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Abstract 29 

G protein-coupled receptors (GPCRs) form the most frequently exploited drug target family, 30 

moreover they are often found mutated in cancer. Here we used an aggregated dataset of 31 

mutations found in cancer patient samples derived from the Genomic Data Commons and 32 

compared it to the natural human variance as exemplified by data from the 1000 Genomes 33 

project. While the location of these mutations across the protein domains did not differ 34 

significantly in the two datasets, a mutation enrichment was observed in cancer patients among 35 

conserved residues in GPCRs such as the “DRY” motif. We subsequently created a ranking of 36 

high scoring GPCRs, using a multi-objective approach (Pareto Front Ranking). The validity of 37 

our approach was confirmed by re-discovery of established cancer targets such as the LPA and 38 

mGlu receptor families, and we identified novel GPCRs that had not been directly linked to 39 

cancer before such as the P2Y Receptor 10 (P2RY10). As a proof of concept, we projected the 40 

structurally investigated mutations in the crystal structure of the C-C Chemokine (CCR) 5 41 

receptor, one of the high-ranking GPCRs previously linked to cancer. Several positions were 42 

pinpointed that relate to either structural integrity or endogenous and synthetic ligand binding, 43 

providing a rationale to their mechanism of influence in cancer. In conclusion, this study 44 

identifies a list of GPCRs that are prioritized for experimental follow up characterization to 45 

elucidate their role in cancer. The computational approach here described can be adapted to 46 

investigate the roles in cancer of any protein family. 47 

 48 

Author summary 49 

Despite cancer being one of the most studied diseases due to its high mortality rate, 50 

one underexplored aspect is the association of certain protein families with tumor 51 

pathogenicity.  We focused here on the G protein-coupled receptors family for three 52 

reasons. Firstly, it has been shown that this is the second most mutated class of proteins in 53 
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cancer following kinases. Secondly, this family has been extensively studied resulting in a wide 54 

availability of experimental data for these proteins. Finally, more than 30 % of the drugs 55 

currently in the market target its members. For these receptors, we explored the mutational 56 

landscape across cancer patients compared to healthy individuals. Our findings show the 57 

existence of cancer-related alteration patterns that occur at conserved positions. Additionally, 58 

we computationally ranked these G protein-coupled receptors on their importance in the 59 

pathogenesis of cancer based on multiple objectives. The result is a list of recommendations on 60 

where to focus next. These results suggest that there is room for repurposing existing therapies 61 

for cancer treatment while also highlighting the risk of potential interactions between cancer 62 

treatments and common drugs. All in all, we present a window of opportunity for new targeting 63 

strategies in oncology for G protein-coupled receptors.   64 

 65 

Keywords: Pareto Optimization, mutations, multi-objective, GPCR, cancer, GDC, natural 66 

variance, 1000 Genomes. 67 

68 
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Introduction 69 

Cancer is the second leading cause of death globally [1]. Research towards this multifactorial 70 

disease has expanded our knowledge significantly over the last two decades [2,3]. Recently, 71 

results from these endeavors have been condensed in the form of public databases containing 72 

patient-derived data [4]. Cancer is typically the result of compounding mutations that transform 73 

healthy cells to malignant ones [5]. Previous work involving large scale mutational analysis 74 

picked up G Protein-coupled receptors (GPCRs) as the second most mutated class of proteins 75 

in the context of cancer [6]. Cancer cells are driven to proliferate and avoid the immune system. 76 

GPCRs have multiple functions in this process from increased growth (early stage) all the way 77 

to metastasis (late stage) [7]. Thus, any anomalies in GPCR functioning might be related to 78 

cancer growth. Another interesting property of GPCRs is that they are the most common drug 79 

target family with around 35% of drugs acting through a GPCR [8], providing a diverse set of 80 

molecular tools to potentially combat cancer.  81 

 82 

GPCRs consist of seven highly conserved transmembrane (TM) domains, which often serve as 83 

a ligand binding pocket for their natural ligands, e.g. endogenous hormones or 84 

neurotransmitters. In addition, these TM domains are connected via extra- and intracellular 85 

loops (ECL; ICL) displaying a lower degree of conservation [9]. Most GPCRs also have an 86 

eighth TM domain that is connected by intracellular loop 4. The extracellular loops are known 87 

to also be involved in ligand recognition and activation, whereas the intracellular part of the 88 

receptor is linked to G protein recognition and activation. Finally GPCRs contain an N- and C-89 

terminus which are also relatively little conserved [10,11]. To denote the residues in GPCRs in 90 

a comprehensive way, we use Ballesteros-Weinstein (BW) numbering [12]. BW is mainly 91 

restricted to the TM domains and consists of two parts, i.e. the first number is the TM where 92 

this residue is found, and the second number is relative to the most conserved residue in that 93 
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TM. The most conserved residue receives number 50, and the number goes down for residues 94 

towards the N-terminus and up for residues towards C-terminus.  95 

 96 

In previous work, knock-down studies have been performed on several proteins to identify their 97 

role in the context of cancer, but these studies were typically embarked upon after prior 98 

identification of the protein’s role in cancer [13–15]. One of the main reasons these in vivo 99 

studies are done is to identify whether a mutation is either a driver or a passenger mutation, 100 

where the first provides a selective growth advantage, and thus promotes cancer development, 101 

while the latter has occurred coincidentally and is thus generally of less interest. Moreover, 102 

these studies provide insight whether a driver mutation is located on either an oncogene or a 103 

tumor suppressor gene [16]. 104 

 105 

In the current work, we focused on GPCRs in the context of cancer by using patient-derived 106 

data sets and specifically looked at trends and mutational patterns in this protein family. We 107 

performed a deeper investigation into several “motifs”, parts of the GPCR sequence that are 108 

conserved that contribute most to the stability and function of the GPCR [17–19]. Moreover, 109 

we provide a list of GPCRs with known small molecule ligands (in some cases approved drugs), 110 

ranked by relative interest for follow-up using multi-objective ranking. This ranking 111 

incorporates mutational count, locations of mutations in regions of interest, availability of in-112 

house expertise, and ability to perform virtual screening (as performed by QSAR). Finally, we 113 

exemplified our findings in a more in-depth analysis on C-C chemokine receptor type 5 (CCR5) 114 

to show the feasibility of our approach.115 
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Results 116 

