
1 

 

A deep learning-based framework for estimating 1 

fine-scale germline mutation rates 2 

 3 

Yiyuan Fang1,*, Shuyi Deng1,* & Cai Li1,# 4 

 5 

 6 

1State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 7 

Guangzhou, Guangdong, China 8 

*
Equal contribution. 9 

#Correspondance: Dr. Cai Li, licai@mail.sysu.edu.cn. 10 

 11 

 12 

Abstract  13 

Germline mutation rates are essential for genetic and evolutionary analyses. Yet, 14 

estimating accurate fine-scale mutation rates across the genome is a great challenge, 15 

due to relatively few observed mutations and intricate relationships between predictors 16 

and mutation rates. Here we present MuRaL (Mutation Rate Learner), a deep learning-17 

based framework to predict fine-scale mutation rates using only genomic sequences as 18 

input. Harnessing human germline variants for comprehensive assessment, we show that 19 

MuRaL achieves better predictive performance than current state-of-the-art methods. 20 

Moreover, MuRaL can build models with relatively few training mutations and a moderate 21 

number of sequenced individuals. It can leverage transfer learning to build models with 22 

further less training data and time. We apply MuRaL to produce genome-wide mutation 23 

rate profiles for four species - Homo sapiens, Macaca mulatta, Arabidopsis thaliana and 24 

Drosophila melanogaster, demonstrating its high applicability. The generated mutation 25 

rate profiles and open source software can greatly facilitate related research. 26 

 27 
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Introduction 28 

Germline de novo mutations (DNMs), which occur either during gametogenesis or 29 

post-zygotically, are crucial for evolution and play important roles in many human 30 

diseases 1. Reported de novo mutation rates for single nucleotide variants (SNVs) in the 31 

human genome range from 1.0 to 1.8 × 10-8 per base pair (bp) per generation, 32 

corresponding to 44 to 82 de novo SNVs per genome per generation 2. Germline 33 

mutation rates exhibit high heterogeneity across the genome, from single-nucleotide level 34 

to chromosome level 3. Mutation rate is important for many genetic and evolutionary 35 

analyses, such as inferring population demographic histories 4, detecting genomic 36 

regions undergoing natural selection 5, and identifying disease-associated genetic 37 

variants 6.  38 

Despite its importance, constructing a fine-scale germline mutation rate map for a 39 

eukaryotic genome, such as the human genome, is particularly challenging. One main 40 

reason is the rarity of DNMs in each generation, making it costly to obtain a large number 41 

of high-quality DNMs using the gold standard family-based sequencing strategy (e.g., 42 

sequencing parents and offspring simultaneously). In recent years, the decline of 43 

sequencing cost alleviated the problem and enabled large-scale sequencing projects in 44 

human populations, leading to rapid accumulation of published DNMs. Nonetheless, the 45 

number of published DNMs in humans so far is still relatively small (less than one million) 46 

7, and for most non-human genomes none or few DNMs are available for analysis. Many 47 

studies used within-species polymorphisms or interspecies divergence to estimate 48 

mutation rates, but a substantial fraction of variants at polymorphic or divergent sites are 49 

evolutionarily old and affected by natural selection and (or) nonadaptive processes such 50 

as GC-biased gene conversion 8. Recent studies 9-11 demonstrated that extremely rare 51 

variants derived from population polymorphism data can serve as a reasonable proxy for 52 

DNMs to predict mutation rates, ameliorating the condition of data insufficiency.  53 

Another challenge in estimating fine-scale mutation rates is the complex 54 

relationships between predictor variables and mutation rates. Adjacent nucleotides are 55 

significant predictors for SNV mutation rates of a focal nucleotide 3,12, particularly the 56 
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immediately 5’ and 3’ nucleotides. Nucleotides more distantly from a focal site are also 57 

associated with mutation rate variation, though to a less extent 13,14. Apart from sequence 58 

context, functional genomic features, such as DNA methylation, replication timing and 59 

recombination rate 15, were reported to be associated with mutation rate variation and 60 

have been included in mutation rate modeling work 10,16. Existing models have several 61 

limitations. First, some models only considered a small number of adjacent nucleotides 62 

(typically not longer than 7-mer centered at the focal nucleotide). Second, previous work 63 

mainly employed linear or generalized linear models to estimate mutation rates with 64 

sequence and functional features, but relationships between mutation rates and these 65 

predictors tend to be nonlinear and more complicated. Third, some models required 66 

many mutations and (or) additional functional genomic features for training, which limits 67 

their use in species lacking published mutations and functional genomic data.  68 

Deep learning methods (e.g., deep convolutional neural networks) have shown 69 

outstanding performance in solving difficult predictive problems 17 and have been used to 70 

address problems in genomics 18-23. As the genomic sequence is the predominant factor 71 

for estimating mutation rates and many functional genomic features are correlated with 72 

the sequence, we reasoned that deep learning would be a promising approach to 73 

capturing various signals from genomic sequences to generate improved mutation rate 74 

profiles.  75 

With the above considerations, we developed a computational framework based on 76 

artificial neural networks (named MuRaL, short for Mutation Rate Learner) to generate 77 

single-nucleotide germline mutation rates across the genome. Comprehensive 78 

assessment using human variant data showed that predicted mutation rates by MuRaL 79 

were highly correlated with observed mutation rates at different scales. Compared to 80 

current state-of-the-art models, MuRaL required much less training data and fewer 81 

sequenced individuals but exhibited improved performance. We further demonstrated 82 

that MuRaL can be easily generalized to generate mutation rate profiles for other species. 83 

Results 84 

Design of the MuRaL model 85 
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The MuRaL model has two main neural network modules (Fig. 1; Supplementary 86 

Fig. 1; see Methods), one for learning signals from local genomic regions (e.g., 10bp on 87 

each side of the focal nucleotide), the other for learning signals from expanded regions 88 

(e.g., 1Kb on each side of the focal nucleotide). The main reason for having both 89 

modules is that local and distal sequences likely contribute to the mutability of a focal 90 

nucleotide in different ways, thus the signals in them might be better learned by different 91 

network architectures. 92 

 93 

 94 

Figure 1 Schematic of the MuRaL model. The model consists of a ‘local’ module and an ‘expanded’ 95 

module. In the ‘local’ module, the input sequence of the focal nucleotide (e.g., the bold ‘A’ in the figure) 96 

is split into overlapping k-mers which are then mapped into multi-dimensional vectors by the embedding 97 

layer. The multi-dimensional vectors are concatenated and passed to three fully-connected (FC) layers. 98 

The output of the ‘local’ module is a probability distribution generated by the softmax function over four 99 

predicted classes - non-mutated or one of three possible substitution mutations (e.g., A>C, A>G and 100 

A>T). In the ‘expanded’ module, the input sequence of an expanded region is one-hot encoded. The 101 

one-hot encoded matrix is considered as one-dimensional data with four channels and passed to a 102 

ResNet component. An additional FC layer and the softmax function following the ResNet component 103 

generate a probability distribution over four predicted classes, like that in the ‘local’ module. The 104 

probabilities of ‘local’ and ‘expanded’ modules are combined using equal weights (i.e., 0.5*Plocal + 105 

0.5*Pexpanded) to generate the combined probabilities. For training, the mutation status (see bottom left) 106 

of each input sequence is also required. More details of the layers are provided in Supplementary Fig. 107 

1. 108 

In the ‘local’ module, we used a k-mer embedding layer and multiple fully-connected 109 

(FC) layers to learn signals from the input local sequence surrounding the focal 110 
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nucleotide (Fig. 1; Supplementary Fig. 1). The outputs of the ‘local’ module were 111 

probabilities of four-class classification of input samples, which represent the mutational 112 

probabilities of a focal nucleotide to another three possible nucleotides and the 113 

probability of being non-mutated.  114 

In the ‘expanded’ module, the input sequence of the expanded region was first one-115 

hot encoded and then passed to a series of convolutional neural network (CNN) layers, 116 

which form a typical Residual Network (ResNet) architecture (Fig. 1; Supplementary Fig. 117 

