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ABSTRACT 1 

The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a 2 

limited understanding of the dynamic physiochemical features of the TCR that elicit an 3 

immunogenic response. The physiochemical features of the TCR-peptide major 4 

histocompatibility complex (pMHC) bond dictate bond lifetime which, in turn, correlates with 5 

immunogenicity. Here, we: i) characterize the force-dependent dissociation kinetics of the 6 

bond between a TCR and a set of pMHC ligands using Steered Molecular Dynamics (SMD); 7 

and ii) implement a machine learning algorithm to identify which physiochemical features of 8 

the TCR govern dissociation kinetics. Our results demonstrate that the total number of 9 

hydrogen bonds between the CDR2-MHC⍺(), CDR1-Peptide, and CDR3-Peptide are 10 

critical features that determine bond lifetime. We propose that amino acid substitutions to 11 

these hypervariable regions of the TCR can efficiently manipulate immunogenicity and thus 12 

be used in the rational design of TCRs for immunotherapy.  13 

 14 
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INTRODUCTION 1 

T cell-based immunotherapies (e.g., chimeric antigen receptor-T, or CAR-T; and TCR-2 

engineered-T, or TCR-T) have provided transformative therapeutic responses in a small 3 

subset of cancers and patients1-5; however, progress in solid tumors has been agonizingly 4 

slow.  For example, CAR-T cells require an antigen on the tumor cell surface, but the 5 

majority (~85%) of identified neoantigens are intracellular6 and thus are immunogenic only 6 

when a representative fragment is presented on the cell surface in a peptide-major 7 

histocompatibility complex (i.e., pMHC). Although TCR-T therapy is MHC-restricted, this 8 

approach can target intracellular antigens, and the remarkable sensitivity of a TCR to 9 

recognize a single pMHC molecule7 provides an additional strategic advantage.  10 

Nonetheless, identifying neoepitopes, matching these with immunogenic TCRs, and 11 

minimizing off-target effects remain significant challenges to implementation of these 12 

therapies8. 13 

 14 

Recent reports demonstrate that single-cell sequencing and machine learning technologies 15 

can identify patient- and tumor-specific neoepitopes9, 10. However, identification of partner 16 

TCRs remains challenging, despite the fact that tumor-specific T cells can be found in the 17 

peripheral blood11, 12. The human immune system generates tumor-specific T cells in a 18 

process that begins with random V(D)J recombination to create the hypervariable regions of 19 

the TCR  and  chains.  While this process generates a stunningly large number of 20 

possible TCRs (>1020-1061)13, 14, including 106-108 in the peripheral blood, it is inherently 21 

inefficient and does not necessarily produce a TCR with appropriate immunogenicity for a 22 

given tumor15.  Alternate strategies of TCR identification have also fallen short; for example, 23 

TCR affinity enhancement can lead to a loss of TCR specificity16, 17 and does not always 24 

determine immunogenicity18.  25 

 26 

Computational techniques such as steered molecular dynamics (SMD) and machine learning 27 

may enable the creation of highly immunogenic, tumor-specific TCRs through rapid and 28 
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efficient screening of the vast number of possible TCRs. The success of these techniques 1 

depends on accurate in vitro predictions of T cell immunogenicity, a goal that remains 2 

elusive. Quantitative descriptors of the TCR-pMHC bond identified in previous studies do not 3 

consistently correlate with immunogenicity18-21.  The majority of these studies measured 4 

equilibrium parameters of the TCR-pMHC bond, which do not account for the mechanical 5 

forces on the TCR-pMHC bond present in vivo. Recent studies using DNA-based tension 6 

probes have estimated this force at ~10-20 pN22, 23, and subsequent studies demonstrate 7 

that dissociation kinetics (i.e., bond lifetime) of the TCR-pMHC bond at this physiologic force 8 

can predict immunogenicity24-31. These correlations are consistent across species, TCR-9 

pMHC pairs, and experimental systems24-31. 10 

 11 

Here, we seek to discern the atomic-level physiochemical features that determine the TCR-12 

pMHC bond lifetime under force (i.e., characterize the TCR-pMHC’s force-dependent 13 

dissociation kinetics). As a first attempt to manipulate the bond lifetime of the TCR-pMHC 14 

over a wide range, we characterized the force-dependent dissociation kinetics of a single 15 

TCR (with a known crystal structure) to 17 possible pMHCs using steered molecular 16 

dynamics (SMD). Then, we used machine learning to identify the physiochemical features 17 

and the specific regions of the TCR regulating bond lifetime. Our results demonstrate that 18 

the total number of hydrogen bonds (H-bonds) between the CDR2-MHC⍺(), CDR1-19 

Peptide, and CDR3-Peptide are critical features that determine bond lifetime.  This finding 20 

may inform the rational design of TCRs for TCR-T cell therapy, and provide a path forward to 21 

create more advanced and predictive maching learning algorithms.  22 

 23 

METHODS 24 

Molecular Dynamics Setup. The crystal structure of the human DMF5 TCR complexed with 25 

agonist pMHC MART1-HLA-A2 (PDB code: 3QDJ)32 was the initial structure for all 26 

simulations (Figure 1A). To generate the 17 TCR-pMHC pairs, amino acid substitutions 27 

were made to the MART1 peptide (AAGIGILTV) using the Mutagenesis plugin on Pymol 28 
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Molecular Graphics System (Schrödinger, New York, New York). Interfacial substructures 1 

