful neural process.

Estimated across-trial variability changes with delay. The hierarchical Bayesian
model enables a separate estimate of within-trial variability—σw, the width of the time
field within trial—and across-trial variability, σt. Discussion of within-trial variability is
postponed to the next subsection. For each time cell, σt quantifies how much the time
field shifts across trials. Although the hypothesis that the temporal record of the past is
logarithmically-compressed at each moment is agnostic about the question of how time is
represented across trials, it is nonetheless important to quantify across-trial variability in
the attempt to isolate the effect of within-trial variability on trial-averaged time fields. The
model identified substantial across-trial variability. The left panel of Figure 2e plots the
distribution of σt across time cells. The median value of σt was .69 s. Thirty-four percent of
time cells showed an across-trial standard deviation of more than 1 s. The model’s estimate
of across-trial variability was larger than its estimate of the width of the time field for a
substantial majority of time cells (93/131, χ2(1) = 22.3, p < .001).

There was also a systematic change in across-trial variability as a function of the peak
location (Fig. 2e). There are a number of uninteresting factors that could affect this quan-
titative relationship. For instance, for a M that is near the edge of the delay interval, it
would be more difficult to estimate a large value of σt because the distribution would be
cut off by the edge of the delay. With this caveat in mind, we applied regression analysis
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Figure 2 . Internal timeline varies across trials but is correlated within-trial. a. Three
representative time cells with different temporal receptive fields across the delay. Rasters show
estimated time fields for each trial as a blue line. In the bottom plots, the red line represents the
peristimulus-time histogram averaged over trials. The green line indicates the estimated time field
with within-trial time field width (σw, shown above). The across trial location variability σt is
estimated separately in the model. b. Raster for a pair of simultaneously-recorded time cells from
different tetrodes. Different time cells are shown in different colors. Inset: time field peaks estimated
by the model for each time cell on each trial. The peak times of this pair of time cells were reliably
correlated across trials. c. Distribution of Pearson correlations for all simultaneously-recorded time
cell pairs from different tetrodes (brown distribution) and a shuffled distribution (grey distribution).
d. Estimated trial variability σt as a function of the peak firing time M . The left histogram plots
the distribution of the trial variability. The line shows the results of a linear regression including
constant, linear and quadratic terms (see text for details).
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of trial variability (σt) as a function of the time field peak (M), including an intercept and
linear and quadratic terms. All three coefficients were significant (intercept, Mean ± SE:
−.33 ± .06, p < .001; slope: .84 ± .05, p < .001; quadratic term: −.11 ± .01, p < .001;
R2
adj = .73). We conclude from this that variability in the location of the time field across

trials varies systematically with the average location M .
Because variability in the location of a time field across trials is substantial and varies

systematically with time within the delay, quantitative estimates of time field width as
a function of time field center should control for this trial variability. Fortunately, the
hierarchical Bayesian analysis provides separate estimates of within- and between-trial vari-
ability. We present results for time field width isolated from trial averaging effects in the
next subsection.

Hippocampal time cells form a logarithmically compressed timeline of the past

In the last subsection we found that the animals’ internal representation of time is
internally consistent across the population within a trial but varies substantially across
trials. After accounting for the across-trial variability, we are now able to study the form of
temporal compression of the time code within a trial. If populations of time cells represent
a compressed timeline, we should observe fewer units with larger values of M and the time
field width σw should increase with M . This would mean that the temporal resolution
carried by the population is reduced as the event fades into the past. If the population
is compressed logarithmically, this makes two quantitative predictions. First, time field
width σw should increase linearly with the delay M . Second, time field peaks M should be
distributed according to a power-law with an exponent of 1. Section S1 of the supplementary
materials provides an elementary explanation of why logarithmic compression leads to these
properties.

Time field width increases linearly with the delay. Figure 3b plots within-trial
time field width σw as a function of the peak location of the time field M for each time
cell. Examination of this plot suggests that time field width increases with delay, even after
taking the across-trial variability into consideration. To quantify this relationship, we fit
a regression analysis of time field width σw as a function of time field peaks M time field
width including constant, linear, and quadratic terms. Only the the linear term reached
statistical significance (.14 ± .05, p < .005, R2

adj = .21). The intercept (.11 ± .06, p < .07)
and quadratic (−.007± .008, p > .4) terms were small and neither reached traditional levels
of significance. The reliable linear term indicates that time field width increases with the
peak time even after controlling for trial-averaging effects.

Logarithmic compression predicts a precisely linear relationship between within-trial
time field width σw and peak time M . While there was no evidence for a quadratic term,
the intercept did approach significance. There is no question, however, that the curve
cannot literally go to the point (0,0). If M = 0 it would require that hippocampal time
cells respond instantaneously to the flag indicating the beginning of the delay, which is not
possible. Moreover, it would be impossible to estimate a σw approaching zero—it makes no
sense to estimate a standard deviation without more than one spike. As it is, even if the
intercept had reached significance at the upper limit of the confidence interval we observed
(on the order of a few hundred ms), we would still conclude that the intercept is small in
magnitude relative to the range of delay times exhibited by time cells in this experiment.
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Time cell peaks are distributed according to log compression. Figure 3a shows
the firing rate, averaged over trials, for each of the time cells sorted by their estimated peak
time M . Consistent with many prior studies of time cells, the central ridge appears curved.
The curvature is a sign of a non-uniform distribution of time field peaks M—if M was
uniformly distributed across time, one would expect to see a straight line when plotted in
this way. As observed in prior studies, the shape of the curvature appears consistent with
logarithmic compression—the dashed white line on Figure 3a shows the curve that would
be expected if the time fields were distributed uniformly over log time. The hierarchical
Bayesian model enables us to quantify this relationship more precisely.