1). The CNN layers were followed by a FC layer, which produced probabilities of four-118 

class classification of input samples. The meaning of probabilities of ‘expanded’ module 119 

is the same as that for the ‘local’ module. The probabilities of ‘local’ and ‘expanded’ 120 

modules were combined using equal weights to form a vector of combined probabilities.  121 

Unlike many previous deep learning models in genomics, our model aimed to obtain 122 

reliable class probabilities rather than accurate classification (i.e., assign a sample to a 123 

specific class). As probabilities derived from neural networks are usually not well 124 

calibrated, we further applied a Dirichlet calibration method 24 to obtain calibrated 125 

probabilities (Supplementary Fig. 1).  126 

For training, we used the cross-entropy loss function and the Adam optimizer 25 for 127 

learning model parameters and employed Ray Tune 26 to facilitate hyperparameter tuning 128 

(Supplementary Fig. 2). We trained separate models for A/T sites and C/G sites, 129 

respectively. Moreover, for genomes with exceptionally high mutation rates at CpG sites, 130 

we trained models for non-CpG C/G sites and CpG sites separately. The three were 131 

called, for short, AT model, non-CpG model and CpG model. We only considered 132 

mutation probabilities of single nucleotide substitutions in autosomes because other 133 

mutation types and sex chromosomes have specific features that need to be modeled in 134 

a different manner.  135 

Regarding the data for model training and evaluation, we generated multiple sets of 136 

rare variants in humans based on the large-scale gnomAD data 16 (Supplementary Fig. 137 

3; Supplementary Table 1; see Methods). We considered the previously reported issue 138 

27 that large sample sizes led to reduced proportions of observed CpG-related mutations 139 
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(Supplementary Fig. 3). Unless specified elsewhere, we used the ‘1in2000’ data (allele 140 

frequency being 1/2000 after downsampling the total allele count to 2000) for training 141 

human AT and non-CpG models and the ‘5in1000’ data (allele frequency being ≤5/1000 142 

after downsampling the total allele count to 1000) for training the CpG model 143 

(Supplementary Table 2). For detailed evaluation, we mainly used ‘10in20000’ rare 144 

variants (as observed mutations) for AT and non-CpG models, and ‘5in1000’ rare variants 145 

for CpG models because of their high mutation densities (Supplementary Table 1). For 146 

the human genome, we used 500,000 mutated and 10,000,000 non-mutated sites for 147 

training each MuRaL model (Supplementary Table 2), unless specified otherwise. 148 

During training, an independent validation dataset consisting of 50,000 mutated and 149 

1,000,000 non-mutated sites was used for evaluating performance and model selection 150 

(Supplementary Fig. 2). 151 

To evaluate the performance of different models, apart from cross-entropy losses in 152 

the validation data, we further considered two metrics - Pearson correlation coefficients 153 

between observed and predicted mutation rates for k-mers and binned genomic regions, 154 

respectively (see Methods for the detailed definition). We considered k-mer and regional 155 

mutation rates for evaluation because observed mutations were sparse across the 156 

genome and it was impossible to directly evaluate the accuracy of predicted mutation 157 

rates at single-nucleotide resolution. 158 

Two modules of MuRaL have distinct advantages in learning mutability signals 159 

Different network architectures and hyperparameters can affect the model 160 

performance. To demonstrate that both the ‘local’ and ‘expanded’ modules can improve 161 

model performance, we constructed ‘local-only’ and ‘expanded-only’ models (Fig. 2a) 162 

and compared them with full models. We set the ‘local’ region length to be 21bp (10bp on 163 

each side of the focal nucleotide; Fig. 2a) and the ‘expanded’ region length to be 2001bp 164 

(1Kb on each side). Models of three architectures were trained with the same 165 

hyperparameters and same data (see Methods). Predicted mutation rates of sites on 166 

human chromosome 20 (Chr20 for short) were used for evaluation. Since the training and 167 

validation sites covered only ~1% of the genome, we did not exclude training and 168 
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validation sites from calculating k-mer/regional mutation rates for model comparison. 169 

 170 

 171 

Figure 2 Two modules of MuRaL learn different mutability signals. (a) Illustration of ‘local-only’ and 172 

‘expanded-only’ models. Diagram elements have same meanings as that in Fig. 1. (b) Average 173 

validation losses for MuRaL models of three architectures (full, ‘local-only’ and ‘expanded-only’). 174 

Separate models were trained for A/T sites, non-CpG C/G sites and CpG sites, respectively. For each 175 

model, the lowest loss (mean cross-entropy loss) for each of ten trials was used to generate the 176 

boxplots. (c) 3-, 5-, 7- and 9-mer mutation rate correlations for different mutation types, based on 177 

predicted single-nucleotide mutation rates on human chromosome 20 (Chr20) by models of three 178 

different architectures. For each architecture in panel b, the best trial with lowest validation loss was 179 

used for prediction. The mutations for calculating observed mutation rates were ‘10in20000’ rare 180 

variants for AT and non-CpG models, and ‘5in1000’ rare variants for CpG models (see Methods). (d) 181 

Regional mutation rate correlations with bin sizes of 1Mb, 100Kb and 10Kb on Chr20 for different 182 

mutation types. The used observed mutations and meanings of bar colors were the same as that for 183 

panel c. (e) An example showing regional A>T mutation rate correlations at different scales on Chr20 for 184 
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three models, with grey shades indicating observed mutation rates and colored lines for predicted rates. 185 

The used models and observed mutations were the same as that for panel d. As predicted and 186 

observed regional mutation rates had different magnitudes, we applied the z-score normalization for 187 

visualization. Mutation rates at centromeric regions were not available. Pearson correlation coefficients 188 

and p-values for shown regions are provided at the upper right corners. P-values of all correlation tests 189 

performed for panels c and d were provided in Supplementary Data 1. 190 

For all three categories of mutation types (mutations related to A/T, non-CpG C/G or 191 

CpG sites), the full models always had lowest validation losses among three 192 

architectures (Fig. 2b; Supplementary Fig. 4). Although the ‘local-only’ model showed 193 

good correlations between observed and predicted k-mer mutation rates (3-, 5-, 7- and 9-194 

mers; Fig. 2c), it performed poorly in regional mutation rates of different bin sizes (Fig. 195 

2d). The ‘expanded-only’ model exhibited the opposite patterns. This indicated that ‘local-196 

only’ and ‘expanded-only’ models had distinct advantages in capturing signals from input 197 

sequences. Notably, the full MuRaL models integrated the advantages of ‘local-only’ and 198 

‘expanded-only’ models and performed best among the three. Larger bins generally had 199 

higher correlations of regional mutation rates than small bins, which was expected 200 

because small bins had more sampling errors. For example, the average A>C mutation 201 

rates of different bin sizes across the human Chr20 showed that, full and ‘expanded-only’ 202 

models but not ‘local-only’ can capture mutation rate variation at different scales (Fig. 2e).  203 

MuRaL can build effective models with relatively few variants from a moderate 204 

number of sequenced individuals 205 

As the number of training mutations required for running MuRaL was not large, we 206 

investigated the performance of MuRaL if using training mutations from rare variants of 207 

fewer sampled genomes (Fig. 3a). We tried training MuRaL models with ‘1in200’ rare 208 

variants (allele frequency being 1/200 after downsampling the total allele count to 200), 209 

using 500,000 rare variants as training mutations for each of the AT, non-CpG and CpG 210 

models. Because the ‘1in200’ data had a small number of rare variants and thus a low 211 

mutation density across the genome, we generally got low k-mer and regional 212 

correlations if using them for calculating observed mutation rates (Fig. 3b, c). However, 213 

with more dense rare variant datasets as observed mutations (‘10in20000’ and ‘5in1000’ 214 

data; Fig. 3b, c), the ‘1in200’ MuRaL models achieved much increased regional and k-215 
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mer mutation rate correlations, suggesting the high predictive performance of these 216 

models. This also implies that if only 100 human genomes are available, it is still possible 217 

to build reasonably good models by using the rare variants from the 100 individuals.  218 