(Figure 1B) were defined by sequential residues from the corresponding chains: TCR⍺ 2 

(CDR1⍺: 24-32, CDR2⍺: 50-55, CDR3⍺: 89-99), TCR (CDR1: 25-31, CDR2: 51-58, 3 

CDR3: 92-103), MHC⍺ (MHC⍺(): 50-85, MHC⍺(⍺): 138-179), and peptide (1-9). To 4 

determine protonation states, pKa values were calculated using propka3.133, 34 and residues 5 

were considered deprotonated in Gromacs35 if pKa values were below the physiological pH 6 

7.4. The resulting systems were solvated in rectangular water boxes using the TIP3P water 7 

model36 large enough to satisfy the minimum image convention. Na+ and Cl- ions were 8 

added to neutralize protein charge and reach physiologic salt concentration of ~150 mM. All 9 

 

Figure 1: Steered Molecular Dynamics (SMD) simulations and machine learning algorithms were 
used to identify the physiochemical features that predict TCR-pMHC bond lifetime. (A) Starting 
structure for SMD of TCR and pMHC (shown at the top with black lines and circle arrowheads). The 
location/direction of pulling are depicted with yellow circles/arrows, respectively; the black scale bar with 
diamond arrowheads denotes the locality of distance between center of masses. The non-interacting bodies 
of the TCR and pMHC are colored in gray. Axis directions are indicated in left corner (red: +x-direction, blue: 
+y-direction, and green: +z-direction). (B) The primary interfacial substructures: (i) MHC⍺(⍺)  & MHC⍺(β)  = 

green, Epitope=black; and (ii) TCR CDR1⍺ = light blue, TCR CDR2⍺ = cyan, TCR CDR2⍺ = dark blue, TCR 
CDR1β = salmon, TCR CDR2β = light red, and TCR CDR3β = red. (C) A two-layer Elastic Net-Exhaustive 
Feature Selection algorithm (dashed boxes) was used to obtain ranked and reduced feature sets. (D) 
Selected features were used to tune hyperparameters (dashed box) for each machine learning model 
(Linear Regression = blue, Elastic Net = orange, k-Nearest Neighbors = green, Support Vector Machines = 
red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink, Neural Net = gray). 
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simulations were performed with Gromacs 2019.135 using the CHARM 22 plus CMAP force 1 

field for proteins37 and orthorhombic periodic boundary conditions. All simulations were in full 2 

atomistic detail. 3 

 4 

Energy Minimization and Equilibration. Generating equilibrated starting structures for the 5 

Steered Molecular Dynamics simulations required four steps: (1) Steepest descent energy 6 

minimization to ensure correct geometry and the absence of steric clashes; (2) 100 ps 7 

simulation in the constant volume (NVT) ensemble to bring atoms to correct kinetic energies, 8 

while maintaining temperature at 310 K by coupling all protein and non-protein atoms to 9 

separate baths using the velocity rescale thermostat with a 0.1 ps time constant38; (3) 100 ps 10 

simulation in the constant pressure (NPT) ensemble using Berendsen pressure coupling38 11 

and a 2.0 ps time constant to maintain isotropic pressure at 1.0 bar; and (4) Production MD 12 

simulations conducted for 50-150 ns with no restraints. The protein structures were 13 

evaluated every 50 ns to determine if all protein chains were equilibrated by root mean 14 

square deviation. To ensure true NPT ensemble sampling during 100 ns production runs, the 15 

Nose-Hoover thermostat39 and Parrinello-Rahman barostat40 were used to maintain 16 

temperature and pressure, respectively. Time constants were 2.0 and 1.0 ps for pressure 17 

and temperature coupling, respectively, utilizing the isothermal compressibility of water, 4.5-5 18 

bar-1. Box size for equilibration was 10.627 x 7.973 x.10.685 nm3 with ~ 48,000 water 19 

molecules, ~300 ions, and ~157,000 total atoms. All simulation steps used the Particle 20 