The hierarchical model models the distribution of time field peaks across the population
as M ∼M−α (see Eq. 4 and methods for more details). When α = 0, the peak of time cells
should be distributed evenly throughout the delay, showing no temporal compression. For
α > 0 the representation is compressed. Crucially, α = 1.0 indicates that the compression
is exactly logarithmic.

Figure 3c plots the posterior distribution of α. This distribution is centered is around 1
(mean = .92 with 95 % interval [.67, 1.27]). This posterior conclusively argues against uni-
formly distributed time cells as it excludes zero by approximately five standard deviations.
It also argues strongly against other “simple” values for α that one might have considered
reasonable a priori, including 1/2, 3/2 and 2. To informally assess how well the distribu-
tion of M approaches α = 1, Figure 3d plots the cumulative distribution function (CDF)
of time cell peaks M on a log axis. If α were 1.0, the CDF would appear as a straight line
when plotted in this way. It should be noted that the estimates of M for different time
cells are not independent of one another in the hierarchical Bayesian analysis. However,
one also finds similar results from traditional estimate of time fields (Figure S3d), at least
considering fields that peak after a few hundred ms.

Discussion

The present study analyzed a group of hippocampal CA1 time cells with a hierarchical
Bayesian model that describes the firing patterns simultaneously at the individual trial level,
the individual cell level, and the population level. There were three important observations
from the model parameter estimates. First, by analyzing the model parameters at the
individual trial level, we found that the time fields of simultaneously recorded time cells
correlated with each other from trial to trial. This suggests an internally coherent time
representation within each trial. Second, analysis at the individual cell level revealed that
time field width increased linearly with delay, even after taking the across-trial variability
into consideration. Third, estimating the power-law exponent that describes the population
of time field peaks resulted in a posterior distribution close to one; an exponent of 1.0 means
the compression of the internal timeline is logarithmic. These results provided quantitative
evidence that the temporal representation in hippocampus was internally coherent across
trials and logarithmically compressed within a trial.

Potential causes of variability across trials

There are a number of external and internal factors that may have contributed to the
variability in the neural representation of time across trials. First, at least some of the
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Figure 3 . Log-compressed timeline a. Normalized firing rate of time cells sorted by peak time.
Yellow indicates high activity and blue indicates low activity. The dashed white line shows the peak
times one would obtain if time cells uniformly sampled log time. Equivalently, the dashed white
line shows the peak times that would result if the probability of observing a peak time M went
down like M−1 corresponding to α = 1.0. b. The width of the within-trial time field as a function
of the peak firing time. The line shows the results of a linear regression including constant, linear
and quadratic terms. Neither the intercept nor the quadratic term reached significance (see text for
details). c. The posterior distribution of the power-law exponent parameter α. The blue line on the
left marks zero, corresponding to a uniform distribution. The red line marks the mean (.93) of the
posterior. d. Cumulative distribution function (CDF) of time field peaks M plotted on a log scale.
The straight red line is included to facilitate visual comparison.
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variability could be attributable to variability in the process or processes that initiate the
sequence of time cells. Second, at least some of the variability could be attributable to the
rate at which the sequence proceeds.

Possible sources of variability in the initiation of time cell sequences. Mea-
suring time implies expressing the relationship between the present and some remote time
points. For instance, in the afternoon, a traditional clock (i.e., one with three hands and
twelve numbers) records the hours, minutes and seconds since noon. In this paper, we
defined time during a trial as the time that elapsed since the animal broke an IR beam to
enter the treadmill. But the population of time cells are not necessarily triggered by that
event, nor is it necessary that all time cells are triggered by a single event. Subtle changes
in the way the animal broke the beam may have generated variability in the rats’ physical
and/or perceived position the moment the treadmill was triggered. Perhaps some time cells
are triggered by the impact of the paw on the treadmill, which follows the beam break, or
the step towards the treadmill, which precedes it. There are a number of other possible
events clustered around the moment of the beambreak that could trigger some or all of the
time cells.

Possible sources of variability in the rate of time cell sequences. Given a
starting point that varies from trial to trial, it is also possible that the relationship be-
tween time measured by a clock and time measured by a population of time cells is not
constant from moment to moment. Many factors affect subjective duration estimates in
humans (Eagleman, 2008) and a number of neurobiological factors including dopamine re-
lease (Soares, Atallah, & Paton, 2016) and theta frequency (MacDonald, Carrow, Place, &
Eichenbaum, 2013) could affect the rate at which neural estimates of duration unfold. We
are unable to distinguish how these factors may have impacted this experiment. However,
regardless of the source of variability in the flow of time, we can make predictions about
the shape of the function relating across trial variability in time field location to the mean
time field location across trials.

Suppose that within a trial the current estimate of internal time updates at each moment
as ∆ + η where ∆ is a positive constant from moment-to-moment and η is a symmetric
random variable with zero mean and variance σ2. The randomness due to η causes the
rate at which time flows to vary within a trial. Under these circumstances, by the central
limit theorem we would expect after T timesteps the internal interval to be distributed like
∆T +N

(
0, σ
√
T
)
. That is the mean goes up linearly with T , but the standard deviation

across trials goes up with
√
T . Indeed, we found a sublinear relationship between σt andM ,

at least roughly consistent with this argument. Regardless of the source of the variability
in the rate at which time flows from moment to moment—i.e., what unmeasured variables
affect η—we should nonetheless find that variability in µi across trials should be a sublinear
function of M .

