
1 Multi-trait and multi-environment Bayesian analysis to predict the G x E 

2 interaction in flood-irrigated rice

3 Antônio Carlos da Silva Júnior (1), Isabela de Castro Sant’Anna (2), Michele Jorge Silva(1) 

4 Cosme Damião Cruz (1), Camila Ferreira Azevedo (3), Moyses Nascimento (3) and Plínio 

5 César Soares (4)  

6

7 (1)Departmento de Biologia Geral, Universidade Federal de Viçosa, CEP: 36.571-000, 

8 Viçosa, Minas Gerais, Brasil

9 (2) Centro de Seringueira e Sistemas Agroflorestais, Instituto Agronômico (IAC), Rodovia 

10 Péricles Beline, 1.481, Botafogo, Campinas, CEP: 13020-902, São Paulo, Brasil

11 (3)Departmento de Estatística, Universidade Federal de Viçosa, CEP: 36.571-000, Viçosa, 

12 Minas Gerais, Brasil

13 (4) Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, Viçosa, Minas Gerais, 
14 Brazil. 

15

16 *Corresponding author: antonio.silva.c.junior@gmail.com

17

18 Tel.: +55 0313885-3243

19

20 Abstract

21 The biggest challenge for the reproduction of flood-irrigated rice is to identify superior 

22 genotypes that present development of high-yielding varieties with specific grain 

23 qualities, resistance to abiotic and biotic stresses in addition to superior adaptation to the 

24 target environment.Thus, the objectives of this study were to propose a multi-trait and 

25 multi-environment Bayesian model to estimate genetic parameters for the flood-irrigated 

26 rice crop. To this end, twenty-five rice genotypes belonging to the flood-irrigated rice 

27 breeding program were evaluated. Grain yield and flowering were evaluated in the 

28 agricultural year 2017/2018. The experimental design used in all experiments was a 

29 randomized block design with three replications. The Markov Chain Monte Carlo 

30 algorithm was used to estimate genetic parameters and genetic values.  The flowering is 

31 highly heritable by the Bayesian credibility interval: ℎ2 = 0.039- 0.80, and 0.02- 0.91, 

32 environment 1 and 2, respectively. The genetic correlation between traits was 
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33 significantly different from zero in the two environments (environment 1: -0.80 to 0.74; 

34 environment 2: -0.82 to 0.86. The relationship of 𝐶𝑉𝑒 and 𝐶𝑉𝑔 higher for flowering in the 

35 reduced model (𝐶𝑉𝑔/𝐶𝑉𝑒= 5.83 and 13.98, environments 1 and 2, respectively). For the 

36 complete model, this trait presented an estimate of the relative variation index of: 𝐶𝑉𝑒= 

37 4.28 and 4.21, environments 1 and 2, respectively. In summary, the multi-trait and multi-

38 environment Bayesian model allowed a reliable estimate of the genetic parameter of 

39 flood-irrigated rice. Bayesian analyzes provide robust inference of genetic parameters. 

40 Therefore, we recommend this model for genetic evaluation of flood-irrigated rice 

41 genotypes, and their generalization, in other crops. Precise estimates of genetic 

42 parameters bring new perspectives on the application of Bayesian methods to solve 

43 modeling problems in the genetic improvement of flood-irrigated rice.

44 Keywords: Oryza sativa L.; genetic parameters; multi-trait and multi-environment; 

45 Bayesian model; biometric methods  

46

47 Introduction

48 Rice (Oryza sativa L.) is one of the most important crops in the world and is 

49 considered one of the main annual crops in Brazil [1]. Rice breeding is primarily aimed 

50 at the development of high-yielding varieties with specific grain qualities, resistance to 

51 abiotic and biotic stresses in addition to superior adaptation to the target environment [2, 

52 3].  In this case, the breeder needs to realize mutual relationships, and knowledge of the 

53 interdependence between agronomically important traits that can improve the accuracy 

54 of selection [3]. 