Overview of datasets 117 

Several filtering steps were applied to both the GDC and 1000 Genomes dataset including 118 

constraints to missense mutations and to mutations in GPCRs in residues defined in the 119 

GPCRdb alignment. The mutation analysis was done for all unique missense mutations in 120 

GPCRs, while for the Pareto optimization the datasets were enriched with ChEMBL data for 121 

those GPCRs for which such data were available. The corresponding numbers are shown in 122 

Table 1.  123 

Table 1: Overview of the composition of the GDC and 1000 Genomes datasets. 124 

  GDC dataset 
(v 22.0)  

1000 Genomes dataset 
(2020)  

Total patients 10,179 3,202 

Total cancer types 53 n/a 

Missense mutations 2,129,235 2,943,276 

Missense mutations in GPCRs 44,315 42,395 

Unique missense mutations in GPCRs 39,012 23,042 

GPCRs with mutations in set 389 391 

Unique missense mutations in GPCRs with 
ChEMBL data 

23,524 11,469 

GPCRs with ChEMBL data in set 258 259 

 125 

The GDC dataset is larger compared to the 1000 Genomes set based on patient count, but both 126 

are in the same order of magnitude when looking at the amount of missense mutations. 127 

Nevertheless, for better comparison in our analyses, the fraction of mutated residues per dataset 128 

was used instead of absolute mutation count to correct for the absolute difference in data points.  129 

 130 

131 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465693
http://creativecommons.org/licenses/by/4.0/


7 
 

Two-Entropy Analysis  132 

A two-entropy analysis (TEA) was performed on our dataset as was done previously with slight 133 

modifications [19,20]. Key to the TEA approach is that for each alignment position the Shannon 134 

entropy is calculated both within a GPCR subfamily and within all GPCRs, with the difference 135 

between these indicating the residue function in the protein family and superfamily. From this 136 

type of analysis multiple interesting groups were identified, in particular residues relevant for 137 

receptor function such as activation (type A), and residues relevant for ligand recognition (type 138 

L). The former is made up by positions with a low Shannon entropy both within GPCR 139 

subfamilies and for the entire GPCR superfamily, indicating high conservation in general and 140 

within the subfamily. This high conservation has been linked to their involvement in GPCR-141 

conserved working mechanisms [20]. The latter (type L) is made up by residues that are 142 

conserved within subfamilies, yet are not so much conserved within the GPCR superfamily. 143 

Hence, these are typically associated with ligand recognition, which is specific and conserved 144 

within a given subfamily. Type L residues are represented in the top left corner in Figure 1, but 145 

in our analysis this trend is less clear. This is likely as we have not limited ourselves to one 146 

family such as Class-A GPCRs (thus increasing the overall entropy). Despite the shift of type 147 

L positions, the positions from the original TEA analysis end up in the expected location. 148 

Moreover, in the top right corner of Figure 1, a third group of residues is represented: those that 149 

are conserved neither among all GPCRs nor GPCR subfamilies. These are more likely to have 150 

only a small implication in relevant receptor functions.  151 

 152 

 153 
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 154 

Fig 1: Shannon entropy across GPCR families versus Shannon global Entropy correlated to cancer-related mutations. A two-155 
entropy analysis plot for all GPCRs with aligned positions. The average entropy across families, i.e. conserved within a family 156 
is on the x-axis, and the Shannon entropy overall on the y-axis. Residues are colored by the frequency of mutations found in 157 
the GDC dataset, with blue being low (< 25th percentile), orange medium (25-75th percentiles) and red high (> 75th percentile). 158 
Residues with no defined Ballesteros-Weinstein labels are colored grey. Blue, orange, red, and grey lines represent the mean 159 
entropy values for each axis per mutation range (high, medium, low, and non-defined Ballesteros-Weinstein, respectively). 160 
Blue, orange, red, and grey shadows represent the standard deviation to the mean entropy values for each axis per mutation 161 
range (high, medium, low, and non-defined Ballesteros-Weinstein, respectively). 162 

 163 

164 
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In Figure 1, we colored the data points based on the frequency of absolute mutation counts 165 

found per Ballesteros-Weinstein GPCR aligned position in cancer patients in the GDC dataset.  166 

The rest of aligned positions without a Ballesteros-Weinstein label is represented in Figure S1. 167 

We defined residues with a high mutation frequency as those above the 75th percentile in the 168 

distribution of mutation counts by position. Conversely, residues with a low mutation frequency 169 

were defined as those under the 25th percentile. The middle mutation frequency are the 170 

remaining data points. From Figure 1, it follows that absolute mutation count is (anti)correlated 171 

with entropy. We observe a trend where the more conserved type A residues (bottom left corner 172 

of the graph, low entropy) have a higher mutation rate in cancer compared to the less conserved 173 

residues (top right corner of the graph, high entropy). We illustrate this with the mean ± SD 174 

entropy overall and across families, represented in Figure 1 for each mutation range. The low 175 

mutation range has mean entropy values of 0.41 ± 0.21 and 0.43 ± 0.15 (Shannon and Average 176 

entropy across families, respectively). Meanwhile, the high mutation range has lower mean 177 

entropy values of 0.31 ± 0.12 and 0.35 ± 0.13, respectively.  On the contrary, the trend is not 178 

observed on natural variance data from the 1000 Genomes dataset (Figure S2). There, the mean 179 

entropy values for the low mutation range are 0.39 ± 0.20 and 0.41 ± 0.16, respectively; and 180 