Compressed representations of time, space and other variables in hippocampus
and related regions

This paper argues that within a trial the internal timeline expressed by the population
of time cells is logarithmically compressed. Although the form of the distributions were not
assessed as carefully, many other studies of time in the hippocampus and related regions
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show a broad spectra of timescales and evidence of compression. That is, many prior
studies show a graded heterogeneity of time scales across units and time scales close to
zero are overrepresented relative to time scales representing times further in the past. The
arguments for the optimality of logarithmic compression are not only relevant for time but
apply equally well to any one-dimensional variable with a natural zero. Distance and natural
number are obvious examples of such variables. There is ample evidence suggesting that
representations of space in the hippocampus and related regions could be logarithmically
compressed as well.

Diverse timescales across brain regions. Many previous papers have shown com-
pression of hippocampal time cells in rodent hippocampus consistent with log compression
(e.g., Kraus et al., 2013; Mau et al., 2018; Taxidis et al., 2020). In addition, a qualitatively
similar compression has been reported for sequentially-activated cells in rodent striatum
(Mello, Soares, & Paton, 2015), rodent mPFC (Tiganj, Shankar, & Howard, 2017), mon-
key caudate nucleus and DLPFC (Jin, Fujii, & Graybiel, 2009), monkey lPFC (Tiganj et
al., 2018; Cruzado et al., 2020) and monkey hippocampus (Cruzado et al., 2020) during a
broad variety of behavioral tasks. It has recently been reported that unipolar brush cells in
the cerebellum form a logarithmically-compressed temporal basis set in a slice preparation
(Guo et al., 2021). It is theoretically important to systematically evaluate whether these re-
gions show the same quantitative distributions; this would require careful experimentation.
Because the experimental challenges of estimating time are greatest for times near zero, it
may be preferable to conduct this experiment over time scales greater than a few seconds;
it has been argued that time cells fire sequentially over several minutes (Shikano, Ikegaya,
& Sasaki, 2021; Liu et al., 2021).

In addition to sequentially-activated time cells, cells in the entorhinal cortex can be
used to decode time since a triggering event. Rather than fire sequentially with graded
heterogeneity of peak times, cells in EC, which have been referred to as temporal context
cells, appear to change their firing rate gradually following an exponential function as the
triggering event recedes into the past. Recording from rodent LEC in a spatial exploration
task Tsao et al. (2018) observed cells that gradually changed their firing rate with a wide
range of time constants spanning up to several minutes. The graded heterogeneity in time
constants of decay (or ramp) allow decoding of time since an event over a wide range of time
scales. Bright et al. (2020) observed similar results in monkey EC during a free viewing task
with cells triggered by onset of an image and decaying with time constants ranging from a
few hundred ms up to several s. Entorhinal neurons that are not typically understood to be
coding for time also show a graded heterogeneity of time constants. Dannenberg, Kelley,
Hoyland, Monaghan, and Hasselmo (2019) recorded from speed cells in rodent MEC. Speed
during exploration changes continuously; that study asked over what time scale filtering the
speed signal provided the best account of each speed cell’s time course of firing. Rather than
finding a single value, different speed cells appeared to filter the speed signal with a wide
range of time constants. This distribution overrepresented times near zero and showed a
long tail, much like the distribution of time constants in the EC studies described above and
not unlike the logarithmic distribution of time cell peaks observed in this study. Although
there are many possible biological mechanisms for graded heterogeneity of time constants,
slowly-inactivating currents in EC slice experiments (Egorov, Hamam, Fransén, Hasselmo,
& Alonso, 2002) is an attractive candidate for the graded heterogeneity of time constants
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in EC (Tiganj, Hasselmo, & Howard, 2015; Liu, Tiganj, Hasselmo, & Howard, 2019).
Compressed spatial representations in hippocampus and related regions. In

this study, we saw that time fields are more numerous around the beginning of the delay (e.g.,
Fig. 3). This result replicates many previous studies (e.g., Kraus et al., 2013; Mau et al.,
2018; Taxidis et al., 2020). There is also evidence suggesting that place fields cluster relative
to landmarks in the environment, such as the beginning of a path (Bjerknes, Dagslott,
Moser, & Moser, 2018; Sheehan, Charczynski, Fordyce, Hasselmo, & Howard, 2021) and
edges of an open field environment (Harland, Contreras, Souder, & Fellous, 2021). In order
to make a clear comparison between temporal representations and spatial representations, it
is essential to establish the “zero” of the spatial coordinate system. That is, populations of
time cells appear to code for the time between a particular event and the present. However,
when an animal is in any specific location in a spatial environment, many different landmarks
are at different distances and headings. In order to directly compare time to space, it is
essential to establish experimental control over the place code by moving a landmark in
the environment and observing that the place cells move with the landmark. Sheehan et
al. (2021), following a method introduced by Gothard, Skaggs, Moore, and McNaughton
(1996); Gothard, Hoffman, Battaglia, and McNaughton (2001), systematically manipulated
the location of a reward box along a linear track. As observed by Gothard et al. (1996,
2001), many hippocampal place fields moved with the box, coding for distance traveled
since leaving the box. Consistent with the results from time cell experiments, place fields
tiled the distance around the box smoothly. Moreover, place fields were more numerous
and more narrow closer to the landmark controlling their firing than further away from
the landmark (Sheehan et al., 2021). It is not currently known whether the form of the
compression of the place code is also logarithmic, but the results are at least qualitatively
similar to those observed for time cells.

Work on grid cells has shown quantitative evidence of a form of compression of space
that is closely related to the logarithmic compression observed for time in this study. It
has long been appreciated that the spatial frequency of grid cells falls into discrete groups
(Stensola et al., 2012). Interestingly, the relative ratio between the spatial frequency of
adjacent clusters of grid cells is constant, as predicted by a normative account of spatial
coding (Wei, Prentice, & Balasubramanian, 2015). Logarithmic compression also implies
that the ratio between adjacent time scales are constant (see Eq. S2). That is, both spatial
frequency of grid cells and temporal receptive fields for time cells form a geometric series.
The difference is the number of cells that share each value. Whereas time cells appear to
smoothly cover the log time axis, many grid cells cluster at a few evenly-spaced locations
on the log spatial scale axis. Whereas the ratio between adjacent time scales is close to one,
the ratio of the spatial frequency of one cluster of grid cells to the next is much larger. It
is an interesting theoretical problem to understand why the brain has chosen distinct but
closely related coding schemes for time (and perhaps also space) in the hippocampus and
spatial frequency in the grid cell system.