55 Specifically, in the rice crop, the evaluation of multiple traits rather than a single 

56 trait aims to maximize grain yield and quality. This is possible through the exploration of 

57 genetic correlations between traits. In multi-trait analysis, the prediction of secondary 

58 traits can be used to improve the prediction of primary traits, especially when they have 

59 low heritability. Although consideration of the genetic correlation between traits is 

60 essential, modeling interactions between phenotypes provides important information for 

61 the development of breeding strategies that cannot be carried out with conventional 

62 multivariate approaches alone [2, 4, 5]. 

63 Biometric methods available are useful for analyzing a single trait measured in a 

64 single environment or across multiple environments with the genotype x environment (G 

65 x E) interaction [6, 7, 8, 9]. This interaction can be defined as the differential response of 
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66 genotypes to environmental variation [10], and offers an even greater challenge for the 

67 breeder [11]. The information from a network of experiments obtains a multi-trait and 

68 multi-environment (MTME) structure, but present limited statistical methodology that no 

69 correctly represents genetic and phenotypic variation in the data [12]. Therefore, genetic 

70 correlations and G x E interaction, it requires more complex models that are difficult to 

71 converge in the context of mixed linear models [11]. Therefore, Bayesian inference has 

72 become a useful statistical tool for dealing with complex models [13].

73 Bayesian inference has been used successfully in studies with complex models. 

74 [11] evaluated the multi-trait and multi-environment Bayesian model considering the G 

75 x E interaction for nitrogen use efficiency components in tropical corn. [13], applied such 

76 models through Bayesian inference applied to the breeding of jatropha curcas for 

77 bioenergy. [14], used these models in the genetic selection of soybean progenies. [15], 

78 demonstrate such models in phenotypic and genotypic data in corn and wheat. However, 

79 few studies combine models of multiple traits in a multi-environment under a Bayesian 

80 point of view, mainly for rice cultivation.

81 Therefore, the objectives of this study were to propose a multi-trait and multi-

82 environment Bayesian model to estimate genetic parameters for the flood-irrigated rice 

83 crop. In addition to comparing: (i) the complete model (considering the interaction 

84 between genotypes and environment) with the restricted model (not considering the 

85 interaction); (ii) estimates of genetic parameters of models with single and multiple traits, 

86 for grain yield and flowering. 

87

88 Material and Methods

89 Description of the experiment

90 The experiments were carried out in the State of Minas Gerais - Brazil, in the 

91 experimental fields of Agricultural Research Corporation of Minas Gerais State 

92 (EPAMIG), in the cities of Lambari (21° 58' 11.24'' S, 45° 20' 59.6'' W) and Janaúba (15° 

93 48' 77'' S, 43° 17' 59.09'' W). Twenty-five genotypes belonging to the flood-irrigated rice 

94 breeding program of the Southeast region of the state of Minas Gerais were evaluated, 

95 and five of these genotypes were used as experimental controls (Rubelita, Seleta, 

96 Ourominas, Predileta, and Rio Grande). These genotypes were evaluated in comparative 

97 trials after multiple generations of selection, and in addition, they are known for their high 

98 yield, uniform growth rate and plant growth, resistance to major diseases, and for their 

99 excellent grain quality. Grain yield (GY, Kg ha-1) and flowering period in days (FL) were 
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100 evaluated in the agricultural year 2017/2018. The experimental design  was a randomized 

101 complete block design with three replications. The experiments were conducted in 

102 floodplain soils with continuous flood irrigation. Grain production data in grams per 

103 useful plot were used, later converted into kilograms per hectare. Management practices 

104 were carried out according to recommendations for flood-irrigated rice in the region.

105 The useful area consisted of 4 m central of three internal rows (4 m x 0.9 m, 

106 totaling 3.60 m2). The soil preparation was carried out by plowing and harrowing around 

107 30 days before sowing. For planting fertilization, a mixture of 100 kg ha-1 of ammonium 

108 sulfate, 300 kg ha-1 of simple superphosphate, and 100 kg ha-1 of potassium chloride was 

109 used, applied in the plot, and incorporated into the soil before planting. The fertilization 

110 in the top dressing was carried out approximately 60 days after the installation of the 

111 experiments, with 200 kg ha-1 of ammonium sulfate. The weeds were controlled with the 

112 use of herbicides and manual weeding. Sowing was carried out in the planting line with 

113 a density of 300 seeds m-2. The irrigation started around 10-15 days after the implantation 

114 of the experiments, and the water was only removed close to the maturation of the 

115 materials. The harvest was carried out when the grains reached a humidity of 20-22%. 