Ewald Mesh algorithm41, 42 for long-range electrostatic calculations with cubic interpolation 21 

and 0.12 nm maximum grid spacing. Short-range non-bonded interactions were cut off at 1.2 22 

nm using the Verlet cutoff-scheme and all bond lengths were constrained using LINCS 23 

algorithm43. The leap-frog algorithm was used for integrating equations of motion with 2 fs 24 

time steps. After the preparation runs, three independent MD configurations for each peptide 25 

mutant were extracted and used as the three starting points for steered molecular dynamics 26 

simulations. 27 

 28 
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Steered Molecular Dynamics (SMD). The full TCR-pMHC complex structure was extracted 1 

from the preparation run for each peptide mutant to generate three SMD starting 2 

configurations. The x-axis of these protein complexes was aligned along the x-axis and 3 

solvated in rectangular water boxes with dimensions 30 x 9.972 x 12.685 nm3. Solvent was 4 

again represented by the TIP3P water model and Na + and Cl- ions were added to neutralize 5 

protein charge and reach physiologic salt concentration of ~150 mM. This resulted in 6 

~120,000 water molecules, ~700 ions, and ~370,000 total atoms. All Gromacs structure files 7 

are uploaded to the Dryad repository for the exact atomic specifications. Before pulling, all 8 

systems underwent (1) energy minimization; (2) 100 ps NVT; and (3) and 100 ps NPT to 9 

remove high energy contacts without disturbing the configurations. During pull, the Nose-10 

Hoover thermostat and Parrinello-Rahman barostat were used to maintain temperature and 11 

pressure. 500 pN linear potential was applied to the center of mass (COM) of the TCR and 12 

pMHC in the x-direction and simulations continued until distance between COMs reached 13 

0.49 times the box size in x-direction (Figure 1A).  The COM was chosen as the site of 14 

applied force because pulling from the TCR and MHC termini resulted in artificial unfolding 15 

(not shown). All simulation trajectories and selected frames were visualized using the Pymol 16 

Molecular Graphics System (Schrödinger, New York, New York). 17 

 18 

Physiochemical Descriptors and Data Analysis. Physiochemical descriptors were evaluated 19 

by defining Gromacs index groups (gmx make_ndx) and using Gromacs-suite analysis tools 20 

(i.e., gmx hbond, gmx rms, gmx rmsf, gmx sasa, gmx gyrate, gmx distance). Data analyses 21 

were performed by standard python packages for data handling and visualization (i.e., 22 

numpy44, pandas45, seaborn46, matplotlib47, statistics48, and GromacsWrapper49), and custom 23 

python scripts. Random mutants were generated with a custom python script compatible 24 

with Pymol using the random python package and selecting a random location and amino 25 

acid to mutate the peptide. The machine learning algorithms were developed using the 26 

sklearn package50, 51 and exhaustive feature selection was performed using mlxtend 27 

package52. The geometry of a Lennard-Jones contact (LJ-contact) is defined as a distance 28 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465739
http://creativecommons.org/licenses/by/4.0/


8 

 

less than 0.35 nm between atoms. The L1 peptide bond lifetime was an outlier (z-score = 1 

3.65 > 3). To reduce the effects of the outlier on the dataset, median absolute error was 2 

selected as the scoring criterion and L1 was excluded from correlation coefficient 3 

calculations. The mean absolute error represents the arithmetic average of median absolute 4 

error from repeated three-fold cross validation. The Pearson correlation coefficient (rp) and 5 

Spearman rank correlation coefficients (rs) were calculated using the correlation method in 6 

the pandas python package. Akaike and Bayesian Information Criterion (AIC and BIC) were 7 

calculated from the standard deviation of repeated three-fold cross validation of the best 8 

machine learning algorithm selected from the hyperparameter grid search.  Statistical 9 

significance was determined by performing a one-tailed student’s t-test (p<0.05) for each 10 

machine learning algorithm across feature sets. Custom scripts relevant to mutant 11 

generation, feature selection, machine learning, and the production of figures have been 12 

made available on a GitHub repository: https://github.com/zrollins/TCR.ai.git. 13 

 14 

Feature Selection and Machine Learning Algorithms.  Features were ranked and reduced 15 

utilizing a two-layer Elastic Net – Exhaustive Search algorithm (Figure 1C). First, Elastic Net 16 

Regularization53 was used with all physiochemical features and a grid search was performed 17 

to optimize hyperparameters. The optimized hyperparameters were implemented into the 18 

Exhaustive Feature Selector52 and the best individual features were ranked by repeated 19 

(n_repeats=3) threefold cross-validation. The top ten features were ranked by mean 20 

absolute error and feature combinations were exhaustively searched, utilizing Elastic Net 21 

Regularization, to determine the best combinations of 3, 5, and 7 features (Figure 1C). The 22 

best feature combinations were selected by mean absolute error arithmetically averaged 23 

over the cross-validation. These feature combinations were then implemented into several 24 

machine learning algorithms to determine the most predictive model of bond lifetime (Figure 25 

1D)50, 51. The machine learning algorithm hyperparameter optimization was performed on a 26 

high performance compute cluster at the University of California, Davis College of 27 