Implications of logarithmically-compressed time for cognitive neuroscience

Human episodic memory—the vivid recollection of a specific event from one’s life—has
long been thought to depend on recovery of a prior state of spatiotemporal context (Tulving
& Madigan, 1970). Computational models of human list learning experiments built on
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this assumption (Sederberg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana, 2009;
Talmi, Lohnas, & Daw, 2019; Logan, 2021) provide a natural account of the contiguity
effect—the finding that memory for a particular item from a list spontaneously brings
to mind other stimuli presented at nearby points in space and time (Healey & Kahana,
2013; Kahana, 2012). The hippocampus has been proposed as a brain region that both
maintains the current state of temporal context and is essential for the recovery of temporal
context hypothesized to support episodic memory (for a review Eichenbaum, 2017). It has
been proposed that a population of logarithmically-compressed time cells could serve the
role of temporal context in computational models of human episodic memory (Howard &
Eichenbaum, 2013; Howard et al., 2015). The empirical observation that time cells form a
logarithmically-compressed representation of the recent past has dramatic implications for
computational models of human episodic memory.

Retrieved temporal context in human MTL. According to many computational
models of episodic memory in humans, episodic memory recall is mediated by a distributed
pattern of temporal context that changes gradually over time. This property is essen-
tial for its role in accounting for temporal effects in human list learning studies. In par-
allel with animal work, a number of human neuroimaging studies show evidence for a
gradually-changing representation of the recent past in human hippocampus and related
regions (Tubridy & Davachi, 2011; Cohen, Ross, & Stern, 2018; Hsieh, Gruber, Jenkins, &
Ranganath, 2014; Deuker, Bellmund, Schröder, & Doeller, 2016; Schapiro, Turk-Browne,
Norman, & Botvinick, 2016; Bellmund, Deuker, & Doeller, 2019).

These same computational models of episodic memory argue further that the behavioral
contiguity effect results from recovery of a previous state of temporal context—a neural jump
back in time. If the behavioral contiguity effect results from recovery of a previous state
of a gradually-changing temporal context, then it should be possible to observe a neural
contiguity effect as well. The pattern of activity when participants successfully recall a
studied item should resemble the pattern of activity during study of the recalled item, but
crucially also resemble the pattern during study of neighbors of the recalled item. Indeed,
neural similarity decreases as function of the temporal distance between the studied items
and its neighbors, showing a neural contiguity effect (Folkerts, Rutishauser, & Howard,
2018; Manning, Polyn, Litt, Baltuch, & Kahana, 2011; Yaffe et al., 2014; Nielson, Smith,
Sreekumar, Dennis, & Sederberg, 2015). In a particularly dramatic example, Nielson and
colleagues (2015) asked participants to wear smartphones around their necks as they went
about their daily lives over a month-long experiment. The smartphone took pictures of their
environment at regular intervals with corresponding time stamps and GPS information for
a month. The images from participants’ own life were later presented to them in the scanner
with the instruction to “try to mentally relive your experience.” The pattern similarity of
hippocampal activition between pairs of remembered pictures correlated the the objective
temporal and spatial distances between the actual experiences. Critically, pattern similarity
in hippocampal activation for retrieved memories correlated with temporal and spatial
distances over temporal scales of weeks—much longer than would typically be observed in
the laboratory.

Log compression of temporal context leads to scale-invariance of contiguity
effect. If temporal context is constructed from time cells, and the contiguity effect results
from recovered temporal context, then the logarithmic compression observed in this paper
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makes sense of an important and otherwise puzzling property of human episodic memory:
The contiguity effect in episodic memory is observed across a very wide range of time scales.
For instance, in a delayed free recall experiment in which the items are presented once per
second, a robust contiguity effect is observed (Kahana, Howard, & Polyn, 2008). However, if
one inserts a distractor-filled delay of, say, sixteen seconds between each word, presumably
clearing the contents of short-term memory between each list item, a contiguity effect is
still observed (Howard & Kahana, 1999). If, at the end of an experimental session lasting
tens of minutes, one asks the participant to recall all the words from all the lists, there is a
contiguity effect across lists, despite the fact that the words from different lists are separated
by perhaps a minute (Unsworth, 2008; Howard et al., 2008). It is a computational challenge
to understand how the contiguity effect can persist across all of these time scales.

If temporal context is constructed from logarithmically-compressed time cells, the loga-
rithmic compression provides a natural explanation for this phenomenon. This paper argues
that time cells in the rodent hippocampus record past events as a function of log t. Recall
that log(at) = log a+ log t. That is, multiplying the time axis by some constant scaling fac-
tor a shifts a logarithmic scale by log a. For a logarithmically-compressed timeline, rescaling
time—zooming out from the scale of one second to ten seconds to one hundred seconds—has
the same effect as simply shifting to a new set of time cells. Any associative network built
from a set of logarithmically-compressed time cells will respond to rescaling time in the
same way. If one can devise a method to pattern complete activation of a set of time cells
driven by stimuli presented at one time scale, the same network will also have a similar
ability to pattern complete when the sequence of stimuli are rescaled in time. Notably, this
same property of logarithmically-compression also leads naturally to time-scale invariant
perception when integrated into deep neural networks (Jacques, Tiganj, Sarkar, Howard, &
Sederberg, 2021), suggesting that logarithmic compression is a general principle of temporal
coding in the brain (Guo et al., 2021).