0.32 ± 0.01 and 0.42 ± 0.11 respectively for the high mutation range. Comparing the GDC data 181 

and 1000 genomes data we observe an average downward shift in entropy values for highly 182 

mutated positions per subfamily (not in the overall Shannon entropy) and an upward shift for 183 

low mutated positions. Combined this shows a pressure in the GDC data for mutations in 184 

subfamily specific positions at the expense of mutations in non-conserved positions. This trend 185 

is supported by the fact that from the type A residues highlighted in Figure 1, the higher 186 

mutation frequencies are associated with the most conserved positions in TM domains 3, 4, 6, 187 

and 7 (i.e. 3.50, 4.50, 6.50, and 7.50). Three of these (i.e. 3.50, 6.50, and 7.50) are interesting 188 

positions, since they are part of the “DRY” (TM3), “CWxP” (TM6), and “NPxxY” (TM7) 189 
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conserved GPCR functional motifs. The high amount of mutations in residues of these motifs 190 

is remarkable and will be investigated further in section ‘Mutation patterns within functionally 191 

conserved motifs’. Overall, cancer mutation frequency is correlated with individual residue 192 

conservation as we initially noted from Figure 1. We therefore investigated groups of residues 193 

as defined by GPCR domains in order to further explore cancer mutation patterns.  194 

 195 

Mutation rates over GPCR domains  196 

We hypothesized that mutations associated with altered function in the context of cancer, would 197 

occur more frequently in the domains with higher conservation (i.e. TM domains) where 198 

positive selective pressure would favor those that alter receptor function. Conversely, we would 199 

expect mutations to be distributed more randomly over the sequence among the 1000 Genomes 200 

set and to be underrepresented in the conserved TM domains. However, the distribution in both 201 

sets appears to be quite similar (Figure 2A). Looking at the absolute counts per protein domain, 202 

we observe that most mutations are in the N-terminus (~ 25% of the total), followed by the C-203 

terminus (~ 15% of the total), which are on average the longest domains compared to loops and 204 

TM domains. Around 40% of the mutations are found in the aggregated 7TM, but individual 205 

transmembrane domains follow in mutation count the N- and C-terminus together with ICL3 206 

and ECL2, with the remainder of the loops having the lowest amount of mutations. The cause 207 

for this is most likely twofold; on the one hand both the N- and C-terminus are not as conserved 208 

as the 7TM domains of the GPCR, on the other hand the domain lengths are higher and hence 209 

the chance of mutations occurring is equally higher. Comparing the mutation fractions 210 

(percentage of absolute mutations found per domain) across the different domains shows no 211 

major differences between GDC and 1000 Genomes derived data, although there is enrichment 212 

observed in cancer-related mutations in the TM regions, as opposed to what is observed for the 213 

N-terminus and C-terminus. However, from these data it is difficult to conclude that cancer 214 
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mutations have a specific domain they aggregate on. In order to remove the bias mentioned 215 

above regarding average length of the different domains, we corrected for average length of the 216 

domains by dividing the total amount of mutations per domain in the data set by the average 217 

length of this domain resulting in the average amount of mutations per position. Subsequently, 218 

these values were scaled between zero and one for better comparison with the newly calculated 219 

property: Rescaled average number of mutations per position over domains (Figure 2B). Both 220 

the absolute counts in the domains and an aggregated overview are represented in Figure S3.  221 

 222 

   223 
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 224 

Fig 2: Mutation fractions per GPCR protein domain. (A) Mutation fraction from the total number of mutations found in the 225 
GDC and 1000 Genomes data, split per GPCR domain that they were found in. (B) Mutation count corrected for protein domain 226 
length and scaled between zero and one for better comparison. Scaling was done between absolute zero and absolute 227 
maximum for visualization purposes. “TM”, “ICL” and “ECL” represent the aggregated rescaled average number of mutations 228 
per position for those domains, and ”Average” is the average rate over all the data. Red bars shows the mutation rates in the 229 
GDC dataset, while blue bars shows the rates of the 1000 Genomes dataset. 230 
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 231 

The rescaled average number of mutations per position over domains represented in Figure 2B 232 

allow us to more accurately describe the differences between protein domains and datasets. In 233 

this figure, the mutation rates on average over the whole GDC and 1000 Genomes datasets are 234 

also shown for reference. For the highest scoring domain, ICL1, 656 mutations were found in 235 

the GDC dataset. This domain has an average length of 4.54 residues, resulting in 144.5 236 

mutations per residue, which was then scaled to a score of 1.00. This domain was also the 237 

highest scoring in the 1000 Genomes dataset. These values represent almost double the average 238 

rate over the whole data, which is 0.54 and 0.53 for the GDC and the 1000 Genomes datasets, 239 

respectively. Conversely, H8 has by far the lowest rate of mutations, which might be due to this 240 

domain, previously associated with mechanosensitivity of GPCRs, not being present in all 241 

receptors [21]. The length of ICL and ECL loops, logically, is considerably more variable than 242 

that of TM domains and, in the case of ICL1, the higher mutation rates are not necessarily found 243 

in the most conserved alignment positions (i.e. 12.48-12.50). These observations make us 244 

suggest that the mutations in ICL1 are context-specific and need to be examined for every 245 

GPCR individually. However, the effects of these mutations may be limited [22–24]. We 246 

observed that all TM domains, all ECL loops, and ICL2-4 demonstrate a slightly higher 247 

mutation rate in the cancer samples, although for TM1 and TM4 the difference is minimal. 248 

Conversely, N-terminus, ICL1, and C-terminus demonstrate a slightly lower mutation rate in 249 

the cancer samples. From the analysis of this data, we concluded that some domains may be 250 

more amenable to mutation in the context of cancer, but that the high diversity of the GPCRs 251 

studied and their diverse roles obscure a clear conclusion. To further investigate these incipient 252 

mutation patterns in protein domains, we proceeded to the analysis of previously identified 253 

motifs that have a conserved function in GPCRs and that were also highlighted in our two-254 

entropy analysis.   255 

 256 

257 
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Mutation patterns within functionally conserved motifs 258 