116 Grain production data were obtained by weighing all grains harvested in the useful plot, 

117 after cleaning and uniform drying in the sun, until they reached a humidity of 13%. Days 

118 for flowering, correspond the number of days from sowing to flowering, when the plot 

119 presented approximately 50% of plants with panicles.  

120

121 Biometric analysis

122 Grain yield (GY) and flowering period in days (FL) were analyzed using single- 

123 and multi-trait models using the Bayesian Markov Chain Monte Carlo (MCMC) 

124 approach. The objective was to compare: (i) the complete model (considering the 

125 interaction between genotypes and environments) with the restricted model (not 

126 considering the interaction); (ii) estimates of genetic parameters of models with single 

127 and multiple traits, for grain yield and flowering period.

128 The multi-trait and multi-environment (MTME) model was given by:

129 𝑦 = 𝑋𝛽 + 𝑊1𝑟 +  𝑊2𝑢 +  𝜀 

130 which can be rewritten as:
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131 (𝑌1
…
𝑌2

) = 𝑋(𝛽(𝐸1,1)
𝛽(𝐸2,1)

…
𝛽(𝐸1,2)
𝛽(𝐸2,2)

) + 𝑊1(𝑟1(𝐸1,1)
𝑟2(𝐸2,1)

⋯
𝑟1(𝐸1,2)
𝑟2(𝐸2,2)

) +   𝑊2(𝑢(𝐸1,1)
𝑢(𝐸2,1)

⋯
𝑢(𝐸1,2)
𝑢(𝐸2,2)

) + (𝜀(𝐸1,1)
𝜀(𝐸2,1)

⋯
𝜀(𝐸1,2)
𝜀(𝐸2,2)

),

132 where: y is the vector of the phenotypic values of the two evaluated traits (grain yield, 

133 Y1; and flowering period, Y2); X is the incidence matrix of the systematic effects 

134 represented by β, assuming β ~ N(μβ, I⊗∑β) so that 𝐸1  and 𝐸2 represent the two 

135 environments studied; W1 it is the incidence matrix of the random effect of the 

136 environment; r is the ambient effect vector, r ~ N (0, I⊗∑r ); W2 is the incidence matrix 

137 of the effects of the genotype x environment interaction; u is the random effects vector of 

138 the genotype x environment interaction, u ~ N (0, I⊗Σu); and ɛ is the residual effects 

139 vector, ε ~ N(0, I⊗∑ε). 

140 The (co)variance matrices are given by:

141
𝑟

=  ( 𝜎2
𝑟𝑦(1) 𝜎𝑟𝑦(1,2) 𝜎𝑟𝑦,𝐸(1) 𝜎𝑟𝑦,𝐸(1,2)

𝜎𝑟𝑦(1,2) 𝜎2
𝑟𝑦(2) 𝜎𝑟𝑦,𝐸(2,1) 𝜎𝑟𝑦,𝐸(2)

𝜎𝑟𝑦,𝐸(1) ⋮ 𝜎2
𝑟𝐸(1) ⋯

𝜎𝑟𝑦,𝐸(1,2) ⋯ ⋯ 𝜎2
𝑟𝐸(2)

)
142

𝑢
=  ( 𝜎2

𝑢𝑦(1) 𝜎𝑢𝑦(1,2) 𝜎𝑢𝑦,𝐸(1) 𝜎𝑢𝑦,𝐸(1,2)
𝜎𝑢𝑦(1,2) 𝜎2

𝑢𝑦(2) 𝜎𝑢𝑦,𝐸(2,1) 𝜎𝑢𝑦,𝐸(2)
𝜎𝑢𝑦,𝐸(1) ⋮ 𝜎2

𝑢𝐸(1) ⋯
𝜎𝑢𝑦,𝐸(1,2) ⋯ ⋯ 𝜎2

𝑢𝐸(2)
)