Although logarithmic compression of time cells provides a solution to part of the compu-
tational puzzle posed by the behavioral contiguity effect, there are still significant challenges.
For instance, the contiguity effect extends over time scales much longer than have currently
been observed in time cell experiments (which peak at perhaps a few minutes Shikano et
al., 2021; Liu et al., 2021). The contiguity effect can be observed when stimuli are presented
separated by an hour (Mack et al., 2017). Although it is difficult to do a controlled experi-
ment, Uitvlugt and Healey (2019) observed contiguity effects that extended over weeks and
months when asking participants to recall news events. This recalls the findings of Nielson
et al. (2015), who observed neural contiguity effects extending over similar time scales for
autobiographical memories. Arzy et al. (2009) asked subjects to place real world events on
a timeline centered at the present. They found the accuracy for the time of past events
decreased linearly with log-scaled time, suggesting a logarithmically-compressed temporal
representation over time scales up to decades (see also Peer, Salomon, Goldberg, Blanke, &
Arzy, 2015). Although mathematically a logarithmic scale can represent events arbitrarily
far in the past, it seems unlikely that the same neurophysiological processes that lead to
sequentially-activated time cells over scales from about a hundred ms to perhaps tens of
minutes could extend over such long time scales. Perhaps representational drift, which can
be observed for very long time scales (Ziv et al., 2013; Rubin, Geva, Sheintuch, & Ziv,
2015; Cai et al., 2016; Mau et al., 2018; Mau, Hasselmo, & Cai, 2020) is responsible for
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a b

Figure 4 . Data acquisition a Illustration of the behavioral task. b Recording sites. The left
panel plots example histology sections for each animal. the red circle indicates the final recording
location. The right panel plots the estimated tetrode locations for each rat (coded by different color
dots) mapped onto the Paxinos and Watson atlas (1986).

the contiguity effect in episodic memory over autobiographical time. If representational
drift codes for events over log time, as we observed for hippocampal time cells here, then
it should be possible to trigger very slow sequences with specific environmental events (Liu
et al., 2021).

Materials and Methods

Experiment and Electrophysiology

Subjects. Subjects were four male Long-Evans rats (Charles River) weighing between
350 and 450 g and between the ages of 6 months to 1.5 years for the duration of the
experiment. Animals were single housed and maintained on a 12-hour light-dark cycle
(lights on at 8:00 AM) for the duration of the experiment. All behavioral training and
experimentation were performed during the light phase. Animals were given ad-libitum
water and maintained at a minimum of 85% of their ad libitum feeding body weight during
all behavioral training and testing. All procedures were conducted in accordance with the
requirements set by the National Institutes of Health, and were approved by the Boston
University Institutional Animal Care and Use Committee (BU IACUC).

Behavioral apparatus. The behavioral apparatus consisted of a custom-built 355 cm
long by 7.5 cm wide circular track with an integrated treadmill using commercially available
parts (Columbus Instruments). The treadmill had walls funneling into a small exit to ensure
the animals’ head position was fixed for the duration of the treadmill run. At the end of
the treadmill existed a 20×20 cm square platform onto which the test objects were placed.
The track was elevated 95 cm above the floor, positioned at least 20 cm away from all walls
but in a position in which various distal visual cues were available to the rat. The maze
contained two automatic doors, one at the front of the treadmill and one on the return
arm that was controlled by infrared beam breaks (Arduino microcontroller, hardware from
Adafruit industries).
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Training procedure. Rats were trained in a similar manner to previous experiments
(Robinson et al., 2017). Briefly, rats were initially trained to run in one direction around
the maze for froot-loop reward. Once rats reliably looped, they were shaped to retrieve
the reward hidden in a flower pot each lap (roughly 4 days). Then, rats were trained to
sample one of two test objects before running through the treadmill platform and then
choosing the matching one of two terra cotta pots discriminable by scent and digging media
(Keene et al., 2016). The terra-cotta pots were always placed side-by-side on the platform
in a pseudorandomized position. A choice was determined to be made once the animal
disturbed the surface of the media at which point the opposite pot was immediately removed
at this and all subsequent stages of behavior. One crushed froot loop was added to each
pot at the beginning of each day, and every 7-9 trials neither pot contained a food reward,
and the reward was given after 1 second of digging to prevent the possibility of reward
scent guiding behavior. This shaping was performed by initially running each object-pot
pair in large blocks of trials (>10 consecutive trials) and progressively weaning down to
random presentation over the course of 2 weeks. Once animals were performing at >80%
discrimination, two new objects were added one at a time to the study set using the same
progressively shrinking block design. Once animals were able to discriminate between the 4
objects to retrieve reward from the correct terra-cotta pot of the two with >90% accuracy, a
running delay was imposed. Initially, animals were trained to wait for a fraction of a second
while the treadmill was nudged forward between the study and test phases. This treadmill
delay was progressively increased until performance fell to between 70 and 80%, typically
8 seconds. Typically, this training schedule took roughly 2 months to train animals on the
first pair of study objects, and then another 1.5 months for rats to perform with 4 study
objects and with a sufficiently long treadmill delay.