  219 

Figure 3 Comparison of MuRaL models trained with different rare variant data. (a) Numbers of 220 

mutations of different types in different rare variant datasets. (b) 3-, 5-, 7- and 9-mer mutation rate 221 

correlations for different mutation types, based on predicted single-nucleotide mutation rates of Chr20 222 

by different trained models and different observed mutation data (indicated on top of the panel). (c) 223 

Regional mutation rate correlations with bin sizes of 1Mb, 100Kb and 10Kb on Chr20 for different 224 

mutation types and different observed mutation data. The color scheme is the same as that for panel b. 225 

P-values of all correlation tests performed for panels b and c were provided in Supplementary Data 1. 226 

Moreover, we showed that AT and non-CpG models trained with singleton variants 227 
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derived from the ‘1in200’ data had similar performance as those trained with the same 228 

amount of singleton variants from the ‘1in2000’ data (Fig. 3b, c). The mutation rate 229 

correlations of the CpG model trained with ‘1in200’ data were also close to that of the 230 

model trained with ‘5in1000’ data (Fig. 3b, c). These results further corroborated that 231 

MuRaL can train effective models with a relatively small number of rare variants from a 232 

moderate number of sequenced individuals. Since such requirements can be met by 233 

many sequenced species, this opens opportunities for generating fine-scale mutation rate 234 

profiles for many species. 235 

Other factors that affect the performance of MuRaL 236 

As sequencing read coverage can affect mutation calling and is usually accessible 237 

for mutation data, we further tried incorporating read coverage into the MuRaL model 238 

(Supplementary Fig. 5; see Methods). In high-mappability regions, MuRaL models with 239 

coverage slightly improved correlations between observed and predicted mutation rates 240 

for A/T sites, but not for C/G sites (Supplementary Fig. 6). In the poor-mappability 241 

regions such as those near the centromere and telomere of Chr20 (Supplementary Fig. 242 

7), the model with coverage showed improved correlations between predicted and 243 

observed mutation rates. As our work focused on high-mappability regions, MuRaL 244 

models without coverage were used for downstream analysis. 245 

We noticed that several chromosomes, such as Chr7, Chr9, Chr15 and Chr16, 246 

showed smaller regional correlations than other chromosomes (Supplementary Fig. 6), 247 

which could be due to their enrichment for recent segmental duplications 28. The poor 248 

regional correlations of Chr8 was ascribable to the under-estimated mutation rates in the 249 

region from 0Mb to 25Mb (Supplementary Fig. 8), a region reported to have a strikingly 250 

high mutation rate 29. The relatively small learning space (2Kb) of MuRaL models may not 251 

efficiently capture distinct region-specific mutability signals in these complicated regions. 252 

In theory, we can increase the lengths of ‘local’ and ‘expanded’ regions in MuRaL 253 

models to learn signals from a larger sequence space, yet at the cost of potential 254 

overfitting and more computational burden. By testing multiple values (see Methods), we 255 

found that for the ‘local’ region length, 5~10 bp on each side appeared to be a proper 256 
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range (Supplementary Fig. 9), as larger lengths didn’t confer benefits in reducing the 257 

validation loss. Larger lengths of the ‘expanded’ region generally led to better validation 258 

losses (Supplementary Fig. 9), but the improvement in the validation loss appeared to 259 

diminish when the length is larger than 1Kb (≥500bp on each side).  260 

Another critical factor affecting model performance is the training data size. We 261 

found that increasing training data sizes continuously reduced the validation loss and led 262 

to better k-mer/regional mutation rate correlations (Supplementary Fig. 10), but the 263 

computational burden increased substantially in turn. Posing strict requirements on 264 

training data would also limit the application to other species. To balance these, for the 265 

human genome, we kept using the data of models trained with 500,000 mutated and 266 

10,000,000 non-mutated sites for downstream analyses. 267 

MuRaL outperforms existing models 268 

We compared MuRaL with several recently published models for estimating mutation 269 

rates across the human genome (Fig. 4). Among those, the ‘Carlson 7-mer+features’ 270 

model, which combined 7-mer mutation rates derived from ~36 million singleton variants 271 

of 3560 individuals and 14 genomic features for modeling mutation rates, was reported to 272 

produce the most accurate map of germline mutation variation in humans 10. The 273 

‘Carlson 7-mer’ model in the same study used only the 7-mer mutation rates estimated 274 

from singleton variants for prediction 10. The ‘Aggarwala 7-mer’ model used 7-mer 275 

mutation rates estimated from intergenic SNVs (6~11 million SNVs for each of three 276 

populations) of 1000 Genomes Project for prediction 12. The ‘Karczewski 3-mer’ model 277 

used 3-mer mutation rates estimated with ~24 million rare variants from gnomAD for 278 

prediction and took account of DNA methylation levels when predicting mutation rates for 279 

CpG sites 16. Among compared models, MuRaL used the smallest number of training 280 

mutations (1.5 million in total) and did not rely on any functional genomic data. 281 

  282 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465689
http://creativecommons.org/licenses/by/4.0/


12 

 

 283 

Figure 4 Comparison of MuRaL and existing models. (a) 3-, 5-, 7- and 9-mer mutation rate 284 

correlations for different mutation types, based on predicted single-nucleotide mutation rates of the 285 

autosomal genome by different models. The mutations for calculating observed mutation rates were 286 

‘10in20000’ rare variants for AT and non-CpG models, and ‘5in1000’ rare variants for CpG models. (b) 287 

Regional mutation rate correlations with bin sizes of 1Mb, 100Kb and 10Kb on the autosomal genome 288 

for different mutation types. The color scheme was the same as that for panel a. (c) An example 289 

showing regional mutation rate correlations at different scales on Chr20 for three models (MuRaL, 290 

‘Carlson 7-mer+features’ and ‘Karczewski 3-mer’), with grey shades indicating observed mutation rates 291 

and colored lines for predicted rates. As predicted and observed regional mutation rates had different 292 

magnitudes, we applied z-score normalization for visualization. Mutation rates at centromeric regions 293 

were not available. Pearson correlation coefficients and p-values for shown regions are provided at the 294 

upper right corners. P-values of all correlation tests performed for panels a and b were provided in 295 

Supplementary Data 1. 296 

For genome-wide correlations between observed and predicted k-mer mutation rates, 297 

MuRaL, ‘Carlson 7-mer+features’ and ‘Carlson 7-mer’ models performed similarly and 298 

were much better than the other two models (Fig. 4a). Though for specific mutation types 299 

such as A>C and CpG>GpG, 5-mer and 7-mer mutation rate correlations of the Carlson 300 

models were slightly better than MuRaL, MuRaL always showed better performance in 301 

correlations of 9-mer mutation rates, probably because MuRaL considered sequence 302 

context beyond 7-mers. At the chromosome level, the patterns were similar to the 303 
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genome-wide patterns (Supplementary Figs 11-13). 304 

For correlations of regional mutation rates, MuRaL performed better than any other 305 

model for bin sizes of 1Mb, 100Kb and 10Kb at the genome-wide level (Fig. 4b). In 306 

general, the superiority of MuRaL was more pronounced when the bin sizes were smaller, 307 

suggesting that MuRaL predicted improved mutation rates at finer scales compared to 308 

previous models. (Fig. 4b, c; Supplementary Figs 11-13). It is worth noting that, if 309 

aggregating three mutation types associated with the same reference base (e.g., merging 310 

A>C, A>G and A>T mutations), at the 1Kb scale MuRaL models still achieved regional 311 

correlations of ~0.3 for most mutation types (Supplementary Fig. 14). At the 312 

chromosome level, MuRaL performed best for most chromosomes and most mutation 313 

types (Supplementary Figs 11-14). For chromosomes that MuRaL had relatively low 314 

regional correlations, other models showed similar trends in most cases (Supplementary 315 