Several highly conserved motifs relevant for GPCR function are known, in which amino acid 259 

point mutations usually cause a disruption or change in function [25–30]. The “DRY” motif is 260 

important for receptor activation, whereas both the “DRY” and “NPxxY” motifs were found to 261 

be instrumental in stabilization of the receptor-ligand complex, contributing a significant 262 

portion to the stability of the helices. Finally, the “CWxP” motif is important for receptor 263 

activation as it enables movement of the helices [26,27,31]. To be able to compare these motifs, 264 

which are of different lengths, we calculated an average mutation rate for each, correcting for 265 

the length difference, similar to Figure 2B, and with a comparable scaling from zero to one. As 266 

a reference, the average mutation rates obtained over the whole GDC and 1000 Genomes 267 

datasets are also shown. 268 

 269 

Fig 3: Mutation fraction of conserved motifs and their surrounding residues (extended). Mutation rates in GDC and 1000 270 
Genomes datasets of conserved motifs found in GPCRs. “DRY”, “CWxP”, and “NPxxY” motifs are analyzed along with their 271 
“extended” version, which includes three residues before and after the motif, as found in Table 2. “Average” is the average 272 
rate over all the data. Red bars show the mutation rate in the GDC dataset, while blue bars show the rate of the 1000 Genomes 273 
dataset. 274 

275 
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From Figure 3 it follows that for each motif and its six neighboring residues (deemed extended 276 

motif), there is an increase in mutations in cancer patients compared to the natural variation. At 277 

the same time, there is a similar average rate of mutations per residue in the GDC dataset and 278 

in the 1000 Genomes dataset (column Average in Figure 3). Moreover, in the GDC dataset (red 279 

bars) “DRY” is enriched for mutations in samples collected from cancer patients compared to 280 

the average mutation rate whereas for the 1000 Genomes (blue bars) there is a clear reduction 281 

in mutation rate visible. In the extended “DRY” motif, this effect is smaller but still visible. For 282 

both “CWxP” and “NPxxY” the rate in the GDC dataset is comparable to the whole sequence 283 

rate, whereas it is also lower in the 1000 Genomes dataset for these two motifs. In the extended 284 

motifs of “CWxP” and “NPxxY”, this trend is still observed. An absolute count of the mutations 285 

found per residue in the aforementioned motifs in both the GDC dataset and the 1000 Genomes 286 

dataset is shown in Figure S4. From this, we conclude that a trend of higher mutation rates is 287 

present within highly conserved motifs in the GDC dataset compared to the average mutation 288 

rate, which is not observed in the 1000 Genomes dataset. Moreover, a pattern is observed that 289 

the mutation rate in conserved motifs is lower in the 1000 Genomes set compared to the GDC 290 

set, confirming their essential role and conservation. To gain further insights into the mutation 291 

rate and trends identified here we selected the most mutated individual positions in the GDC 292 

dataset (Figure 4). A count overview of unique GPCR cancer mutations for Ballesteros-293 

Weinstein positions is provided in Figure S5, and an overview of the substitutions found in all 294 

of the mutations is provided in Figure S6. 295 

 296 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465693
http://creativecommons.org/licenses/by/4.0/


16 
 

 297 

Fig 4: Most frequently mutated residues in GDC. The top 10 most frequently mutated positions found in GPCRs in the GDC 298 
dataset. The residue location in Ballesteros-Weinstein notation is shown on the x-axis, while on the y-axis the mutation count 299 
of that residue is given. “Average” is the average mutation count per residue over all the data.   300 

 301 

In Figure 4 it is shown that the highly conserved positions in TM domains 3, 4, and 7 (3.50, 302 

4.50 and 7.50) all appear in the top 10 of most frequently mutated residues. These TM domains 303 

already demonstrated a trend in the domain analysis and the locations are part of the “DRY” 304 

and “NPxxY” motifs. These three positions also showed a higher mutation rate in the two-305 

entropy analysis. In addition, residue 3.53, which is part of the extended “DRY” motif, also 306 

shows up as highly mutated. The fact that two residues of the “DRY” motif are some of the 307 

most mutated in cancer could explain why this motif shows the biggest enrichment in the GDC 308 

dataset in Figure 3. On the contrary, no residues of the “CWxP” motif are included in Figure 4, 309 

which aligns with this motif showing the smallest enrichment in Figure 3. Disruptions in these 310 

motifs due to mutations can influence GPCR function in several ways, explaining the 311 

enrichment patterns in cancer patients compared to natural variance observed in our analysis.  312 

 313 
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Ranking GPCRs for follow up 314 

Having confirmed that patterns can be identified in GPCR mutations in the cancer context, we 315 

ranked GPCRs for experimental follow-up. For each GPCR, the absolute mutation count was 316 

divided by receptor length, to provide a mutation rate for each receptor (a higher mutation rate 317 

yielding a lower – better – rank). To identify patterns within GPCR families (as classified by 318 

the GPCRdb [32]), a family-wide rank was calculated by averaging the ranking of each of the 319 

members in a family and subsequently compared to the other families (top 20 shown in Figure 320 

5).  321 

 322 
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 323 

Fig 5: Average Rank of GPCR families and their link to cancer in the literature. Average rank of GPCR families related to the 324 
mutation rate in individual family members. Shown on the y-axis are the different GPCR families as categorized by GPCRdb, 325 
while on the x-axis their average rank as a receptor family is given. The lower average rank value, the better. The error bars 326 
represent standard deviation of individual GPCR rankings within the family. Color-coding represent the link to cancer in the 327 
literature for the family. Red represents a strong link (i.e. all members of the family have been linked to cancer), salmon 328 
represents partial link (i.e. some members of the family have been linked to cancer), and grey represents no link to cancer 329 
reported.  330 

The majority of GPCR families identified in the top 20 ranking have been previously linked to 331 

cancer in the literature, as the color-coding in Figure 5 represents. For most of these families, 332 

such as the calcitonin, the angiotensin, or the melatonin receptor families, all individual 333 

members of the family have been linked to cancer (red bars in Figure 5) [33–38]. For some 334 

others, however, only some members of the family have been associated with cancer in the 335 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465693
http://creativecommons.org/licenses/by/4.0/