Engineering and the best model for each feature set was scored on absolute error and 28 
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ranked by the arithmetic average of repeated threefold cross-validation (i.e., n_splits=3, 1 

n_repeats=3, random_state=1). Detailed documentation regarding the cross validation and 2 

hyperparameter optimization of two-layer Elastic Net – Exhaustive Search feature selection 3 

and machine learning predictions are provided in the supporting information. In addition, this 4 

dataset has been made freely available on the GitHub repository.  5 

 6 

RESULTS 7 

Bond lifetime.  As the starting point to simulate the force-dependent dissociation kinetics of 8 

17 TCR-pMHC pairs using SMD, we used the previously reported crystal structure (PDB ID: 9 

3QDJ)32 of the DMF5 TCR (from a melanoma patient) bound to the MART1 peptide 10 

(AAGIGILTV)-MHC complex (Figure 1A). We then replaced the MART1 peptide with 16 11 

different peptides (Figure 1—supplement 1) for a total of 17 TCR-pMHC pairs.  Ten 12 

peptides were chosen from a set of known pMHCs54, 55 and 7 were generated through 13 

random point mutation of the 14 

MART1 peptide. For these 17 15 

TCR-pMHC pairs, the mean bond 16 

lifetime in the SMD simulations 17 

was 5400 ± 1700 picoseconds 18 

(Figure 2). 19 

 20 

Physiochemical features of the 21 

TCR-pMHC.  Next, we identified 22 

two sets of physiochemical 23 

features which, at distinct 24 

resolution levels, describe the 25 

TCR-pMHC bond during the SMD 26 

simulation.  The first set 27 

characterizes physiochemical 28 

 

Figure 2. Mean TCR-pMHC bond lifetime for 17 different 
peptides. Using Steered Molecular Dynamics (SMD), we applied a 
constant force of 500 pN at the center of mass for the TCR and 
pMHC and estimated the mean bond lifetime for 17 different 
peptides. Known peptides and those with random point mutations are 
denoted with black and gray bars, respectively. Each TCR-pMHC 
was pulled apart 3 times using different equilibrated structures.  
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features of the entire TCR-pMHC interaction (e.g., total H-bonds between the TCR and 1 

pMHC). This characterization provides an overall assessment of the physiochemical features 2 

that might impact bond lifetime and is consistent with the quaternary structure of globular 3 

proteins.  We considered features likely to impact dissociation kinetics and thus included H-4 

bonds56, LJ-contacts57, distance between the TCR and pMHC58, 59, solvent accessible 5 

surface area (SASA)60, root mean square fluctuations (RMSF)61, and the gyration tensor of 6 

the TCR and pMHC.  This approach resulted in 18 features for the first set, and we dubbed 7 

these quaternary features (Figure 1—supplement 2). 8 

 9 

An understanding of the physiochemical features that regulate dissociation kinetics of the 10 

global TCR-pMHC bond provides an overall assessment of which physiochemical features 11 

regulate bond lifetime. However, this approach does not identify the sub-regions of the TCR-12 

pMHC bond that regulate bond lifetime and thus are suitable targets for rational design of 13 

TCRs.  The hypervariable regions of the TCR can be divided into 3 complementarity 14 

determining regions (CDRs) on the ⍺ and  chain, respectively. Within the MHC, the peptide 15 

is surrounded by ⍺-helices which also interact with the nearby chains of the TCR (Figure 16 

1B). These MHC -helices are located on the MHC chain and these substructures are 17 

defined by their interaction with the TCR ⍺ and  chain, respectively (i.e.,  MHC⍺(⍺)  and 18 

MHC⍺()).   These TCR CDRs and MHC -helices form an interface with the peptide 19 

antigen – the variable in this study – and based on their physical location are likely to 20 

influence TCR-pMHC bond lifetime. Hence, we also identified a second set of features 21 

focused on the interface between the TCR and the pMHC (e.g., CDR3 loop of the TCR and 22 

the MHC⍺() chain, Figure 1B). This higher level of resolution is consistent with the 23 

secondary structures (e.g., -helices) of a protein.  Again, we considered features that are 24 

likely to affect dissociation kinetics and thus included H-bonds, LJ-contacts, distance 25 

between the sub-regions, SASA, RMSF, and the gyration tensor of the sub-regions. From 26 

these considerations, we identified 79 secondary features (Figure 1—supplement 3) that 27 
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could potentially impact dissociation kinetics. The quaternary and secondary features were 1 

further categorized into chemical – such as H-bonds and LJ-Contacts – and physical – 2 

including RMSF, SASA, and the gyration tensor – interaction parameters.  3 

 4 

TCR-pMHC Bond Lifetime Prediction using Quaternary Physiochemical Features.  5 

To examine how quaternary physiochemical features influence TCR-pMHC bond 6 

dissociation kinetics, we ranked the top ten quaternary features after an Elastic Net grid 7 

search for each individual feature (Figure 3A).  The scoring criterion was mean absolute 8 