143 ∑𝜀 =  ( 𝜎2
𝜀𝑦(1) 𝜎𝜀𝑦(1,2) 𝜎𝜀𝑦,𝐸(1) 𝜎𝜀𝑦,𝐸(1,2)

𝜎𝜀𝑦(1,2) 𝜎2
𝜀𝑦(2) 𝜎𝜀𝑦,𝐸(2,1) 𝜎𝜀𝑦,𝐸(2)

𝜎𝜀𝑦,𝐸(1) ⋮ 𝜎2
𝜀𝐸(1) ⋯

𝜎𝜀𝑦,𝐸(1,2) ⋯ ⋯ 𝜎2
𝜀𝐸(2)

),

144 where: y represents grain yield and h represents flowering period in days; 1 and 2 

145 represent the two environments studied. The variance-covariance matrices follow an 

146 inverted Wishart distribution, which was used as a priori to model the variance-covariance 

147 matrix [16].

148 The package “MCMCglmm” [17] was used. A total of 10,000,000 samples were 

149 generated and assuming a flare period and sampling interval of 500,000 and 10 iterations, 

150 respectively, this resulted in a final total of 50,000 samples. The convergence of the 
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151 MCMC was verified by the criterion of [18], performed in two packages R "boa" [19] 

152 and "CODA" (convergence diagnosis) [20]. Even though Bayesian and frequentist 

153 structures were not directly compared, especially in the field of genetics [21], the same 

154 models were also adjusted based on the REML estimation method (Restricted Maximum 

155 Likelihood). 

156 The complete models (considering the interaction between genotypes and 

157 environments) were compared with the null models (not considering the interaction) by 

158 the deviation information criterion (DIC) proposed by [22]:
159 𝐷𝐼𝐶 = 𝐷(𝜃) + 2𝑝𝐷

160 where is a point estimate of the deviation obtained by replacing the parameters with their 

161 later means estimates in the probability function and 𝑝𝐷 is the effective number of model 

162 parameters. Models with a lower DIC should be preferred over models with a higher DIC.

163

164 The components of variance, broad-sense heritability, coefficient of variation 

165 residual and genetic, variation index, and genotypic correlation coefficients between 

166 genetic traits and values were calculated from the posterior distribution. The package 

167 “boa” [19] was used to calculate the intervals of greater posterior density (HPD) for all 

168 parameters. The later estimates for the broad-sense heritability of grain yield and 

169 flowering period in days for each interaction were calculated from the later samples of 

170 the variance components obtained by the model, using the expression:

171 ℎ2(𝑖) =  
𝜎2(𝑖)

𝑔

(𝜎2(𝑖)
𝑔 +  𝜎2(𝑖)

𝑟 +   𝜎2(𝑖)
𝜀 )

172 where: 𝜎2(𝑖)
𝑔 , 𝜎2(𝑖)

𝑟 ,  and 𝜎2(𝑖)
𝜀  are the genetic, replication, and residual variations for each 

173 iteration, respectively.

174 The genetic correlation coefficients between the pairs of traits in each 

175 environment were obtained, as suggested by [23], using the expression below for all 

176 models:

177 𝜌𝑙(1,2) =  
𝜎𝑔𝑙(1,2)

𝜎2
𝑔𝑙(1)𝜎2

𝑔𝑙(2)
 : genetic correlation between environment and grain yield and 𝜌ℎ(1,2)

178 =  
𝜎𝑔ℎ(1,2)

𝜎2
𝑔ℎ(1)𝜎2

𝑔ℎ(2)
 :  genetic correlation between environment and flowering period in days.  