19 
 

literature (salmon bars in Figure 5), such as the metabotropic glutamate (mGlu) or 5-336 

hydroxytryptamine (serotonin) receptor families [39,40]. Notably, the family with the fourth 337 

best ranking (i.e. thyrotropin-releasing hormone receptor family), has not been previously 338 

linked to cancer in the literature yet the ligand for this family has been linked to cancer and 339 

cancer-related fatigue [41,42]. The standard deviation represented by error bars in Figure 5 340 

gives an idea of the differences in individual member rankings within families. Families with a 341 

standard deviation of zero correspond to families with only one member, since every receptor 342 

has a unique mutation rate and rank in this set. Of note, families with a higher standard deviation 343 

correspond to those that have been partially linked to cancer, with a few exceptions (i.e. 344 

glycoprotein hormone receptor and endothelin receptor families). Hence, big error bars 345 

represent ranking differences of the family members. The retrieval of families previously 346 

identified in the context of cancer validates our approach and opens room for further target 347 

selection strategies based on mutagenesis data in cancer.  348 

 349 

To further narrow the list of selected receptors, Pareto sorting was performed to identify GPCRs 350 

with a suggested high impact in cancer biology that may be amenable to small molecule 351 

intervention and follow up study. Pareto sorting is a means to sort a list of items based on 352 

multiple (not always correlating) properties. The feasibility of small molecule intervention was 353 

assessed by training a machine-learning model (random forest [43]) for each GPCR in our data 354 

set using bioactivity data from ChEMBL 27 [44,45], with circular fingerprints as molecular 355 

descriptors [46]. The selected properties for Pareto ranking were: Mutation rate in TM domains 356 

in GDC (maximized), mutation rate in TM domains in 1000 Genomes (minimized), average R2 357 

of ChEMBL QSAR prediction models (maximized), and in-house availability of proteins for 358 

experiments (maximized). The order of the properties determine the priority during the Pareto 359 

sorting. 360 
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 361 

The first front in the Pareto optimization is considered “dominating”, which means that this set 362 

of GPCRs has no GPCR that scores better in the properties. For the remaining (i.e. dominated) 363 

data points, a second front can be calculated, with GPCRs that score worse than those in the 364 

first front but better than the rest of the solutions. Therefore, we used the first and second fronts 365 

for a subsequent ranking based on crowding distances between the receptors (Figures 6A and 366 

6B, respectively). Crowding distances are a measure of how dense the environment is. Denser 367 

environments mean more balance in the objectives and thus more interesting GPCRs. As the 368 

crowding distance can go up to near infinite, we used a cut-off at a value of 10.  369 

 370 
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 371 

Fig 6: Crowding distances of the first and second Pareto fronts. (A) First Pareto front, consisting of 15 GPCRs. (B) Second 372 
Pareto front, consisting of 19 GPCRs. On the x-axis the gene names of GPCRs are shown, while on the y-axis their crowding 373 
distance is shown. Crowding distance was cut-off at 10, as the differences between these high-scoring receptors become 374 
negligible above that threshold.  375 

376 
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In Figure 6A, the 15 GPCRs from the best scoring (first) front are shown, which translate to the 377 

GPCRs with the most desirable scores in the combined objectives of the Pareto optimization. 378 

We demonstrate that GPCRs previously linked to cancer show up in the first front alongside 379 

others that have not been thoroughly investigated yet. Hence, our list can be seen as a list of 380 

potential candidates for follow-up experimental research. Twelve of these GPCRs (80%) have 381 

been identified in literature as related to cancer (red bars in Figure 6A). The second Pareto front 382 

(Figure 6B), reveals a list of 19 GPCRs, from which 14 (74%) have been previously linked to 383 

cancer (red bars in Figure 6B). Out of the cancer-related receptors in our analysis we selected 384 

one of the top entries of our first Pareto front, CCR5, as a case study for further investigation 385 

and performed a structural analysis based on its crystal structure to characterize the potential 386 

effects of the retrieved mutations in receptor function and/or ligand binding. 387 

 388 

CCR5 structural analysis 389 

Mutations found in the GDC dataset for CCR5 were cross-linked to GPCRdb data, to find 390 

previously published mutagenesis data. We then mapped the mutations on a 3D crystal structure 391 

of the receptor (PDB code 4MBS [47]). In this structural analysis, we focused on regions 392 

relevant for protein function and ligand binding. As shown in Figure 7A, these mutations are 393 

widely spread across the receptor’s structure, including mutations in ECL2 - a region that 394 

largely contributes to chemokine ligand recognition (Figure 7B) [48], G protein binding region, 395 

and orthosteric binding site (Figures 7C and 7D). The crystal structure of CCR5 used as a 396 

reference in Figure 7 (PDB code 4MBS) contains the thermostabilizing mutation A2336.33E, 397 

which has been characterized for the inactive CCR5 conformation. In this structure, a small 398 

molecule inhibitor - maraviroc - is co-crystalized in the orthosteric binding site (i.e. spanning 399 

the so-called major and minor binding pocket [49]), as shown in Figure 7D. Of note, some of 400 

the mutations found in the GDC dataset are in positions in close proximity to the inhibitor. Out 401 
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of the 73 mutations found in our dataset, only 12 mutations had been previously annotated, 402 

while 37 mutations had no data available and 24 consisted of not-annotated data. Further 403 

analysis of previously annotated data shed some light on the functional implications of these 404 

mutations, as discussed below.  405 

 406 

Fig 7: Cancer-derived mutation mapping in CCR5 structure. (A) The mutations found in the GDC dataset for CCR5 mapped on 407 
the 3D structure of the receptor. (B) Mutated residues found in ECL2 region. (C) G protein binding site, containing the mutation 408 
A2336.33E, which has been characterized as a thermostabilizing mutation for the inactive CCR5 structure (PDB code 4MBS). (D) 409 
The orthosteric binding site, with the small molecule inhibitor maraviroc (orange).  410 

 411 

412 
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Discussion 413 

In this study, we performed a comprehensive comparison of mutations found in cancer patients 414 

(GDC dataset) versus mutations found in natural variance (1000 Genomes dataset) in GPCRs. 415 

We followed this up by investigating several highly conserved motifs for an increase in 416 

mutation rate compared to the other residues. Finally, we performed a Pareto Front analysis to 417 

create a ranking of GPCRs that warrant follow-up for their context in cancer, and we analyzed 418 

some of the cancer-related mutations found for one of the top-ranking receptors from a 419 

functional-structural point of view.  420 

 421 

Our original hypothesis was that more conserved residues (i.e. lower entropy in a two-entropy 422 

analysis of all residue positions in the GPCRdb alignment) would experience a higher 423 

mutational pressure in cancer patients. We confirmed this trend showing that positions with a 424 

low amount of mutations per position were assigned higher entropy values (0.41 ± 0.21 and 425 