Surgery. Anesthesia was induced via inhalation of 5% isofluorane (Webster Veterinary
Supply) in oxygen, and then a stable plane was maintained at 1.5-3% throughout the en-
tire surgery. Immediately following the induction, animals were injected with the analgesic
Buprenex (Buprenorphine hydrochloride, 0.03 mg/kg i.m.; Reckitt Benckiser Healthcare),
and the antibiotic cefazolin (330 mg/ml i.m.; West-Ward Pharmaceuticals. The rat was
then fixed to a stereotaxic frame (Kopf). Craniotomies then were made above the dorsal
hippocampus (dHPC) (AP-4.1, ML 3.0 mm), and the rostral lateral entorhinal cortex (LEC)
(AP-6.8, ML 4.5). Six to eight sterile stainless steel screws were then fixed to the skull,
and the remaining skull surface was covered with Metabond (Parkell, Inc). A hyperdrive
consisting of 24 independently moveable tetrodes was then lowered into the craniotomy, and
fixed to the skull using dental cement. Two ground screws were inserted above the cerebel-
lum, and soldered to the ground leads on the electrode interface board during surgery. Each
tetrode was composed of four 12 uM RO 800 wires (Sandvik Kanthal HP Reid Precision
Fine Tetrode Wire; Sandvik). Tetrodes were plated with non-cyanide gold solution (Neu-
ralynx) via electrolysis using a Nano-Z (White Matter LLC) in order to reduce impedance
to between 180 and 220 kOhms. At the conclusion of surgery tetrodes were lowered 1 mm
into dorsal cortex. Animals were given Buprenex and Cefazolin twice a day as needed for
up to three days post-surgery.

Data acquisition. All electrophysiological recordings were performed using a 96
channel multichannel Acquisition Processor (MAP) recording system (Plexon). Each spike
channel was amplified 1000x, then between 3-10x depending on the region. Spike channels
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were manually referenced to a local tetrode with no apparent unit firing, bandpass filtered
between 200 and 10 kHz, and digitized at 40 kHz. LFP signals were uniformly referenced
to ground, amplified 2000x, and bandpass filtered between 0.5Hz and 300 Hz. The animal’s
position and behavior were tracked via two LEDs fixed to his hyperdrive on one overhead
camera, and on one camera positioned behind the two terra-cotta pots each recording at 30
fps. Tetrodes were moved a minimum of 60uM after each recording session to prevent re-
sampling the same units. Tetrodes were lowered a minimum of 12 hours before all recording
sessions to ensure tetrode stability. IR beam crossings and door movements were automat-
ically logged, and behavioral events were scored manually using video feeds from the two
cameras (CinePlex software, Plexon).

Spike sorting and data processing. Spikes were assigned to individual units by
offline manual clustering of waveform characteristics (valley amplitude, peak-valley, en-
ergy, principal components, and waveform width at half max). Tetrode localization was
performed using histology, and further guided by the LFP theta amplitude and phase, and
sharp-wave ripple amplitude. Only well-isolated units (Isolation Rating >40 L-Ratio <.001)
were kept for further analysis. Behavior was monitored from an overhead camera and a sec-
ond camera with a close-up view of the test pots. The rats’ position was tracked via two
light-emitting diodes attached to the implant (one red and one green) and customized MAT-
LAB code. Door movements, and treadmill onset and offset were automatically strobed into
the recording amplifier. Test object sampling events were hand-coded using CinePlex editor
(Plexon) using video taken at 30 Hz from the camera trained on the reward objects (See
Supplemental Video File).

Selecting time cells as input to the hierarchical Bayesian model

As a first pass to identify time cells to be passed on to the hierarchical Bayesian model,
we used established methods reported in other papers (Tiganj et al., 2018; Cruzado et al.,
2020). This method is conservative in that it uses multiple tests to ensure that a particular
unit reliably codes for time across trials and is is meaningfully related to time within the
delay period. It does not control for variability across trials nor to does it try to assess the
properties of the population.

In order to be classified as a time cell, a unit had to satisfy several criteria. First,
to exclude interneurons, we required the firing rate over all delay intervals had to be less
than 5 Hz. Second, to be classified as a time cell, units had to show a reliable time field.
This was quantified by comparing two models to describe the firing rate as a function
of time. One model included a Gaussian-shaped time field, with a mean and a standard
deviation, and a constant term. The other model only estimated a constant firing rate. Best-
fitting parameters for each model were identified for each unit and each model using scipy’s
basin-hopping method scipy.optimize.basinhopping with truncated Newton algorithm
(arguments stepsize=1000, niter=500, method=TNC, use_jac=T, t=1). In order to pass
this criterion, the log-likelihood ratio for the time field model compared to the constant
model had to exceed 5.66. The two models differ by three degrees of freedom; 5.66 is the
threshold needed to exceed the log-likelihood ratio test with three degrees of freedom at the
p < .01 level.

To ensure that the units classified as time cells were reliable across trials, we required
that the time field model was statistically reliable for both even and odd trials considered
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separately. To ensure that the method identified time fields within the delay interval, rather
than monotonically ramping or decaying firing (or a time field centered outside the interval),
we additionally required that the mean of the Gaussian firing field was within the delay.
This method identified 159 units that were classified as time cells which were considered
further.

Additionally, the model aims to estimate time fields at the trial level, which will then be
pooled to estimate the overall temporal receptive field. To ensure that the variability across
trials could be reliably estimated, we required that units considered in the hierarchical
Bayesian analysis fired at least one spike on at least 20 trials. This left a total of 131
putative time cells for the hierarchical Bayesian analysis.