179 All data analysis was conducted using the statistical software package R version 4.1.0.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.25.465700doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465700
http://creativecommons.org/licenses/by/4.0/


180

181 Results

182 Geweke's convergence criterion  indicated convergence for all dispersion 

183 parameters by generating 10,000,000 MCMC strings, 500,000 samples for burn-in, and a 

184 sampling interval of 10, totaling 50,000 effective samples used for estimating variance 

185 components. Similar posterior mean, median and modal estimates were obtained for 

186 variance components, suggesting normal-appearing density. However, all chains reached 

187 convergence by this criterion. According to the deviation information criteria (DIC), there 

188 was positive evidence of interactions between genotypes and environments for all 

189 analyzed models (Table 1). However, the DIC values were lower when using the complete 

190 model (considering the effects of genotype x environment interaction), in which the 

191 difference in relation to the complete model was greater than 2 (Table 1), which according 

192 to [22] the use of full model can lead to greater precision in estimating parameters (Table 

193 1).Therefore, since the obtained DIC values were greater than two, it is possible to 

194 indicate the superiority of the complete model over the restricted models. On the other 

195 hand, as this component of the model is important, the “best” genotypes measured in 

196 diferente environments cannot be the same. However, convergence was not achieved by 

197 the AI (Average Information) and EM (Expectation-Maximization) algorithms.

198
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199 Table 1. Deviation information criteria for the full (considering the G x E interaction) 

200 and null (not considering the interaction) models.

201

202

203

204

205 GY: Grain Yield; FL: Flowering Period. 

206

207 The posterior inferences for mean and higher posterior density range (HPD) 

208 considering the multi-trait and multi-environment (MTME) model are described in Table 

209 2. The average values for the grain yield tr ait varied from 4210.91 – 3901.56 kg ha-1 and 

210 flowering in days of 99.40 – 76.43, in environments 1 and 2, respectively (Table 2). The 

211 Bayesian credibility interval (95% probability) for average grain yield corresponds to 

212 4191.70 – 4227.86 kg ha-1, and 3852.60 – 3946.07 kg ha-1 (p<1e-05), in environments 1 

213 and 2, respectively. In relation to the flowering period in days, this interval corresponds 

214 to 98.09 – 100.69 e 74.56 – 78.22 (p<1e-05), environments 1 and 2, respectively.

215

216 Table 2. Posterior inferences for mean and highest posterior density range (HPD) 

217 considering the proposed complete multi-trait multi-environment model.

HPD 95%
Trait EN post.mean LOWER UPPER 
GY 1 4210.91*** 4191.7 4227.86
FL 1 99.4*** 98.09 100.69
GY 2 3901.56*** 3852.6 3946.07
FL 2 76.43***        74.56 78.22

218 *** Significância estatística: p ≤ 0.001. GY: Grain Yield; FL: Flowering Period; EN: 

219 environment. 

220 Table 3 presents the subsequent inferences for mean and genetic variance; mode, 

221 mean, median, and highest posterior density range (HPD) of heritability in the broad 

222 sense; and the mode, mean, median, and greater posterior density interval (HPD) of the 

223 genetic correlation, considering MTME. The grain yield trait in environment 2 was 

224 considered weakly heritable with Bayesian credibility interval (95% probability): ℎ2 = 

225 4.36E-07 - 9.21E-06, and in environment 1, it was moderately heritable ℎ2 = 0.39 - 0.757. 

226 The low estimate of heritability observed does not depend on the number of samples 

Deviance information criteria (DIC)
Model Trait Full Model Null Model  
Mult-trait GY, FL -308.83 1967.79
Single-trait GY 1867.49 1868.28
Single-trait  FL 162.19 697.67  
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227 evaluated, since the Bayesian structure used is essentially recommended for situations 

228 involving small sample sizes. In addition, the grain yield trait is largely influenced by the 

229 environment as it is a quantitative character [24], which reflects this low estimate of 

230 heritability. In relation to flowering period, it is highly heritable by the Bayesian 

231 credibility interval (95% probability): ℎ2 = 0.039 - 0.80, and 0.02 - 0.91, environment 1 

232 and 2, respectively. And the posterior mean of the genetic correlation between traits was 

233 significantly different from zero (95% credibility intervals) in the two environments 

234 (environment 1: -0.80 to 0.74; environment 2: -0.82 to 0.86) (Table 3).

235

236 Table 3. Resume of inferences for mean and genetic variance; mode, mean, median, and 

237 highest posterior density range (HPD) of heritability in the broad sense; and the mode, 

238 mean, median, and highest posterior density range (HPD) of the genetic correlation, 

239 considering the complete model multi-trait and multi-environment.