0.43 ± 0.15 Shannon and Average entropy across families, respectively, as shown in Figure 1) 426 

than positions with a high amount of mutations per position (0.31 ± 0.12 and 0.35 ± 0.13, 427 

respectively). Conversely, the trend was not observed in a similar analysis correlated to 428 

mutations in the 1000 Genomes dataset (Figure S2). In the original two-entropy analysis by Ye 429 

et al., focused on class A GPCRs [20], the algorithm enabled the identification of residues 430 

involved in ligand recognition, but that trend was not as clear in our analysis. These 431 

observations implied a decreased advantage of the two-entropy analysis in an all-class GPCR 432 

analysis versus a class-A-only analysis. Overall, we identified an incipient pattern between 433 

evolutionary conservation and mutation rates in the GDC set, although this trend does not 434 

extend to the bulk of residues with intermediate entropies. 435 

 436 
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We also studied mutation distribution after aggregating residues by protein domains rather than 437 

exploring individual residues (Figure 2). Even though there were more mutations found in the 438 

larger domains such as the C- and N-terminus, when corrected for average length most of them 439 

showed similar mutation rates. Of note, mutations in TM, ICL, and ECL domains combined 440 

showed an enrichment in cancer patients versus natural variance, while the contrary was 441 

observed for the C- and N-terminus. Although the latter domains have been extensively 442 

described to play a role in receptor stabilization, signal transmission, and ligand and G protein 443 

recognition [50,51], they also represent the most variable domains in GPCRs in terms of length 444 

and motif composition, which explained the lack of an enrichment in cancer in these domains 445 

[52]. This aligned with the observation that GPCR mutation rates were not homogeneously 446 

distributed among cancer types, with some primary sites (e.g. Corpus uteri) showing a clear 447 

enrichment compared to others (see Figure S7 for more information). In literature the same has 448 

been suggested, with the emphasis on specific residue changes that affect the entire function of 449 

the protein [53–55].  450 

 451 

A closer look at the more functionally conserved motifs of GPCRs showed a clearer pattern. 452 

The higher mutation pressure observed in the GDC data compared to the 1000 Genomes data 453 

to avoid these motifs, and especially the “DRY” motif (Figure 3), drove us to speculate that 454 

changes in these positions have a very high chance of disabling receptor function. Thus, this 455 

might not be tolerated in healthy tissues but can be advantageous to cancer development. For 456 

“DRY” mutations, it has been shown that G protein coupling and recognition can be decreased 457 

which can reduce binding affinity of drugs [17,29,31,56]. For both mutations in “DRY” and 458 

“NPxxY” it has been shown that a decrease in ligand-receptor complex stability may occur, 459 

decreasing the response from the GPCR [18,27,28]. Thus, any mutations found in these motifs 460 

can have an impact on the signal transduction of an endogenous ligand or the therapeutic effect 461 
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of a small molecule drug. In fact, these motifs have been shown to be collectively involved in 462 

a conserved Class A GPCR activation pathway [57]. In practice, however, the effects of 463 

mutations found in these motifs have been shown to cause instability or loss of function in some 464 

GPCRs, but increased expression or activity in others [17,24,26,31,56,58–60].  465 

 466 

Subsequently, we ranked in a multi-objective manner, via Pareto front analysis, the individual 467 

GPCRs for follow up work. In our ranking provided (Figure 6), approximately 80% of the top 468 

ranked receptors had a known link to cancer. Notable entries that have reported connections to 469 

cancer include the C-C Chemokine receptor (CCR) type 5, which has been linked to regulatory 470 

T cells mediating tumor growth [61], and type 2 as a key player in microenvironment-derived 471 

tumor progression [62,63]; LPA (Lysophosphatidic acid) receptor LPAR6, upregulated in 472 

bladder cancer [64]; GRM (Metabotropic glutamate) receptors 2 (GRM2) and 8 (GRM8), 473 

respectively known for dysregulating signaling pathways that are crucial in cancer prevention 474 

and activating variants in squamous cell lung cancer [65–67]; serotonin receptors 5HT1A 475 

(HTR1A) and 5HT5A (HTR5A), the former known to be involved in at least breast, ovarian and 476 

pancreatic cancer, and the latter recently linked to breast cancer [39,68]; and the adenosine A1 477 

(ADORA1) and A2A (ADORA2A) receptors, linked to the progression and metastasis of a variety 478 

of cancer types as well as immune escape and immunotherapy [69–72]. The P2Y receptor 479 

family member 10 (P2RY10) is an example of GPCR not previously linked directly to cancer, 480 

found in the first Pareto front in rank eight. P2RY10 has been linked to chemotaxis via 481 

eosinophil degranulation, which could make it a potential target in cancer [73].  482 

 483 

Finally, the structural analysis of site-mutagenesis data in one of the top receptors from the first 484 

Pareto front (CCR5) shed some light into the functional implication of some of the cancer-485 

related mutations. These include a cluster of six residues in ECL2 found within the GDC 486 
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dataset, from which four positions had been previously shown to influence chemokine binding 487 

when mutated to Ala [74–76]. In the G protein binding site, the class A highly conserved 488 

R1263.50 was found to be mutated. This residue is part of the DRY motif and, as highlighted in 489 

the two-entropy analysis, it is the most frequently mutated position in the GDC set, resulting in 490 

altered G protein coupling to the receptor in for instance the adenosine receptor family [77]. 491 

Some experimental evidence is available for CCR5 as well, where mutation of this residue to 492 

Asn abolished G protein signaling [56,78]. In the orthosteric site, four amino acids have been 493 

previously investigated by a site-directed mutagenesis study by Garcia-Perez et al., namely 494 