Setting the bounds for the power-law distribution. To understand the temporal
representation at the population level, we directly estimated the compression level with
a power-law distribution. With empirical data, it is often the case that the power-law
distribution assumption does not hold for extreme values (too small or too large). With
time cells specifically, it is reasonable to assume that the ones fire extremely early or late
may be responding to events before or after the delay. Therefore, it is important to find
the bounds for power-law distribution if we want an accurate estimation of the compression
parameter α. We used the estimated time field peaks from the maximum likelihood method
to determine the bounds for power-law distribution for the hierarchical Bayesian model
fitting. Clauset et al. (2009) argued that the chosen boundary should make the probability
density function from the bounded data as close to the best-fit power-law distribution as
possible. Following their advice, we performed Kolmogorov-Smirnov statistic (KS test) to
measure the probability that the bounded data was sampled from the best-fit power-law
distribution and chose the boundary parameters that produced the highest p-value. For the
lower bound parameter (min parameter in the hierarchical Bayesian model), we searched the
range from 100–400 ms with a 50 ms grid. For the upper bound parameter(max parameter
in the hierarchical Bayesian model), we searched in the range of 6400–8000 ms with a 400 ms
grid (5 percent of the overall trial-length 8000 ms). For each of the lower bound and upper
bound pairs, we took the estimated time field peaks that fell in the range and estimated
the corresponding power-law distribution (Eq. 4) with the Bayesian model fitting method.
The posterior of the compression parameter α is generated through the rStan package with
3 independent Markov-Chain-Monte-Carlo (MCMC) chains (4000 warm-up iterations and
1000 post warm-up samples in each of the MCMC chains). Then we applied the KS test
that compares the data against the best-fitting power-law distribution composed with the
corresponding α. The cumulative density function (CDF) of the bounded power-law is
defined as:

P (x) = x1−α −min1−α

max1−α−min1−α (1)

In our KS test results, we found the pair with the highest p-value is (350 ms, 7200 ms).
We excluded any cells outside of the range (14/159) and applied this range limit for the
compression estimation in the Hierarchical Bayesian model fitting below. Although we
ended up with one particular boundary pair, the estimated α distribution does not change
much between different pairs in our results: after excluding some very early choices (100 ms-
250 ms) for lower bound and very late choice (8000 ms), the estimated α posteriors from
the remaining pairs are between 0.5 and 1.5 and are centered around 1.
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Model Time Cells with Hierarchical Bayesian Method

A schematic illustration of the model can be found in figure5. The model generates
time field estimation at the individual-trial level. For each trial, the model assumes that
the observed spikes are either due to the temporally modulated Gaussian-shaped time field,
or some other mechanism that is not temporally variable, which is assumed to be uniformly
distributed across the entire trial. Therefore, the probability that cell n fires at any given
time point t on trial i is:

pi(t) = a1N (µi, σw) + (1− a1)U . (2)

where a1 is the proportion of spikes contributed by the time field and µi σw are the center
and width of the time field, accordingly. Note that although µi is specific to trial i, sigmaw
is fixed across all trials for the unit.

To quantify the between-trial variability, the model assumes that the time field can shift
across trials according to a normal distribution that centers at a parameter M with the
standard deviation σt:

µi ∼ N (M, σt) (3)

Finally, we assume that the population of time cells is distributed according to power-law
function: y = x−α. A probability density function for the time field peak at τ can be
derived within a specific range [min, max]:

p(M = τ) = τ−α/C (4)

where
C =

∫ max

min
M−α dM (5)

is the power-law function integrated over [min, max]. Dividing the power-law function by
C ensures the area between [min, max] sums to 1, which makes it a probability distribution
within the bounds.

When α 6= 1, the result of the integration is:

C = max1−α −min1−α

1− α (6)

When α = 1, the result is:
C = ln(max)− ln(min) (7)

As described above, we estimated the range through the Kolmogorov-Smirnov test prior to
the hierarchical Bayesian model fitting following the procedure suggested by Clauset et al.
(2009).

The value of α reflects the degree of compression in the distribution where a higher α
value indicates that a bigger portion of time cells fire early in the delay. Crucially, when α
approaches zero, Equation 4 becomes p(M = τ) = 1

max − min , a uniform distribution between
[min,max]. When sorting a group of evenly distributed time cells based on their temporal
locations, one would expect the time fields to form a straight line. Another value of great
theoretical interest for α is 1: where the time cells are distributed according to logarithmic
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a b

c

Figure 5 . Schematic illustration of the hierarchical model a. graphic diagram of the model.
Each note represents a variable in the model; filled note represents observed spike-train data and
open notes represent latent variables. Arrows represent relationships between variables and plates
indicate whether the variable is estimated at the trial level, cell level, or population level. b-c.
Schematic illustration of model fitting to a group of simulated time cells: the model account for
firing pattern at individual trials (top rows in b), individual cells (bottom rows in b) and the
population level c. In figure b we plot two simulated cells with high (left cell) vs. low (right cell)
trial variability. At the trial level, the pink dots indicate the spike train and the blue lines indicate
the estimated time fields for each trial. At the cell level, the red lines indicate the average firing
patterns across trials and the green lines indicate the estimated time fields for the cell from the
model. For both the left and right cells, the overall firing pattern is similar and would results in
similar time field width estimation with traditional methods despite the left cell has a much narrower
time field. By contrast, fitting at the individual trial level allows the model to estimate the time
field width more accurately. In c, we plot two hypothetically time field peaks distributions. We plot
the distributions of time field peaks (yellow line marks the location of the time field peaks, sorted
from early to late) under two specific compression rate α values: time fields are distributed evenly
with no compression when α = 0 (left panel) vs. time fields are distributed according to logarithmic
compression when α = 1 (right panel).
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compression. When sorting the log-compressed time cells on their temporal locations, one
would expect to see more time cells early in the delay. As α increases, for example when
α equals 2, the temporal representation becomes more compressed. The bottom panel of
Figure 5b shows simulated time cells with these three values of α values.

The posterior distributions of estimated parameters were generated through the Stan
package (Stan Development Team, 2021) with 8 independent Markov-Chain-Monte-Carlo
(MCMC) chains (4800 warm-up iterations and 200 post warm-up samples in each of
the MCMC chains).