Figs 11-14).  316 

Although previous models using only local sequence context (3-mers or 7-mers) 317 

generally had positive correlations for regional mutation rates, for specific mutation types 318 

(especially non-CpG C/G mutations), they had poor or even negative correlations (Fig. 319 

4b; Supplementary Figs 11-14). This indicates that a short adjacent sequence cannot 320 

fully capture the signal related to the mutability of a focal nucleotide. 321 

We also compared coefficients of variation (CVs) of observed regional mutation rates 322 

and those of regional mutation rates from different models. We found that CVs of regional 323 

mutation rates from all the models were much smaller than that of observed regional 324 

mutation rates at different scales (1Mb, 100Kb and 10Kb; Supplementary Fig. 15). 325 

Among all models, ‘Carlson 7-mer+features’ showed the highest CVs of regional 326 

mutation rates, followed by MuRaL. Although larger CVs of observed mutation rates 327 

could be partly due to sampling errors (especially for small bin sizes), the big differences 328 

between CVs of observed and predicted mutation rates suggested that predicted 329 

mutation rates have less dispersion than real ones, an aspect that needs to be improved 330 

in future. 331 

Training with DNMs and transfer learning 332 
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The number of published DNMs in humans is much smaller than that of rare variants. 333 

However, because MuRaL can be applied with relatively few training mutations, we tried 334 

training AT and nonCpG MuRaL models using 150,000 DNMs and the CpG model using 335 

50,000 DNMs (Supplementary Table 3; see Methods).  336 

 337 

Figure 5 Training DNM models and transfer learning. (a) Average validation losses on the validation 338 

DNMs for three types of models: DNM ab initio models, DNM transfer learning models, and rare-variant 339 

models. For each model, the lowest loss (mean cross-entropy loss) for each of ten trials was used to 340 

generate the boxplots. (b) 3-, 5-, and 7-mer mutation rate correlations for different mutation types, based 341 

on predicted single-nucleotide mutation rates on human Chr1. Bar colors depict three types of models 342 

like that in panel a. For each model in panel a, the best trial with the lowest validation loss was used for 343 

predicting mutation rates on Chr1. The mutations for calculating observed mutation rates were human 344 

DNMs. (c) Regional mutation rate correlations with a 1Mb bin size on Chr1. The predicted mutation 345 

rates of multiple mutation types (e.g. A>C/A>G/A>T) were aggregated for calculating regional 346 

correlations, as some mutation types had very few observed DNMs in the data. Smaller bin sizes were 347 

not assessed due to few DNMs. Bar colors depict three types of models like that in panel a. P-values of 348 

all correlation tests performed for panels b and c were provided in Supplementary Data 1. 349 

Transfer learning is widely used in deep learning for scenarios in which the 350 
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prediction tasks are similar but less training data is available. To study the effectiveness 351 

of transfer learning in the MuRaL framework, we trained transfer learning models with the 352 

same DNMs, using the pre-trained weights from aforementioned rare-variant models for 353 

model initialization. With independent validation DNMs (see Methods), we found that 354 

models with transfer learning achieved significantly lower validation losses than those 355 

without transfer learning (ab initio DNM models; Fig. 5a). Transfer learning models also 356 

showed better k-mer and regional mutation rate correlations which were calculated with 357 

DNMs as observed mutations (Fig. 5b, c).  358 

Furthermore, we computed validation losses of the validation DNMs using the rare-359 

variant models described in previous sections. Compared to the ab initio DNM models, 360 

the rare-variant models achieved significantly lower validation losses for all three 361 

categories of mutations (Fig. 5a). When looking at k-mer and regional mutation rate 362 

correlations, rare-variant models generally performed better than DNM ab initio models, 363 

and similarly to the DNM transfer learning models (Fig. 5b, c). This indicates that if 364 

DNMs are unavailable, we can reasonably use mutation rates predicted by rare-variant 365 

models to approximate de novo mutation rates.  366 

When DNMs are available but limited, it might be beneficial to train transfer learning 367 

models with DNMs using pre-trained weights of rare-variant models. However, we note 368 

that DNMs collected from different studies could be called in different ways, which could 369 

introduce biases when constructing training data and needs to be considered for transfer 370 

learning. For example, we found that the collected DNMs were substantially depleted in 371 

low-complexity regions and segmental duplications (Supplementary Fig. 16), probably 372 

due to conservative variant calling procedures. 373 

Generating mutation rates profile for other species 374 

We further applied MuRaL to estimate mutation rates for three other species. For 375 

species that are evolutionarily close to humans, their genomes have high sequence 376 

similarities with the human genome, and many mutational processes are likely shared 377 

between them. Hence transfer learning can be leveraged for those species. The rhesus 378 

macaque (Macaca mulatta) is a close relative of humans and a widely used primate 379 
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model organism. We trained ab initio MuRaL models as well as transfer learning models 380 

for M. mulatta using the rare variants from a dataset of 853 individuals 30. The training 381 

data size of transfer learning models was 30% of that for ab initio models 382 

(Supplementary Table 4; see Methods). We found that transfer learning models showed 383 

similar performance to that of ab initio models (Fig. 6a, b), though transfer learning 384 

models used less training data and computation time (Supplementary Fig. 17).  385 

 386 

 387 

Figure 6 Application of MuRaL to other species. (a) 3-, 5-, 7- and 9-mer mutation rate correlations for 388 

different mutation types, based on predicted single-nucleotide mutation rates on rheMac10 Chr20 by two 389 

kinds of models for M. mulatta: ab initio models and transfer learning models. Rare variants of M. 390 

mulatta were used for calculating observed mutation rates. Separate models were trained for A/T sites, 391 

non-CpG C/G sites and CpG sites, respectively. (b) Regional mutation rate correlations with bin sizes of 392 

1Mb, 100Kb and 10Kb on rheMac10 Chr20 for different mutation types. (c) 3-, 5-, and 7-mer mutation 393 

rate correlations for different mutation types, based on predicted single-nucleotide mutation rates for the 394 

A. thaliana genome. Rare variants of A. thaliana were used for calculating observed mutation rates. 395 

Separate models were trained for A/T sites, non-CpG C/G sites and CpG sites, respectively. (d) 396 

Regional mutation rate correlations with bin sizes of 500Kb, 100Kb and 10Kb for the A. thaliana genome. 397 

(e) An example showing regional mutation rate correlations at different scales on Chr3 for A. thaliana, 398 

with grey shades indicating observed mutation rates and colored lines for predicted rates. As predicted 399 

and observed regional mutation rates had different magnitudes, we applied z-score normalization for 400 
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visualization. Pearson correlation coefficients and p-values for shown regions are provided at the upper 401 

right corners. P-values of all correlation tests performed for panels a, b, c and d were provided in 402 

Supplementary Data 1. 403 

We also trained ab initio MuRaL models for two model organisms that are 404 

evolutionarily distant to humans - Drosophila melanogaster and Arabidopsis thaliana. As 405 

these genomes (<200Mb) are much smaller than the human genome, we used only 406 

100,000 mutations for training each of the models (Supplementary Tables 5-6; see 407 

Methods). Despite a relatively small amount of training data, predicted results of the 408 

trained models suggested that MuRaL worked well in these species in terms of k-mer and 409 

regional mutation rate correlations (Fig. 6c-e; Supplementary Fig. 18). For example, for 410 

A. thaliana, at the scale of 10Kb bins, the correlations of regional mutation rates 411 

were >0.5 for all mutation types (Fig. 6d, e), indicating the high effectiveness of our 412 

method in this species. For D. melanogaster, we used singleton variants from only 205 413 

inbred lines for training and still obtained promising results (Supplementary Fig. 18), 414 

further demonstrating that MuRaL can be applied to the scenarios with a relatively small 415 

number of sequenced genomes. 416 

Discussion 417 

Estimation of sequence mutation rates in the genome can be traced back to the very 418 

early period of molecular evolution research 31. Being hindered by the lack of genomic 419 

data, early work only obtained rough estimates of mutation rates for specific genes or 420 

genomes. The advent of high-throughput sequencing led to the rapid accumulation of 421 

mutation data and enabled more accurate and finer-grained estimation of mutation rates. 422 