Y1875.31,  I1985.42, N2586.58, and E2837.39 [76]. The effect of these mutations in the binding 495 

affinity of a small molecule (maraviroc) and endogenous CCL5 chemokine recognition was 496 

variable. The biggest effect in the decrease of maraviroc binding affinity was observed for 497 

residue E2837.39, either when mutated to Ala or to the more conservative Gln. The structural 498 

effect of I1985.42 and E2837.39 mutations in maraviroc binding can be derived from the crystal 499 

structure of CCR5 with this negative allosteric modulator (PDB code 4MBS, see Figure 7C). 500 

Indeed, mutations on these two positions had an important effect on the ligand binding of two 501 

other HIV-1 drugs - vicriviroc and aplaviroc - and clinical candidates - TAK-779 and TAK-220 502 

- in two different studies [79,80]. It was further shown that, whilst E2837.39A abolishes 503 

maraviroc binding, chemokine CCL5 binding is mildly (20-fold) affected [79]. On the contrary, 504 

Y1875.31A showed almost no effect in the binding affinity of maraviroc, while affecting 505 

chemokine recognition [76]. These observations exemplified the relevance of our method to 506 

prioritize cancer-related mutations in site-mutagenesis studies, where they can be linked to 507 

receptor activation, endogenous ligand recognition, and the recognition of small (drug-like) 508 

molecules. 509 

 510 
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Recently, in a complementary extensive study by Wu et al (2019) [81] the TCGA dataset was 511 

used to identify significantly mutated GPCRs in cancer. Compared to their study, we elaborate 512 

on our findings through a motif analysis of highly conserved residues in GPCRs, a link to 513 

positional entropy, and a link to structural information (i.e. analyzing the CCR5 chemokine 514 

receptor). Moreover, in our analysis we included the availability of chemical tools to study the 515 

selected GPCRs, as exemplified by our QSAR models. Recently, we have published an analysis 516 

of another GPCR, the Adenosine A2B receptor, for which cancer-related somatic mutations were 517 

prioritized based on a structural analysis as presented here [46]. There we used a yeast system 518 

to explore the effect said cancer-related mutations have on receptor function directly and found 519 

that there is a complex pattern of activation modulation (increase, decrease, or disable). Similar 520 

approaches could be used to experimentally validate the relevance in cancer of somatic 521 

mutations in GPCRs prioritized in this work.  522 

 523 

While in this computational approach the focus was on GPCRs, other receptor families can be 524 

investigated in a similar manner provided that there is a suitable dataset. Notable examples 525 

include solute carriers, or receptor-tyrosine kinases. The objectives in the Pareto optimization 526 

can also be adapted, providing a modified way of scoring the receptors depending on the scope 527 

of the study. Notably, our analysis was done focusing on differences in missense mutations 528 

occurring in cancer patients and natural variance. Nevertheless, many other alterations (e.g. 529 

insertion/deletions, gene and protein expression levels) have been reported for GPCRs in the 530 

context of cancer [82,83], and complementary analyses could be executed focusing on these. 531 

Finally, this computational approach can become part of a targeted therapy pipeline, suggesting 532 

key locations for in vitro and in vivo cancer-associated studies.  533 

 534 

Conclusions 535 
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We conclude from our study that mutations found in GPCRs related to cancer are in general 536 

weakly correlated to specific domains in the protein or evolutional conservation. Rather we 537 

conclude that these are highly context dependent (cancer type, tissue type). However, we do 538 

demonstrate that there is a higher mutational pressure in conserved motifs (i.e. “DRY”, 539 

“CWxP”, and “NPxxY”) in cancer patients (as shown in the GDC set) compared to healthy 540 

individuals. We observe a correlation between our mutational analysis and empirical findings 541 

on the role of several receptors in the cancer process. Moreover, we show that the role and 542 

mechanism of specific mutations can be elucidated using structural analysis as an intermediate 543 

step towards experimental validation. Finally, we have provided a list of GPCRs that are 544 

amenable to experimental follow-up based on our analysis. The provided data may help in 545 

exploring new avenues in the design of cancer therapies, either by linking existing data to ligand 546 

binding and recognition, or the identification of potential new roles for residues not previously 547 

studied. 548 

 549 

Methods 550 

Cancer related mutations 551 

Cancer associated mutations were obtained from the Genomic Data Commons (GDC), part of 552 

the US National Cancer Institute effort [84], with the dataset used in this study obtained from 553 

their version 22.0 released on January 16th 2020. GDC contains multi-dimensional mapping of 554 

genomic changes in several cancer types, including the complete dataset from The Cancer 555 

Genomic Atlas project (TCGA) [85]. As a means to facilitate reproducible, version-consistent, 556 

big data cancer data analysis, we re-compiled part of the GDC database version 22.0 in a 557 

MySQL [86] format. For this re-compilation, data was obtained from the GDC API engine, as 558 

well as their data transfer tool, depending on the availability. Exclusively unrestricted-access 559 

data was compiled. The SQL database contains 19 tables distributed in eight different fields, 560 
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connected by a complex network of primary (PK) and foreign (FK) keys built to optimize the 561 

storage space and query processing. All PKs are unique numerical values. Some data fields (i.e. 562 

gene expression data) contain analyzed data derived from GDC raw data files. A more extensive 563 

description of the database architecture, as well as the analyses performed and the end-to-end 564 

mapping strategy is available in the supplementary data. For this project, we used data on 565 

somatic missense mutations found in a diverse set of cancer types, to which we will refer as the 566 

“GDC” data set.  567 

 568 

Natural variation 569 

As reference for the analysis we used the 1000 Genomes data [87], including an additional data 570 

set released in 2020 by the New York Genome Center (NYGC). This is a dataset containing the 571 

natural variation of mutations in the genome. The dataset used in this study was obtained from 572 

Uniprot variance database in October 2020 [88]. From this data, all somatic missense mutations 573 

were gathered. From the extensive variance dataset, only mutations found in the 1000 Genomes 574 

subset were kept, this way removing cancer derived mutations from COSMIC and known 575 

pathological mutations [89]. Here we referred to this dataset as “1000 Genomes”. 576 

 577 

Mutation dataset curation 578 

Using the aforementioned GDC and Uniprot databases, two filtering steps were applied (Figure 579 