Figure 3: Quaternary Feature Selection and Bond Lifetime Predictions. (A) Mean absolute test error 
from elastic net regularization was used to select the top ten quaternary features. Errors represent the best 
test set standard deviation from repeated threefold cross-validation. (B) According to an exhaustive search, 
the best feature sets (i.e., p = 1, 3, 5, and 7) to predict bond lifetime. (C) The mean accuracies of bond 
lifetime prediction for all feature sets in (B) and machine learning models after hyperparameter tuning 
(Linear Regression = blue, Elastic Net = orange, k-Nearest Neighbors = green, Support Vector Machines = 
red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink, Neural Net = gray). Errors 
represent the best test set standard error from repeated threefold cross-validation. The machine learning 
model standard error from cross-validation (n=9) was statistically compared for increasing feature sets by a 
one-tailed student’s t-test: #p<0.10, *p<0.05, **p<0.01. (D) The scatter plot of predicted and measured bond 
lifetimes from the selected one-feature Support Vector Machines algorithm with the coefficient of 
determination (top left), the Pearson correlation coefficient (top left), and the feature set (bottom right). 
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error of bond lifetime in picoseconds. After Elastic Net grid search, chemical interaction 1 

features, in particular Total LJ-contacts and Total H-bonds, were the most predictive (Figure 2 

3A); in particular, the total number of unique LJ-Contacts between TCR and pMHC had the 3 

smallest mean absolute error. In addition, the total LJ-Contacts had the highest Pearson and 4 

Spearman correlation coefficients (Figure 3—supplement 1, Figure 3—supplement 3).  5 

 6 

We next explored whether a combination of quaternary physiochemical features would 7 

improve predictions of bond lifetime.  To accomplish this, we applied a regularized 8 

regression method (Elastic Net; see Methods) as a filter to identify predictive feature sets.   9 

To avoid overfitting62-64, feature sets were reduced utilizing an Elastic Net53 – Exhaustive 10 

Search52 algorithm (Figure 1C) to determine the best combinations of 3, 5, and 7 features. 11 

Using these combinations, we then trained and tested 8 different machine learning 12 

algorithms to estimate TCR-pMHC bond lifetime (Figure 1D)50, 51.  Although physical 13 

quaternary features were selected in this exhaustive search (Figure 3B), these did not 14 

significantly improve the predictive power of the machine learning models (Figure 3C). This 15 

finding holds for all machine learning algorithms, as determined by the lack of statistically 16 

significant increase in mean accuracy or decrease in information criteria scores (Akaike and 17 

Bayesian Information Criteria) with increasing model complexity (Figure 3—supplement 2, 18 

Figure 3—supplement 4). 19 

 20 

The best feature combination and machine learning model was chosen based on the lowest 21 

error and standard deviation from repeated three-fold cross-validation. Our results 22 

demonstrated that a feature set of only LJ-Contacts combined with a Support Vector 23 

Machines is best at predicting bond lifetime (Figure 3D). The mean absolute error using 24 

Support Vector Machines was 560 ± 200 picoseconds producing an accuracy of 90.0 ± 3.7% 25 

(i.e., 1-560/5400).  26 

 27 

TCR-pMHC Bond Lifetime Prediction Using Secondary Physiochemical Features. 28 
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Analogous to our strategy to assess quaternary features of the TCR-pMHC, we examined 1 

secondary features.  We ranked the top ten secondary features after an Elastic Net grid 2 

search for each individual feature (Figure 4A). The total number of unique H-bonds between 3 

CDR2 -MHC⍺() generated the smallest mean absolute error (Figure 4A). In addition, the 4 

top three features had the highest Pearson and Spearman correlation coefficients (Figure 5 

4—supplement 1, Figure 3—supplement 3). 6 

 7 

 

 
Figure 4. Secondary Feature Selection and Bond Lifetime Predictions.  (A) Mean absolute test error 
from elastic net regularization was used to select the top ten secondary features. Errors represent the best 
test set standard deviation from repeated threefold cross-validation. (B) According to an exhaustive search, 
the best feature sets (i.e., p = 1, 3, 5, and 7) to predict bond lifetime. (C) The mean accuracies of bond 
lifetime prediction for all feature sets in (B) and machine learning models after hyperparameter tuning 
(Linear Regression = blue, Elastic Net = orange, k-Nearest Neighbors = green, Support Vector Machines = 
red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink, Neural Net = gray). Errors 
represent the best test set standard error from repeated threefold cross-validation. The machine learning 
model standard error from cross-validation (n=9) was statistically compared for increasing feature sets by a 
one-tailed student’s t-test: #p<0.10, *p<0.05, **p<0.01. (D) The scatter plot of predicted and measured bond 
lifetimes from the selected 3-feature Decision Tree algorithm with the coefficient of determination (top left), 
the Pearson correlation coefficient (top left), and the feature set (bottom right). 
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We explored whether a combination of secondary physiochemical features would improve 1 