While several methods have been proposed to infer fine-scale mutation rates across a 423 

genome, there was much room for improvement.  424 

In this work, we developed the MuRaL framework to address the challenge in 425 

estimating fine-scale mutation rates based on sequences. Compared with the previously 426 

best-performed model by Carlson et al. 10, MuRaL learned signals from a much larger 427 

sequence space and allowed for more complicated nonlinear modeling. In addition, 428 

MuRaL required many fewer training mutations and did not rely on functional genomic 429 

data. The human MuRaL models used for most analyses were trained with only 1.5 430 
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million rare variants in total, less than 5% of the number of rare variants used for Carlson 431 

et al. models (~36 million singletons). Our successful application of MuRaL to three 432 

representative species for primates, insects and plants demonstrated its high applicability. 433 

We envision that MuRaL will help generate mutation rate profiles for many sequenced 434 

species. 435 

Several aspects can be investigated or improved in the near future. A few genomic 436 

regions, such as those overlapping recent segmental duplications and the highly mutated 437 

regions on human chromosome 8, showed relatively poor mutation rate estimates. To 438 

address this, using longer input sequences and (or) function genomic data for training 439 

may offer more signals, at the expense of more computational load. Given the rapid 440 

development of deep learning hardware, we believe computational load will become a 441 

minor obstacle soon. The MuRaL framework can be extended to estimate mutation rates 442 

for sex chromosomes and organelle genomes, though more specific assessments are 443 

required. As there are already many sequenced genomes for different human populations, 444 

it should not be difficult to generate population-specific mutation rate profiles with MuRaL. 445 

Similar computational methods could also be developed to predict fine-scale mutation 446 

rates for other mutations such as small insertions and deletions. 447 

To our knowledge, this is the first time that deep learning is used to estimate fine-448 

scale mutation rates. Unlike many deep learning models in genomics designed for typical 449 

classification or regression problems, our method aimed to predict accurate class 450 

probabilities. This work provided an exemplary case for addressing similar problems in 451 

genomics. How to obtain reliable class probabilities in deep learning models is still a hot 452 

research topic in computer science 32. The smaller CVs of predicted regional mutation 453 

rates than that of observed rates might be partly due to the large class imbalance in the 454 

training data, which often causes issues in deep learning models. Future progress on 455 

these topics in computer science may help improve our model. 456 

The generated mutation rates and software are relevant for many studies. For 457 

example, our predicted mutation rates can help improve previous models of calculating 458 

mutation intolerance scores 12,16,33 for prioritizing disease candidate genes or variants. 459 
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They can be incorporated into existing phylogenetic models to perform more accurate 460 

phylogenetic analysis. They are also informative for detecting regions undergoing 461 

selection or introgression in recent evolution. Comparison of mutation rate profiles 462 

between species or populations can advance our understanding of mutation rate 463 

evolution as well as underlying mutational mechanisms. Since the MuRaL framework has 464 

been implemented in an open source package, researchers can train their own models or 465 

predict mutation rates for custom sequences using pre-trained models. Although MuRaL 466 

is designed for germline mutation rates, it might be adapted for estimating fine-scale 467 

somatic mutation rates if mutagenic factors are relatively constant and a considerable 468 

number of mutations are available. 469 

In summary, we believe this work represents an important step towards predicting 470 

accurate single-nucleotide mutation rates across a genome, facilitating and stimulating 471 

future research in related fields. 472 

  473 
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Methods 474 

Design of the MuRaL model 475 

Previous studies revealed that adjacent nucleotides of a specific site predominantly 476 

affect its mutation rate and properties of a larger sequence context (e.g., GC content, 477 

replication timing) are also associated with mutation rate variation. As local and distal 478 

sequences likely affect mutation rates in different ways, we constructed two different 479 

neural network modules to learn the signals from the two aspects. One module (termed 480 

‘local’ module) was designed for learning signals from a local sequence of the focal 481 

nucleotide, the other (termed ‘expanded’ module) for learning signals from an expanded 482 

sequence (Supplementary Fig. 1).  483 

The ‘local’ module consists of an embedding layer and three fully-connected (FC) 484 

layers to learn signals from the sequence. We used k-mer embedding because it was 485 

reported to offer benefits for deep learning models in genomics 34. The input local 486 

sequence was firstly split into overlapping k-mers and the embedding layer maps these 487 

k-mers into multi-dimensional vectors. The multi-dimensional vectors from an input 488 

sequence were then concatenated to form the input for subsequent two hidden layers 489 

and one output layers. For each FC layer, ReLU (Rectified Linear Unit) activation function 490 

was used with the output of the FC layer, followed by batch normalization and dropout 491 

layers which would facilitate learning and avoid overfitting. The outputs of the ‘local’ 492 

module were probabilities of four-class classification of input samples, representing the 493 

probabilities of the focal nucleotide mutated to another three possible nucleotides or 494 

being non-mutated.  495 

In the ‘expanded’ module, the sequence of an expanded region was first converted 496 

into four-dimensional vectors using one-hot encoding. Regarding one-hot encoding, each 497 

of the four bases (‘A’, ‘C’, ‘G’ and ‘T’) was converted to a four-element vector, in which all 498 

the elements were 0 except for one (e.g., ‘A’ converted to the vector [1, 0, 0, 0], ‘C’ 499 

converted to [0, 1, 0, 0]). The resulting matrix of the sequence was considered as one-500 

dimensional data with four channels and then passed to a series of one-dimensional 501 

convolutional neural network (CNN) layers. The CNN layers were designed following a 502 
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typical Residual Network (ResNet) architecture. ResNet was previously demonstrated to 503 

have outstanding performance in deep neural networks 35. The CNN layers were followed 504 

by an FC output layer, which produced probabilities of four-class classification of input 505 

samples. The probabilities of the ‘expanded’ module had the same meanings as that for 506 

the ‘local’ module. 507 

Next, probabilities of ‘local’ and ‘expanded’ modules were combined using equal 508 

weights (i.e., 0.5*Plocal + 0.5*Pexpanded) to form a vector of combined probabilities. We also 509 

tried using an additional FC layer to combine the outputs of two modules, but such 510 

models were not well trained.  511 

The key hyperparameters in the MuRaL model are the length of local sequences, the 512 

length of expanded sequences, the length of k-mers in the embedding layer, sizes of two 513 

hidden FC layers in the ‘local’ module, the kernel size and the number of channels for 514 

convolutional networks in the ‘expanded’ module (see Supplementary Fig. 1). 515 

Model implementation 516 

We implemented the MuRaL model with PyTorch framework 36, along with APIs from 517 

pybedtools 37 and Janggu 38. For model training, we used the cross-entropy loss function 518 

and the Adam optimizer 25 for learning model parameters, and employed Ray Tune 26 to 519 

facilitate hyperparameter tuning (Supplementary Fig. 2). The scheduler 520 

‘ASHAScheduler’ in Ray Tune was used to coordinate trials and execute early stopping 521 

before reaching the specified maximum number of training epochs (e.g., 10), which can 522 

substantially reduce the training time. The mean cross-entropy loss of the validation sites 523 

(i.e., validation loss) was calculated at the end of each training epoch. We further set a 524 

stopping rule to terminate a trial if three consecutive epochs did not obtain a validation 525 

loss smaller than the current minimum validation loss. The ‘learning rate’ and ‘weight 526 

decay’ of Adam optimizer were two hyperparameters that could affect the learning 527 

performance significantly. Instead of using fixed values, we set specific intervals for 528 

values of ‘learning rate’ and ‘weight decay’ and used Ray Tune to run trials with different 529 

sampled values for the two hyperparameters. To have better convergence, we used the 530 

learning rate scheduler ‘lr_scheduler.StepLR’ in PyTorch to decay the learning rate after 531 
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each epoch by a specified factor. 532 