 ℎ2   HPD 95%

Trait EN Mode Mean Median LOWER UPPER 
GY 1 0.11 0.28 0.18  0.39 0.757
GY 2 1.30E-06 3.32E-06 2.24E-06 4.36E-07 9.21E-06
FL 1 0.12 0.31 0.24 0.039 0.80
FL 2 0.06 0.27 0.13 0.02 0.91

Genotypic Correlation HPD 95%
Mode Mean Median LOWER UPPER

GY,FL 1 -0.0076 -0.027 -0.028 -0.80 0.74
GY,FL 2   0.037 0.018 0.019 -0.82 0.86

240 EN: environment; GY: Grain Yield; FL: Flowering Period; ℎ2: heritability.

241

242 Bayesian methods access the posterior density ranges of genetic parameters 

243 (Figure 1). The genetic parameters of the flood-irrigated rice genotypes for each trait and 

244 their larger posterior density ranges (HPD) were obtained to assist in the selection of 

245 genotypes.
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246

247 Figure 1. Posterior density for the complete model proposed by multi-traits multi-

248 environment (left: flowering period and right: grain yield). The red line represents the 

249 posterior density for environment 1, while the blue line represents the posterior density 

250 for environment 2.

251 In Figure 2, there is a unimodal distribution in which there is a mixture of two 

252 distinct populations for posterior density in relation to the genotypic correlation between 

253 traits for the complete MTME model. The red line represents the posterior density for 

254 environment 1, while the blue line represents the posterior density for environment 2.

255

256 Figure 2. Posterior density for the genotypic correlation between the grain yield trait and 

257 flowering period in days for the model proposed by multi-traits and multi-environment. 

258 The red line represents the posterior density for environment 1, while the blue line 

259 represents the posterior density for environment 2.

260

261 Variance Estimate
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262 The a posteriori estimates of the genotypic and residual variances for the reduced 

263 model (MTME) were very discrepant among the environments (Table 4). The grain yield 

264 trait in the reduced model obtained a greater estimate of genotypic variance in 

265 environment 1, corresponding to a difference of approximately 60% greater, in relation 

266 to environment 2. This indicates a greater influence of genetic components on 

267 environmental components in the expression of traits. On the other hand, this estimate for 

268 the complete model showed less variation between environments, especially for the 

269 flowering period in days trait. This result showed the best consistency for the complete 

270 model (MTME). Estimates of the variance of the greatest interaction were observed for 

271 the flowering period trait. 

272 Table 4. Genetic parameters for traits grain yield and flowering period in days, in two 

273 environments, using multi-trait multi-environment (MTME) models. 

274 EN: environment; GY: Grain Yield; FL: Flowering Period; 𝜎2
𝑔, 𝜎2

𝑟, 𝜎2
𝑖𝑛𝑡: are the genetic, 

275 replication, and interaction variations, respectively. 

276

277 Relative variation index

278 The ratio of the coefficient of variation genotypic and the coefficient of variation 

279 residual (𝐶𝑉𝑔/𝐶𝑉𝑒) corresponded to the relative variation index. When this index is greater 

280 than one unit, it suggests that genetic variation is more influential than residual variation. 

281 This was observed in this study for both traits, in the reduced model proposed by MTME 

282 (Table 5). For the complete model in the grain yield trait, this relationship was less than 

283 one unit. The relationship of 𝐶𝑉𝑒 and 𝐶𝑉𝑔 higher for flowering period trait in the reduced 

284 model (𝐶𝑉𝑔/𝐶𝑉𝑒= 5.83 and 13.98, environments 1 and 2, respectively). This trait has 

285 greater variability and is highly promising for selection. This is due to its complex genetic 

286 inheritance resulting from the involvement of several genes with little effect on the 

Component
Model Trait EM 𝜎2

𝑔 𝜎2
𝑟 𝜎2

𝑖𝑛𝑡

GY 1 38.93 8.86 -
GY 2 23.19 6.13 -
FL 1 14.95 4.45E-5 -Null

FL 2 32.63 0.19 -
GY 1 2.63 7.24 4.64
GY 2 2.70 7.39 4.77
FL 1 3.35 0.18 7.57

Multi trait

Full

FL 2 5.69 0.34 15.91
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287 phenotype [24, 25].  For the complete model, this trace presented an estimate of the 