the prediction of bond lifetime.  Following the same algorithm as for quaternary features, we 2 

applied an Elastic Net53 – Exhaustive Search52 algorithm (Figure 1D) to identify the best 3 

combinations of 3, 5, and 7 secondary features; cross-validated 8 machine learning models 4 

with these feature combinations; and selected the best feature combination and machine 5 

learning model based on error, standard deviation, and information criteria. Interestingly, the 6 

best 3 feature combination (CDR2 -MHC⍺(), CDR1⍺-Peptide, and CDR3-Peptide) 7 

selected by exhaustive search (Figure 4B) did not correspond to the top three individual 8 

features selected by Elastic Net rank (Figure 4A) or correlation coefficients (Figure 3—9 

supplement 3). Compared to the single best feature, the best 3-feature combination 10 

statistically improved bond lifetime predictions for Linear Regression, k-Nearest Neighbors, 11 

Decision Tree, and Random Forest machine learning algorithms (Figure 4C). Increases in 12 

mean accuracy were not statistically significant beyond 3 features (Figure 4C, Figure 4—13 

supplement 3). Moreover, these algorithms reduced information criteria scores (Akaike and 14 

Bayesian Information Criteria) when increasing from 1 to 3 features, whereas the Elastic Net, 15 

Support Vector Machines, and Neural Net algorithms increased both AIC & BIC (Figure 4—16 

supplement 2). These results indicate that, among the secondary features and machine 17 

learning algorithms tested, a 3-feature combination utilizing a Decision Tree provides the 18 

most accurate prediction of bond lifetime (Figure 4D). The absolute error using the Decision 19 

Tree was 870 ± 570 picoseconds (Figure 4—supplement 3), or an accuracy of 84 ± 10%. 20 

In addition, this Decision Tree prediction by the best 3 feature combination exceeded the 21 

Pearson correlation coefficient of the individual features (Figure 4D, Figure 4—supplement 22 

2). 23 

 24 

DISCUSSION 25 

T cell-based immunotherapies, such as TCR-engineered-T cells, provide exciting potential to 26 

treat a wide range of cancers, including solid tumors.  However, this potential has not been 27 

reached, due, in part, to the inability to rapidly and efficiently explore the vast TCR space to 28 
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identify optimal tumor-specific TCRs.  Experimental methods to design and test potential 1 

TCRs are expensive and slow, thus hindering throughput.  In contrast, computational 2 

algorithms that utilize machine learning have enormous potential to rapidly interrogate the 3 

TCR space and identify a small number of candidates for more efficient experimental testing.  4 

We tested this premise using SMD to create a small database of TCR-pMHC bond lifetimes, 5 

then created machine learning algorithms to predict bond lifetime based on quaternary and 6 

secondary features of the TCR-pMHC bond.  Using the quaternary features, we found that 7 

total LJ-contacts could predict bond lifetime with 90% accuracy.  More importantly, we also 8 

found that we could predict bond lifetime with an accuracy of 84% using only the total H-9 

bonds between three subregions of the TCR-pMHC: CDR2-MHC⍺(), CDR1-Peptide, and 10 

CDR3-Peptide.  This result identifies new and unanticipated regions of the TCR to target in 11 

the rational design of TCRs for immunotherapy. 12 

 13 

Quaternary Features of the TCR-pMHC.  Upon quaternary feature investigation, the LJ-14 

Contacts between the TCR and pMHC dominated bond lifetime prediction. In fact, for all 15 

machine learning algorithms investigated, there was no statistically significant i) increase in 16 

mean accuracy when expanding to larger feature sets (Figure 3C) or ii) decrease in 17 

information criteria scores (Figure 4—supplement 2). Moreover, although physical features 18 

(e.g., x-Gyration of TCR) were selected in the exhaustive feature selection process (Figure 19 

3B), these did not significantly increase mean accuracy. This demonstrates that no selected 20 

physical features improve predictive performance and thus the atomic motion of the TCR or 21 

pMHC is unlikely to regulate dissociation kinetics.  22 

 23 

Secondary Features of the TCR-pMHC.  To identify the specific subregions of the TCR that 24 

determine the TCR-pMHC bond lifetime, we investigated the TCR-pMHC interface and 25 

included substructures, or secondary protein features, that defined the interaction (Figure 26 

1B). Physiochemical features within each substructure and between adjacent substructures 27 
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(Figure 1—supplement 3) were then evaluated to determine the best predictors of bond 1 

lifetime.  Among the features and machine learning algorithms selected, a 3-feature 2 

combination of secondary features (CDR2-MHC⍺(), CDR1-Peptide, and CDR3-3 

Peptide) was selected as the most accurate predictor of TCR-pMHC bond lifetime. This was 4 

based on: i) a decrease in information criteria score for 5 of 8 machine learning algorithms; 5 

and ii) a statistically significant increase in mean accuracy for 4 of 8 machine learning 6 

algorithms when increasing the feature set size from 1 to 3. We found that the combination 7 

of total H-bonds between these subregions could predict bond lifetime with the highest 8 

accuracy.   9 

 10 

The finding that both the total number of unique H-bonds between CDR2-MHC⍺() and 11 