Human mutation data for model training and evaluation 533 

Rare variants from gnomAD 534 

Rare variants generally arose recently in the genome and were less affected by 535 

natural selection and nonadaptive evolutionary processes than common variants. 536 

Previous studies 9-11 have established that rare variants can be used for estimating 537 

mutation rates. For model training and evaluation, we took advantage of the gnomAD 538 

database (v2.1.1) which contained genetic variation of 15,708 whole genomes 16. Only 539 

single nucleotide substitutions in autosomes were considered, as other mutation types 540 

and sex chromosomes have specific features that need to be modeled separately. We 541 

extracted rare variants from gnomAD to approximate DNMs.  542 

When the sample size is as large as that of gnomAD, some mutation types (e.g., 543 

CpG>TpG) with high mutation rates could be close to saturation, and the probability of 544 

multiple independent mutations (recurrence) at a same position increases. Therefore, we 545 

downsampled the gnomAD data into a specified total allele count using a hypergeometric 546 

distribution (see the probability density function below), and generated the random 547 

alternative allele counts from the hypergeometric distribution: 548 

 

𝑃(𝐴𝐶𝑑𝑜𝑤𝑛) =
( 𝐴𝐶
𝐴𝐶𝑑𝑜𝑤𝑛

)( 𝐴𝑁−𝐴𝐶
𝐴𝑁𝑑𝑜𝑤𝑛−𝐴𝐶𝑑𝑜𝑤𝑛

)

( 𝐴𝑁
𝐴𝑁𝑑𝑜𝑤𝑛

)
 (1)  

where AN and AC are the total allele count and the alternative allele count in original 549 

data, respectively, ANdown and ACdown are the total allele count and the alternative allele 550 

count after downsampling, respectively. For each polymorphic position, given values of 551 

AN, AC and ANdown, we generated a random number for ACdown using the hypergeometric 552 

distribution of equation (1). We then extracted the variants with a specific alternative 553 

allele frequency (i.e., ACdown/ ANdown) in the downsampled data to form the rare variant 554 

datasets for subsequent analyses.  555 

First, we downsampled the gnomAD data to total allele counts of 200, 2000 and 556 

7000 (corresponding to 100, 1000 and 3500 diploid genomes) respectively and extracted 557 

the singleton variants (corresponding to AFs of 1/200, 1/2000 and 1/7000) in the three 558 
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downsampled datasets. The three rare variant datasets were named ‘1in200’, ‘1in2000’ 559 

and ‘1in7000’, respectively. We considered the sample size of 7000 because Carlson et 560 

al. 10 recently used singleton variants from a population of ~3500 individuals for modeling 561 

mutation rates. In addition, Karczewski et al. 16 used variants with ≤5 copies in a 562 

downsampled set of 1000 haploid genomes for mutation rate estimation, so we also did 563 

downsampling for the sample size of 1000 and extracted the variants of ACdown ≤5 564 

(termed ‘5in1000’). To increase the mutation density for smaller-scale evaluation, we 565 

further did downsampling for the sample size of 20000 and extracted the variants of 566 

ACdown ≤10 (termed ‘10in20000’). For SNVs with two or more different alternative alleles 567 

in the original gnomAD data, we did hypergeometric sampling for each alternative allele. 568 

In the downsampled dataset, if more than one alternative allele satisfied the rare variant 569 

criterion for a specific position, only one alternative allele was randomly selected for 570 

downstream analyses (i.e., not allowing multiple rare variants at one position). The 571 

numbers of rare variants in different datasets were summarized in Supplementary Table 572 

1. 573 

De novo mutations 574 

We collected DNMs from the gene4denovo database 7 for analysis. Because some 575 

data sources in gene4denovo database contributed only a small number of DNMs and 576 

different studies used distinct methods for variant calling, we used only the DNMs from 577 

three large-scale studies39-41 for our analysis, which consisted of 445,467 unique de novo 578 

SNVs. 579 

To check whether the extracted rare variants can well represent properties of DNMs, 580 

we compared mutation spectra of rare variants and DNMs. We counted the occurrences 581 

of 1-mer and 3-mer mutation types for each dataset and calculated the relative proportion 582 

of each mutation type in the specific dataset. We found that mutation spectra of rare 583 

variants were highly similar with that of DNMs (Supplementary Fig. 3). However, when 584 

the sample size increased, the proportion difference in CpG>TpG mutation subtypes 585 

between rare variants and DNMs became larger (Supplementary Fig. 3). This was not 586 

surprising as mutation rates of CpG>TpG mutation subtypes were highest among all. 587 
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Because genomic regions with too low or too high read coverage could have a high 588 

probability of false positives/negatives for mutation calls, we utilized the coverage 589 

information from gnomAD to exclude the positions with too low or too high read coverage. 590 

The genome-wide mean coverage per individual in the gnomAD data was 30.5, and 591 

genomic positions within the coverage range of from 15 to 45 (2,626,258,019 bp in 592 

autosome retained and considered as high-mappability sites) were used for downstream 593 

analyses.  594 

Training and validation data for human MuRaL models 595 

For the human data, we trained separate models for A/T sites, non-CpG C/G sites 596 

and CpG C/G sites, respectively. For training each MuRaL model, we randomly chose 597 

500,000 mutations and 10,000,000 non-mutated sites. During training, we used an 598 

independent validation dataset consisting of 50,000 mutations and 1,000,000 non-599 

mutated sites for evaluating training performance. The configuration of key 600 

hyperparameters for human MuRaL models was provided in Supplementary Table 7. As 601 

shown above, rare variants derived from a large sample of population could lead to 602 

depletion of mutation types of high mutability. On the other hand, rare variants derived 603 

from a small sample were relatively ancient and more affected by selection or other 604 

confounding processes. To balance the two constraints, we used the ‘1in2000’ data for 605 

training models of A/T sites and non-CpG C/G sites in human. Because ‘1in2000’ data 606 

showed more depletion of CpG>TpG mutations than ‘1in200’ and ‘5in1000’ data, it was 607 

not the ideal data for training the model of CpG sites. Although both ‘1in200’ and ‘5in1000’ 608 

datasets were rare variants of ACdown/ANdown≤0.005, we chose ‘5in1000’ data for training 609 

the CpG model because of its larger number of mutations. For detailed model evaluation, 610 

we mainly used ‘10in20000’ rare variants for A/T and non-CpG models, and ‘5in1000’ 611 

rare variants for CpG models due to their high mutation densities (Supplementary Table 612 

1). 613 

Calibrating predicted probabilities  614 

The main aim of our work is to obtain reliable class probabilities rather than accurate 615 
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classification (e.g., predicting ones or zeros). Because probabilities from neural networks 616 

are usually not well calibrated, after training a MuRaL model, we applied a Dirichlet 617 

calibration method 24 on the output combined probabilities to obtain better calibrated 618 

probabilities. Parameters of a Dirichlet calibrator were estimated by fitting the calibrator to 619 

the predicted probabilities of the validation data. Metrics such as Expected Calibration 620 

Error (ECE), classwise-ECE and Brier score 24 were used for evaluating the performance 621 

of Dirichlet calibration. By comparing predicted mutation rates of validation data before 622 

and after calibration, we found that Dirichlet calibration indeed resulted in better ECE, 623 

classwise-ECE and Brier scores (Supplementary Fig. 4), although the improvements 624 

appeared to be relatively small. Small values of ECE and classwise-ECE scores before 625 

calibration (Supplementary Fig. 4) suggested that the original predicted mutation 626 

probabilities were already quite well calibrated in terms of such metrics. 627 

The absolute values of above combined probabilities were not mutation rates per bp 628 

per generation. To obtain a mutation rate per bp per generation for each nucleotide, one 629 

can further scale the calibrated probabilities based on previously reported genome-wide 630 