288 relative variation index of: 𝐶𝑉𝑔/𝐶𝑉𝑒= 4.28 and 4.21, environments 1 and 2, respectively 

289 (Table 5). Then, this trait presented a higher posterior density interval (HPD) for 80 and 

290 91% heritability, environment 1 and 2, respectively, reinforcing the possibility of genetic 

291 gain (Table 3). This implies that the variability observed in these traits has genetic 

292 predominance, which is interesting in the process of genetic gain in a flood-irrigated rice 

293 breeding program. The coefficient of variation genotypic for the grain yield trait was low 

294 in both environments. This is justified by the fact that these genotypes belong to advanced 

295 comparative trials in which they have gone through several generations of selection.

296

297 Table 5. Coefficient of variation residual (𝐶𝑉𝑒, %), coefficient of variation genotypic (

298 𝐶𝑉𝑔, %) and relative variation index (𝐶𝑉𝑔/𝐶𝑉𝑒) for the multi-trait and multi-environment 

299 model.

Model Trait EN 𝐶𝑉𝑔(%) 𝐶𝑉𝑒(%) 𝐶𝑉𝑔/𝐶𝑉𝑒

GY 1 0.149 0.071 2.11
GY 2 0.122 0.063 1.92
FL 1 3.89 0.67 5.83

Null

FL 2 7.47 0.57 13.98
GY 1 0.039 0.064 0.61
GY 2 0.042 0.070 0.60
FL 1 1.84 0.43 4.28Full

FL 2 3.20 0.76 4.21
300 EN: environment; GY: Grain Yield; FL: Flowering Period; EN: environment.

301

302 Discussion

303 One of the ways to succeed in breeding programs is related to the accurate 

304 prediction of genotypic values, which is closely related to the adoption of adequate 

305 models. Thus, in this study, we apply a new statistical approach for estimating variance 

306 components in floodplain rice breeding schemes. The implementation of multi-trait multi-

307 environment models Bayesian is straight forward and currently has been widely used due 

308 to the possibility of considering a priori knowledge in modeling. In addition to its 

309 application wide application in animal breeding [26, 27], Bayesian multi-trait analysis 

310 has been reported in plant breeding [11, 13, 14, 15, 28].
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311  Bayesian inference has been used since 1986 [29] and has been further explored 

312 in recent years [2, 11, 13, 14, 15, 30, 31 ] due to major computational advances and new 

313 applications and methodologies [32]. However, Bayesian analysis is based on knowledge 

314 of the posterior distribution of the parameters to be estimated. This allows the 

315 construction of exact credibility intervals for estimates of random variables and variance 

316 components [33]. Values for the 95% distribution credibility interval for the broad-sense 

317 heritability parameter found in this study (Table 3) were also presented in the study by 

318 [11] to estimate genetic parameters for efficiency of uptake and efficiency of use of N 

319 under contrasting soil N levels via MTME models. Another study, based on the estimation 

320 of genetic parameters for genetic selection of segregating soybean progenies using the 

321 MTME model [14]. The difference between mean, mode, and median of the broad-sense 

322 heritability estimates (Table 3) reflects some lack of symmetry in the posterior 

323 distribution estimates. The lack of symmetry between mean, mode, and median 

324 heritability estimates in posterior distribution estimates was reported by [11] and [30].

325 The low broad-sense heritability observed in the traits does not depend on the 

326 number of samples evaluated, since the Bayesian structure used is essentially 

327 recommended for situations involving small samples. On the other hand, quantitative  

328 traits of agronomic interest, determined by several genes, demosntre low expression and 

329 significantly influenced by the environment [24], reflected in the traits grain yield and 

330 flowering period in days.

331 Based on the results of heritability estimation in the broad sense for the GY and 

332 FL traits varied in: ℎ2 = 0.39 - 0.757 and  ℎ2 = 4.36E-07 - 9.21E-06;  ℎ2 = 0.039 - 0.80, 

333 and 0.02 - 0.91, environment 1 and environment 2, respectively (Table 3). [34] found 

334 heritability estimates of 0.48 and 0.94 for GY and FL, respectively, using 198 rice 

335 progenies by the ANOVA technique. [35] evaluated upland rice genotypes, by this same 

336 technique, and obtained an estimate of ℎ2 for GY and FL traits 0.35 and 0.77, respectively. 