CDR1-Peptide predict TCR-pMHC bond lifetime is unanticipated.  Of particular note, the 12 

total number of H-bonds between CDR2-MHC⍺() remained in all exhaustive search 13 

feature sets (Figure 3B).  Most attention has focused on the heralded CDR3 domains65 14 

given the proximity to the peptide (Figure 1A, B).  In contrast, CDR2 flanks the MHC⍺() 15 

and MHC⍺() chains.  It is perhaps not surprising, given the significantly larger number of 16 

residues (MHC⍺(β) = 42 residues) compared to the peptide (peptide = 9 residues), that 17 

interactions between the CDR2β and the MHC⍺(β) could potentially be the most significant 18 

physiochemical features to impact bond lifetime. 19 

 20 

The inclusion of CDR1-Peptide H-bonds draws new attention to the CDR1 region. Similar 21 

to the CDR3 region, CDR1 is in proximity to the peptide (Figure 1A, B) and thus 22 

hydrogen bonding between these substructures may be expected. However, surprisingly, 23 

CDR1-Peptide H-bonds was exhaustively selected despite interactions between CDR3-24 

Peptide in the exhaustive feature set (Figure 4A). Overall, these results suggest that 25 

mutagenesis strategies to increase hydrogen bonding between CDR2-MHCα(), CDR1-26 

Peptide, and CDR3-Peptide may enhance TCR-pMHC force-dependent bond lifetime. It is 27 
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important to acknowledge that the interactions between these interfacial substructures may 1 

be specific to the DMF5 TCR and will require further investigation to generalize. 2 

Nonetheless, these results bring new attention to the CDR1 and CDR2 regions in the future 3 

of TCR design.  Finally, in contrast to previous reports28, 57, peptide radius of gyration and 4 

CDR3⍺-CDR3 distance were not selected in the top ten predictive features.  This is likely 5 

due to the artificial pMHC unfolding by pulling from TCR-pMHC termini 27 and the lack of 6 

diversity in TCR-pMHC pairs evaluated 28, 57, respectively. 7 

 8 

Computational Methods.  One of the limiting factors of this study is the computational 9 

constraint of generating a SMD dataset; here, we examined 17 TCR-pMHC pairs. Larger 10 

datasets would likely provide more useful insight into feature combinations that predict TCR-11 

pMHC bond lifetime, but come at a significant additional computational cost. Similarly, 12 

although the two-layer Elastic Net – Exhaustive Search feature selection methodology 13 

provided a rapid filtering of physiochemical features, this biases the machine learning 14 

predictor towards features selected by Elastic Net. At the cost of computation, exhaustive or 15 

recursive feature selection for each machine learning predictor may improve predictive 16 

performance. However, the focus of this work is to provide an architecture for identifying 17 

physiochemical features that dictate TCR-pMHC dissociation kinetics. 18 

 19 

Bond Lifetime.  The force dependent bond lifetime (at ~10-20 pN) has been reported to 20 

correlate with TCR-pMHC immunogenicity. These findings highlight the importance of TCR-21 

pMHC bond lifetime and suggest that the TCR needs to sustain and form transient bonds 22 

under load for sufficient time to initiate biochemical signaling. Thus, we utilized force-23 

dependent bond lifetime as an objective function to uncover the physiochemical 24 

determinants of this biomolecular design feature. It is important to note that this biomolecular 25 

design feature does not necessarily conflict with catch-slip bond behavior 24, and we 26 

recognize that our approach may be expanded in the future to include other physiochemical 27 

characteristics of the TCR-pMHC bond. 28 
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 1 

Conclusions.  We have demonstrated the utility of combining two computational methods – 2 

steered molecular dynamics and machine learning – to create a methodology that can 3 

potentially be used to rapidly and efficiently examine the vast TCR space to predict the bond 4 

lifetime, and thus the immunogenic response, of a given TCR-pMHC pair. Our initial results 5 

suggest that the physiochemical features of three subregions of the TCR-pMHC are of 6 

particular importance in determining bond lifetime (CDR2-MHC⍺(), CDR1-Peptide, and 7 

CDR3-Peptide) and provide new and unanticipated regions of the TCR to manipulate in the 8 

rational design of TCR-engineered T cells. 9 

 10 

SUPPORTING INFORMATION 11 

Figure 3—supplement 1 Quaternary Features vs Bond Lifetime. Figure 3—supplement 2 12 

Akaike and Bayesian Information Criterion for Quaternary Features. Figure 4—supplement 13 