DNM mutation rate per bp per generation. We note that whether to do or not do this 631 

scaling does not affect the calculation of k-mer and regional mutation rate correlations in 632 

this study. 633 

Extending MuRaL with read coverage 634 

Read coverage (or read depth) of alignments can affect variant calling and thus 635 

observed mutation densities. We tried extending the MuRaL model to incorporate the 636 

coverage information (Supplementary Fig. 5). We used the pre-compiled coverage track 637 

from gnomAD (v2.1.1). In the ‘local’ module, we calculated mean coverage of the local 638 

sequence of the focal nucleotide, and added it as an additional element to the 639 

concatenated vector of embeddings of the local sequence. In the ‘expanded’ module, we 640 

extracted a coverage vector for the nucleotides of the expanded sequence, and merged it 641 

with the one-hot encoded matrix of the expanded sequence to form a five-channel input 642 

for subsequent convolutional networks. Such a design can also easily incorporate other 643 

genome-wide tracks (e.g., replication timing, recombination rate, etc.) to extend the 644 
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MuRaL model. 645 

Correlation analysis of k-mer mutation rates 646 

We classified mutations into six mutation types according to the reference and 647 

alternative allele: A>C, A>G, A>T, C>A, C>G, and C>T. Mutations with reference 648 

nucleotides T and G were reverse-complemented to that with A and C, respectively. For 649 

each mutation type, the k-mer subtypes were defined by the upstream and downstream 650 

bases flanking the variant site. For example, there are four possible bases at both the 651 

upstream -1 position and downstream +1 position, respectively, so there are 6 × 42 = 96 652 

3-mer subtypes, 16 3-mer subtypes for each basic mutation type. Similarly, for 5-mers 653 

and 7-mers, there are 6 × 44 = 1,536 and 6 × 46 = 24,576 subtypes respectively. In some 654 

analyses, we also considered 9-mers (6 × 48 = 393,216 9-mer subtypes) if the number of 655 

mutations was large enough. For example, for the mutation type A>G, G[A>G]C and 656 

AG[A>G]CT are a 3-mer subtype and 5-mer mutation subtype associated with it 657 

respectively. 658 

For the ith k-mer subtype, we calculated the observed mutated rate 𝐾𝑖
𝑜𝑏𝑠 and the 659 

predicted mutation rate 𝐾𝑖
𝑝𝑟𝑒𝑑

 in the considered regions: 660 

 𝐾𝑖
𝑜𝑏𝑠 =

𝑚𝑖

𝑁𝑖
 

(2)  

 𝐾𝑖
𝑝𝑟𝑒𝑑

=
∑ 𝑝𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
 

(3)  

where mi is the observed number of mutated sites belonging to that k-mer subtype, 𝑁𝑖 is 661 

the total number of sites harboring the reference k-mer motif (e.g., all AAT 3-mers for the 662 

subtype A[A>C]T), and 𝑝𝑗 is the predicted mutation probability of the jth valid site. 663 

Based on the calculated observed and predicted k-mer mutation rates, we can 664 

calculate the Pearson correlation coefficient for any set of k-mer subtypes (one subtype 665 

as a datapoint). For example, we can calculate a correlation coefficient for 16 3-mer 666 

subtypes associated with the mutation type A>C in a specific chromosome. Note that for 667 

CpG sites, there are only four 3-mer subtypes for a basic mutation type as the +1 position 668 

is fixed to be ‘G’. The Dirichlet calibrated mutation rates were used for calculating k-mer 669 
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mutation rates unless otherwise specified.  670 

Correlation analysis of regional mutation rates 671 

Since it was impossible to evaluate accuracy of predicted mutation rates on the 672 

single-nucleotide level, we compared average mutation rates in binned regions and 673 

calculated correlations between observed and predicted regional mutation rates to 674 

evaluate the performance of predicting models.  675 

More specifically, for a specific mutation type, we calculated the observed and 676 

predicted mutation rates as below.  677 

First, we divided a specified region (e.g., a chromosome) into non-overlapping bins 678 

with a given bin size (e.g. 10kb, 100kb, etc.). For the ith binned region, we calculated the 679 

observed mutated rate 𝑅𝑖
𝑜𝑏𝑠 and the predicted mutation rate 𝑅𝑖

𝑝𝑟𝑒𝑑
, 680 

 𝑅𝑖
𝑜𝑏𝑠 =

𝑚𝑖

𝑁𝑖
 

(4)  

 𝑅𝑖
𝑝𝑟𝑒𝑑

=
∑ 𝑝𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
 (5)  

where 𝑚𝑖 is the number of observed mutations of the specific mutation type (e.g. A>C), 681 

𝑁𝑖 is the total number of sites with same base as the reference base of that mutation type 682 

(e.g. all A/T sites for the mutation type A>C), and 𝑝𝑗 is the predicted mutation probability 683 

of the jth valid site in the binned region. 684 

Based on the calculated observed and predicted regional mutation rates, we can 685 

calculate the Pearson correlation coefficient for any set of binned regions (one bin as a 686 

datapoint). For example, we can calculate the correlation coefficient for regional mutation 687 

rates of the mutation type A>C in all 100kb bins in a chromosome. As there are gaps and 688 

low-mappability regions in the genome, to avoid using regions with few valid sites for 689 

correlation analysis, we only used the bins that fit the criterion 𝑁 > 20% ∗ 𝑁𝑚𝑒𝑑𝑖𝑎𝑛, where 690 

𝑁𝑚𝑒𝑑𝑖𝑎𝑛  is the median of numbers of valid sites in all bins for a chromosome. The 691 

Dirichlet calibrated mutation rates were used for calculating regional mutation rates 692 

unless otherwise specified. 693 

Comparison of models with different network architectures 694 

To see how the ‘local’ and ‘expanded’ modules contribute to the model, we 695 
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considered three models – the ‘local-only’ model containing only the ‘local’ module, the 696 

‘expanded-only’ model containing only the ‘expanded’ module and the full model with 697 

both modules. We trained the models with a training dataset of 500,000 mutated and 698 

10,000,000 non-mutated sites randomly selected from autosomes. For each network 699 

architecture, ten trials were trained with Ray Tune. A validation dataset consisting of 700 

50,000 mutated and 1,000,000 non-mutated sites was used to compare performance of 701 

three architectures based on the validation losses of trained trials. We also used the best 702 

trained trial with lowest validation loss for each of three architectures to predict mutation 703 

probabilities on the whole chromosome of human Chr20, results of which were then 704 

passed to compute k-mer/regional mutation rates for model comparison.  705 

Comparison of models with different hyperparameters 706 

Due to the high demand for GPU memory and computing, it is impossible to test the 707 

behaviors of all model hyperparameters comprehensively. At the beginning, we set a 708 

relatively large search space for hyperparameters and used Ray Tune to run dozens of 709 

trials to get more narrowed ranges. We further detailly investigated the impact of two 710 

input-related hyperparameters – ‘local radius’ (length of the local sequence on each side 711 

of the focal nucleotide) and ‘distal radius’ (length of the expanded sequence on each side 712 

of the focal nucleotide). For each hyperparameter, we set five different values for it and 713 

fixed the setting of other hyperparameters. We used a training dataset consisting of 714 

100,000 mutated and 2,000,000 non-mutated A/T sites and a validation dataset 715 

consisting of 50,000 mutated and 1,000,000 non-mutated A/T sites. For each setting of 716 

hyperparameters, we ran ten trials and used the model with lowest validation loss of each 717 

trial for comparison (see Supplementary Fig. 9). 718 

We also investigated the impact of different training data sizes. We tried four 719 

different numbers of A/T sites as training data: 1) 50,000 mutated+1,000,000 non-720 

mutated; 2) 100,000 mutated+2,000,000 non-mutated; 3) 200,000 mutated+4,000,000 721 

non-mutated; and 4) 500,000 mutated+10,000,000 non-mutated. For model evaluation, 722 

we used a validation dataset consisting of 50,000 mutated and 1,000,000 non-mutated 723 