Supplementary Materials

S1: Properties of a logarithmic receptor spacing

We suppose that there is a set of receptors characterized by a unimodal receptive field
along some continuous variable x > 0 corresponding to a physical quantity. Each receptive
field is centered on one point along x and is associated with a non-zero width parameter
that can change with the center. Let us order the receptive fields by their location along
x and refer to the center of the receptive field of the nth receptor as xn. We say that the
receptors form a logarithmically-compressed representation of x if:

n = logb
(
xn
x1

)
(S1)

where x1 is the smallest value of x covered by the set of receptors and the base of the
logarithm b controls the spacing between receptors. Note that because the receptors are
ordered such that xi+1 > xi, this implies that b > 1. Equation S1 implies that the spacing
between the nth receptor and its near neighbor n+ 1 is a constant ratio:

xn+1
xn

= b (S2)

Because the spacing between receptors goes up with x we find

∆x ≡ xn+1 − xn = (b− 1)xn, (S3)

. The number of receptors we would expect to find in the neighborhood of a particular
value of x is just ∆x

−1. This means that if the receptors are sampled without bias, then
the probability of finding a receptor near a particular value of x goes down like x−1. That
is, if a set of receptors provides a logarithmically-compressed representation of x, then the
number density of receptors goes down as a function of x like a power law with exponent
−1.

Equation S3, coupled with some minimal arguments about the redundancy of receptors
suggests that the width of receptive fields, should go up linearly with x. Let us assume
that σx, the function relating the width of receptive fields to x is monotonic. We can now
consider the ratio σx

∆x
as x grows. If σx is monotonic, as x grows without bound, this ratio

must either grow without bound, remain constant, or go to zero. If the ratio goes to zero
(because σx grows more slowly than x) then eventually we would find “gaps” in the coverage
of x. If the ratio goes to infinity (because σx grows more quickly than x), then this means
that the receptive fields at high values of x overlap entirely. In this case the two receptors
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are completely redundant with one another. The third alternative is that σx is a linear
function of x, as is ∆x. In this case the relative overlap in receptive fields is constant as x
grows and adjacent receptors have the same relative overlap in receptive fields throughout
x.
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S2: Quantify How Time Cells Vary across Trials with Model Selection

Because most previous studies ignored the across-trial variability, there is no clear con-
sensus on how the time field may vary across trials. The hierarchical Bayesian model we
presented in the main text assumes the width of the time field stays consistent across trials,
and the location of the time field shifts from trial to trial (the "location-shift model"). Here
we test it against an alternative model where we applied the same hierarchical Bayesian
structure with one crucial difference: the time field location is fixed while the width varies
across trials (the "width-vary model"). In Fig. S1 we presented example fits from the two
models to the same cell. While both models provide similar fits to the overall pattern (lower
panel in both figures), the width-vary model is clearly struggled to capture the firing pat-
tern at the individual trial level. When applied the Watanabe-Akaike information criteria
(WAIC) test to both fits, we found the majority of units in the population (90/131) prefer
the location-shift model. We concluded that the location-shift model is the more accurate
way to describe the trial-variability for the population.
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a

b

Figure S1 . Example fits from location-shift model (a) and width-vary model (b) On the
top panel of both figures, we plotted fittings to individual trials (in blue lines, width indicate time
field width for the trial) and raster (pink dots). On the bottom panel of both figures, we plotted
the estimated time field (green line) and the average firing pattern (red line) of the unit.
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Figure S2 . Additional example time cell fits. Format is the same as Figure 2a.

S3: Additional Model Fits

We provided additional example time cells in figure S2
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a

b

c

d

Figure S3 . Additional analysis comparing the maximum likelihood fits and the hierar-
chical Bayesian fits a-b Maximum likelihood estimated time field peaks (a) and width (b) as a
function of their corresponding estimation from the Hierarchical Bayesian method (x-axis). Points
on the diagonal line are units where the two values are the same. Points above the diagonal line
are units the higher values in the maximum likelihood fits. c Maximum likelihood estimated time
field peaks plotted on a log-scale (x-axis), sorted on the order of their peak time location (y-axis).
Pink line represents linear fit on log data excluding extremely early time cells (prior to 0.25 s). d
Maximum likelihood estimated time field widths as a function of their time field peaks.

S4: Analyze Maximum Likelihood Fits

In this section, we reported the results from Maximum likelihood fits and compared
them with results from Hierarchical Bayesian. In Fig. S3a, we compare the Maximum
likelihood estimated time field peaks as a function of hierarchical Bayesian estimation. As
shown in the figure, aside from a few outliers cluster toward the bottom, most of the cells
are closely alongside the diagonal line, which suggests that the results from both methods
are close to each other. Similarly, when plotted on the log scale, the sorted time field peaks
from Maximum likelihood methods tiles evenly across the log scale (Fig. S3c). This further
demonstrated the robustness of the compression rate estimation. In Fig. S3b, we plotted
the maximum likelihood estimated time field width as a function of hierarchical Bayesian
estimation. Contrary to the plot of estimation time field peaks, most of the cells here are
above the diagonal line, which means the maximum likelihood estimated time field widths
tend to be larger than the ones from the hierarchical Bayesian model. Paired t-test results
confirmed that the difference is significant (t(131) = 9.38, p < 0.001, 95 percent confidence
interval: [0.34,0.52]). The result is expected as the maximum likelihood estimation does
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not separate the time field width from the across-trial variability. As reported in the main
text, there is a significant linear relationship between hierarchical Bayesian estimated time
field widths and time field peaks. However, When plot the Maximum likelihood estimated
time field widths as a function of their time field peaks, linear regression analysis shows
that both linear (0.64± 0.06, p < 0.001) and quadratic term (−0.06± 0.01, p < 0.001) are
significant (R2 = 0.674, Fig. S3d). Again it is likely due to the inclusion of trial-variability
in the time field width estimation.
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