337 [36] obtained results of ℎ2 ranging from 0.44 - 0.87 for GY, 0.46 - 0.94 for FL. [37] 

338 applied a mixed model in studies using FL and GY traits, found an estimate of  ℎ2 de 

339 0,88, and 0,71, respectively. [38], using the ANOVA method, found ℎ2 of 0.76 for FL and 

340 [39] estimate of 0.30 for GY. Regarding the estimate of CVs using the ANOVA method 

341 for the FL and GY traits, representing 2.98% and 15.28%, respectively [34].

342 The amounts of data that breeding programs around the world are generating 

343 continue to increase; consequently, there is a growing need to extract more knowledge 

344 from the data being produced. For this, MTME models are commonly used to take 
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345 advantage of correlated traces to improve parameter estimation and prediction accuracy. 

346 However, when there are a large number of features, implementing these types of models 

347 is a challenge. Therefore, it is necessary to develop efficient models of multiple trait and 

348 multiple environments for selection, in order to take advantage of multiple correlated 

349 features. In this work, was proposed an alternative method to analyze MTME model data 

350 that could be useful for genotype selection, and estimation of genetic parameters in 

351 flooded rice in the context of an abundance of traits and environments.

352 Full-model multi-trait analysis tends to be powerful and provide more accurate 

353 estimates than single-trait analysis because the previous method can take into account the 

354 underlying correlation structure found in a multi-trait dataset. However, Bayesian and 

355 non-Bayesian inferences from the MTME model analysis are complex and 

356 computationally demanding [40]. [28] argue that Bayesian multi-trait analysis is more 

357 appropriate than ANOVA to perform analyzes and select superior genotypes for genetic 

358 improvement since the Bayesian model can capture small genetic differences between 

359 families, while ANOVA cannot. In this study, was explained how to make Bayesian 

360 inference using a multi-trait multi-environment Bayesian model in plant breeding. These 

361 results showed that the approach was efficient in estimating genetic parameters in flooded 

362 rice. 

363 The correlation study revealed favorable associations for the traits in studies in 

364 two settings. This result indicates that the selection of genotypes characterized by longer 

365 flowering period favors grain yield in flood-irrigated rice, which is desirable for rice 

366 cultivation since later plants tend to be more productive. However, late cycle cultivars 

367 tend to be more productive in relation to the early cycle, since they obtain an increase in 

368 the amount of photoassimilates that are translocated to grains [3]. This result justifies the 

369 significant correlation between the traits. According to [24], correlations between traits 

370 may be the result of pleiotropy or genetic linkage. Thus, if the undesirable correlations 

371 are caused by genetic linkage, these associations can be broken by recombination caused 

372 by crossing or self-fertilization; consequently, these factors do not necessarily become 

373 major impediments to breeding programs [](Liersch et al., 2016; Radkowski et al., 2017; 

374 Bocianowski et al, 2019).

375 Another point that we would like to highlight is that our proposed model is of 

376 MTME, but with the restriction that an identity matrix is assumed for the variance-

377 covariance matrix of the environments. However, even with this restrictive assumption in 

378 the variance-covariance matrix of the environments, the model has the advantage of 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.25.465700doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465700
http://creativecommons.org/licenses/by/4.0/


379 taking into account the terms of interaction x trait, genotype x trait, and the environment 

380 x genotype x trait. Furthermore, it takes into account the correlated traits. The program of 

381 irrigated rice program aims to obtain the desired results in a short period and with 

382 precision, therefore, the choice of the model will be use as breeding strategies.

383

384 Conclusion

385 The multi-trait and multi-environment Bayesian model was efficient to estimate 

386 genetic parameters for the flood-irrigated rice crop.

387 The estimates of genetic parameters bring new perspectives on the application of 

388 Bayesian methods to solve modeling problems in the genetic improvement of flood-

389 irrigated rice.
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