8). The first step yielded the missense mutations for all receptor families. In the second step, 580 

we filtered for GPCRs and aggregated their mutation data, ending up with GPCR-unique 581 

mutation pairs, along with the frequency, while still being able to find single mutations. The 582 

second filtering step also annotated the resulting GDC and 1000 Genomes datasets with 583 

identifiers from GPCRdb [90]. In a later step, prior to QSAR modelling and Pareto sorting, both 584 

datasets were enriched with  bioactivity data from ChEMBL (release 27) [45,91] (see below).  585 
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 586 

Fig 8: Construction of the GDC and 1000 Genomes datasets. For both the GDC and the Uniprot- 1000 Genomes set, missense, 587 
and GPCR mutations were filtered, after which identification and annotation data was added from GPCRdb. In a later step, 588 
bioactivity data was added from ChEMBL27 for Pareto sorting. 589 

 590 

591 
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Bioactivity data 592 

From ChEMBL (release 27) [45,92] ligand-protein interaction data was gathered for all GPCRs 593 

in GPCRdb [90]. Data points were retrieved taking into account the following filtering steps: a 594 

confidence score of 9, an available pChEMBL value, and the protein belonging to the  GPCR-595 

family as defined by the L2 protein class [93]. A pChEMBL value is a standardized value that 596 

equals to the negative logarithm of the measured activity for records with dose–response 597 

activity types. 598 

 599 

Multiple sequence alignment 600 

The structurally supported alignment provided by GPCRdb was used to study sequence 601 

conservation and link sequence positions to the well-established Ballesteros-Weinstein (BW) 602 

numbering [12]. A BW analysis can be used to compare positions between GPCRs but is limited 603 

to the TM domains. A BW number consists of two parts separated by a decimal sign. The first 604 

identifies the TM where this residue is found, and the second number is relative to the most 605 

conserved residue in that TM. The most conserved residue is defined to be position 50, with 606 

downstream positions receiving a lower number (towards the N-terminus) and upstream 607 

positions receiving a higher number (towards the C-terminus). When discrepancies in the BW 608 

number were found in the alignment, the most common label was used.  609 

 610 

Two-Entropy Analysis 611 

Two-entropy analysis (TEA) was performed as described previously with slight modifications 612 

[19,20]. We started from the TEA algorithm as adjusted by Ye at al. to account for gaps in the 613 

multiple sequence alignment as well as for the differences in number of subfamily members 614 

[19]. Figure S8 shows the results of our re-implementation in the synthetic dataset provided in 615 

[19]. Hereafter, we renamed “Total entropy” as “Rescaled Shannon entropy” and “Average 616 
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entropy” as “Average entropy across families” for clarification. Firstly, we adapted the previous 617 

implementation by using the GPCRdb hierarchy levels to define GPCR subfamilies, resulting 618 

in 81 subfamilies for analysis. Secondly, we did not limit the entropy calculation to class A 619 

GPCRS but applied it to all GPCRs. However, as opposed to the previous implementation, we 620 

included only human GPCR sequences, resulting in 388 sequences for analysis.  621 

 622 

Structural information 623 

The data set was enriched with structural information from GPCRdb [90]. This consisted of 624 

data that was annotated to the GPCRs present in the GDC and 1000 Genomes dataset. Included 625 

were the family trees to find related proteins, the amino acid sequence of a protein and sequence 626 

alignment data, which was used to add BW numbering to the residues. Finally, to connect all 627 

the data we found, we used the HUGO Gene Nomenclature Committee (HGNC) for source to 628 

source mapping [94]. 629 

 630 

Investigated motifs  631 

Several conserved motifs commonly found in GPCRs were further investigated. The following 632 

motifs and their surrounding residues, three downstream and three upstream, were investigated 633 

(Table 2). 634 

Table 2: Investigated motifs, and their residues as noted by their Ballesteros-Weinstein numbering.  635 

Motif Residues (Ballesteros-Weinstein number) 

DRY 3.49, 3.50, 3.51 

DRY extended 3.46 - 3.54 

CWxP 6.47, 6.48, 6.49, 6.50 

CWxP extended 6.44 - 6.53 

NPxxY 7.49, 7.50, 7.51, 7.52, 7.53 
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NPxxY extended 7.46 - 7.56 

 “Extended” in this context refers to the six surrounding residues next to conserved motif. 636 

 637 

Quantitative structure-activity relationship (QSAR) model training 638 

The performed QSAR models were Random Forest R models trained in Pipeline Pilot using 639 

500 trees and a default seed of “12345” [43,95]. A 50/50 percent training/ hold-out test set was 640 

used in duplicate to create and validate these models, with ECFP6 used as molecular descriptors 641 

[46]. 642 

 643 

Pareto front 644 

Multi-objective ranking was done within the Pareto method as implemented in Pipeline Pilot 645 

(version 18.1) [95].  The following properties were used: Mutation rate in TM domains in GDC 646 

(maximized), mutation rate in TM domains in the 1000 Genomes set (minimized), average R2 647 

of ChEMBL QSAR prediction models (maximized), and in-house availability for experimental 648 

assays (maximized). The first and second front were used in further analysis, but all data is 649 

provided as supporting information. 650 

 651 

3D Analysis 652 

CCR5 crystal structure (PDB code 4MBS) was obtained from the Protein Data Bank [47]. 653 

Mutagenesis data was retrieved from the GPCRdb[90] and mapped onto the 3D crystal structure 654 

using PyMol [96]. 655 

 656 

Hardware 657 
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Sequence analysis, data processing, and QSAR modeling were run on a Linux server running 658 

CentOS 7. The server had the following components: 2x Intel Xeon Platinum 8160 (2.10), 48 659 

cores, 256 DDR3 RAM, the jobs directory was located on a 1.6 TB PCIe SSD. 660 

 661 

Software 662 

Accelrys Pipeline Pilot 2018 (version 18) was used for all the calculations and analysis [95]. 663 

Any calculations performed were done in SI units, using the infrastructure provided in Pipeline 664 

Pilot. Data was written towards plain text files and Excel. Graphs were created using Python’s 665 

module Matplotlib [97]. 666 
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from ‘https://gpcrdb.org/’ and HGNC mapping data was obtained from 683 

‘https://www.genenames.org/’.  684 
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