1 Secondary Features vs Bond Lifetime. Figure 4—supplement 2 Akaike and Bayesian 14 

Information Criterion for Secondary Features. Figure 1—supplement 1 Peptides used in 15 

SMD simulations, including their amino acid sequences. Figure 1—supplement 2 16 

Quaternary Features. Figure 1—supplement 3 Secondary Features. Figure 3—17 

supplement 3 Pearson Correlation and Spearman Rank Correlation Coefficients. Figure 18 

3—supplement 4 Best Machine Learning Models after Hyperparameter Optimization for 19 

Quaternary Features. Figure 4—supplement 3 Best Machine Learning Models after 20 

Hyperparameter Optimization for Secondary Features. 21 
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  16 
Figure 3—supplement 1: Quaternary Features vs Bond Lifetime. Scatter plot of the total number of LJ-17 
contacts vs bond lifetime for all TCR-pMHC pairs; the Pearson correlation coefficient is listed in the top left 18 
corner. 19 
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 1 
Figure 3—supplement 2: Akaike and Bayesian Information Criterion Scores for Quaternary Features. The 2 
(A) Akaike Information Criterion (AIC) and (B) Bayesian Information Criterion (BIC) for all the quaternary feature 3 
sets (i.e., p = 1, 3, 5, and 7) and machine learning models (Linear Regression = blue, Elastic Net = orange, k-4 
Nearest Neighbors = green, Support Vector Machines = red, Decision Tree = purple, Random Forest = brown, 5 
AdaBoost = pink, Neural Net = gray). 6 

 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 

 16 
Figure 4—supplement 1: Secondary Features vs Bond Lifetime. Scatter plots of total H-bonds for (A) CDR2 17 
-MHC⍺(), (B) CDR3-Peptide, and (C) CDR1⍺-Peptide vs Bond Lifetime for all TCR-pMHC pairs; the Pearson 18 
correlation coefficient is listed in the top left corner. 19 

 20 
 21 
 22 
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 1 

 2 
Figure 4—supplement 2: Akaike and Bayesian Information Criterion Scores for Secondary Features. (A) 3 
The Akaike Information Criterion (AIC) and (B) Bayesian Information Criterion (BIC) scores for all secondary 4 
feature sets (i.e., p = 1, 3, 5, and 7) and machine learning models (Linear Regression = blue, Elastic Net = 5 
orange, k-Nearest Neighbors = green, Support Vector Machines = red, Decision Tree = purple, Random Forest = 6 
brown, AdaBoost = pink, Neural Net = gray). 7 
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 1 
Figure 1—supplement 1: Peptides used in SMD simulations, including their amino acid sequences. 2 

 3 

 4 
Figure 1— supplement 2: Quaternary Features. 5 

 6 

Peptide (Amino Acid Sequence)

MART1 (AAGIGILTV)

L1 (LAGIGILTV)

GVA (GAGIGVLTA)

8S (AAGIGILSV)

6V (AAGIGVLTV)

hCD9 (AVGIGIAVV)

HSV1gp3 (IAGIGILAI)

ImrA (LAGIGLIAA)

Mtub1 (LGGLGLFFA)

Mtub2 (IAGPGTITL)

5D (AAGIDILTV)

6Y (AAGIGYLTV)

6H (AAGIGHLTV)

5H (AAGIHILTV)

4Y (AAGYGILTV)

3F (AAFIGILTV)

2P (APGIGILTV)
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Figure 1—supplement 3: Secondary Features. 2 
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 1 
Figure 3—supplement 3: Pearson correlation and Spearman rank correlation coefficients. This includes 2 
correlation coefficients for the list of top ten Quaternary Features (A) and the list of top ten Secondary Features 3 
(B). 4 

 5 
 6 

 7 
Figure 3—supplement 4: Best Machine Learning Models after Hyperparameter Optimization for 8 
Quaternary Features. Table includes the best performing model hyperparameters as well as the mean and 9 
standard deviation from repeated threefold cross validation. Akaike and Bayesian Information Criterion are 10 
calculated for each model and feature set, based on mean absolute error standard deviation from repeated 11 
threefold cross validation, to assess the improved accuracy with increasing complexity. The respective algorithms 12 
are statistically compared across feature sets using a one-tailed student’s t-test. 13 

 14 
 15 
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  1 

 2 
Figure 4—supplement 3: Best Machine Learning Models after Hyperparameter Optimization for 3 
Secondary Features. Table includes the best performing model hyperparameters as well as the mean and 4 
standard deviation from repeated threefold cross validation. Akaike and Bayesian Information Criterion are 5 
calculated for each model and feature set, based on mean absolute error standard deviation from repeated 6 
threefold cross validation, to assess the improved accuracy with increasing complexity. The respective algorithms 7 
are statistically compared across feature sets using a one-tailed student’s t-test. 8 
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