A/T sites to calculate validation losses for comparison.  724 
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Comparison of MuRaL models with previously published models  725 

We considered the following four published models in our comparative analysis:  726 

1) ‘Aggarwala 7-mer’ model 12: this model estimated 7-mer mutation rates based 727 

on intergenic polymorphic sites from 1000 Genomes Project (~11 million variants in the 728 

African populations, ~7 million variants in the European populations, and ~6 million 729 

variants in the East Asian populations.). The original study provided 7-mer mutation rates 730 

for three populations (‘Supplementary Table 7’). We used the averaged mutilation rate 731 

among three populations for each 7-mer to generate mutation rates of all bases in human 732 

autosomes. 733 

2) ‘Carlson 7-mer’ model 10: this model used 7-mer mutation rates estimated from 734 

36 million singleton variants from 3560 individuals. Note that some 7-mers didn’t have 735 

any observed mutations and thus had mutation rates of zero, which was a limitation of 736 

this method. We downloaded the 7-mer mutation rates from ‘Supplementary Data1’ of the 737 

study and generated mutation rates of all bases in human autosomes. 738 

3) ‘Carlson 7-mer+features’ model 10: this model used 7-mer mutation rates of the 739 

‘Carlson 7-mer’ model and 14 genomic features for modeling. We noticed that some sites 740 

had zero mutation rates for specific mutation types. In addition, this model did not 741 

generate predicted rates for sites within 5 Mb of the start/end of a chromosome because 742 

of lacking corresponding recombination rate data. We downloaded the whole genome 743 

mutation rate profile of this model from the original study 744 

(http://mutation.sph.umich.edu/hg19/) for analysis. 745 

4) ‘Karczewski 3-mer’ model 16: this model estimated 3-mer mutation rates based 746 

on rare variants in gnomAD database. For CpG sites, this model divided the methylation 747 

levels into three classes (high, medium and low) and applied separate mutation rates for 748 

CpG sites with different methylation levels. We downloaded the 3-mer mutation rates 749 

from ‘Supplementary Dataset 10’ of the study and generated mutation rates of all bases 750 

in human autosomes. We used the same methylation data as that described in the study 751 

for predicting mutation rates at CpG sites. 752 

When performing comparative analyses between our models and other existing 753 
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models, we excluded the genomic sites without predictive values in at least one model. In 754 

total, 2,390,435,721 bases of the autosome genome were used in comparison. Note that 755 

among the four existing models, the ‘Carlson 7-mer+features’ model had strongest data 756 

requirements for prediction and its mutation rate profile contains the smallest number of 757 

predicted sites. We calculated k-mer and regional mutation rate correlations for the four 758 

models using the same method as that for MuRaL models.  759 

The MuRaL models used in comparative analysis were those trained with 500,000 760 

mutated and 10,000,000 non-mutated sites. The numbers of trainable parameters for AT, 761 

non-CpG and CpG models were 180,257, 175,557, and 169,682, respectively. The total 762 

number of trainable parameters (180,257 + 175,557 + 169,682 = 525,496) was close to 763 

that of the ‘Carlson 7-mer+features’ model (392,128) 10. 764 

Transfer learning 765 

Transfer learning is widely used in deep learning for scenarios in which the 766 

prediction tasks are similar. After training MuRaL models with rare variants from gnomAD, 767 

we took advantage of published human DNMs to perform transfer learning. For each of 768 

the AT and non-CpG models, we compiled a training dataset consisting of 150,000 DNMs 769 

and 3,000,000 non-mutated sites and an independent validation dataset consisting of 770 

20,000 DNMs and 400,000 non-mutated sites. For the CpG models, we compiled a 771 

training dataset consisting of 50,000 DNMs and 1,000,000 non-mutated sites and a 772 

validation dataset consisting of 20,000 DNMs and 400,000 non-mutated sites. We tried 773 

two transfer learning strategies: 1) using all pre-trained weights for model initialization 774 

and re-training all weights and 2) use all pre-trained weights for model initialization but 775 

only re-training the weights of last FC layers of two modules. We chose the results of the 776 

first strategy for later comparative analysis, as the second strategy led to poor 777 

performance.  We also trained ab initio models using the same DNM training datasets, 778 

with the same hyperparameter setting as that for the rare-variant models. Because we 779 

found that the collected DNMs were highly depleted in low-complexity regions and 780 

segmental duplications, we excluded DNMs located in these regions from training and 781 

evaluating models.  782 
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Apply MuRaL to other species 783 

We used MuRaL to train mutation rate models for three other species: Macaca 784 

mulatta, Drosophila melanogaster and Arabidopsis thaliana. M. mulatta is a widely used 785 

primate model organism with similar genome size as that of the human genome. D. 786 

melanogaster and A. thaliana are widely used model organisms but with much smaller 787 

genomes (169 Mb and 119 Mb, respectively). 788 

The variants of M. mulatta were from a recent study 30 and downloaded from 789 

https://hgdownload.soe.ucsc.edu/gbdb/rheMac10/rhesusSNVs/. This dataset included 790 

853 sequenced genomes and 85.7 million variants. We extracted 19,553,394 singleton 791 

variants (requiring AC=1 and AN>=1500) of autosomes for training AT and non-CpG 792 

models. For training CpG models, we did downsampling to the total allele count (AN) of 793 

1000 and extracted the variants with ACdown ≤ 5 (6,422,014 CpG-related rare variants on 794 

autosomes). To identify regions with poor mappability in the M. mulatta genome, we 795 

downloaded raw reads of three individuals (accession numbers: SRR11999190, 796 

SRR11999224 and SRR12070989) and mapped them to the rheMac10 assembly using 797 

bwa-mem2 42. The peak read depth for alignments of the three libraries was 127, and we 798 

kept genomic sites with read depth within the range of 63-190 (2,620,098,971 bp in 799 

autosomes in total ) for downstream analyses. 800 

We trained ab initio models as well as transfer learning models for M. mulatta. For 801 

ab initio models, we compiled a training dataset consisting of 500,000 mutated and 802 

10,000,000 non-mutated sites, and an independent validation dataset consisting of 803 

50,000 mutated and 1,000,000 non-mutated sites. We used the same hyperparameter 804 

setting as that for human ab initio models. For transfer learning models, we compiled a 805 

training dataset consisting of 150,000 mutated and 3,000,000 non-mutated sites and an 806 

independent validation dataset consisting of 50,000 mutated and 1,000,000 non-mutated 807 

sites. For each model, ten trials were run and the checkpointed model with lowest 808 

validation loss among all trials was used for prediction.  809 

The variant file of A. thaliana was downloaded from 1001 Genomes project 810 

(https://1001genomes.org/) 43, which included 12,883,854 polymorphic sites for 1135 811 
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inbred lines. The variants of each individual in the VCF file were all homozygotes 812 

because of long-term inbreeding and thus the lowest AC is 2. We excluded the poorly 813 

mapped genomic regions by using the coverage information from the 1001 Genomes 814 

project. We first calculated the average read depth across 1135 lines for each nucleotide 815 

and the mode of the rounded average depths across the genome was 21. We retained 816 

the positions whose average read depth was within the range of 10-30 (102,069,978 817 

sites in total). For training and validating the AT model, we used singleton variants by 818 

requiring AC to be 2 and AN of >= 1000. Because there is a high mutation rate of C>T at 819 

both CpG and non-CpG C/G sites, the C>T mutations were depleted in the singleton rare 820 

variants. We further compiled a rare variant dataset by requiring AC <= 10 and AN >= 821 

1000 for training and validating non-CpG and CpG models. For each of AT, non-CpG and 822 

CpG models, we randomly selected 100,000 rare variants and 2,000,000 non-mutated 823 

sites for training, and 10,000 rare variants and 200,000 non-mutated sites for validation. 824 

For the CpG model, we randomly selected 50,000 rare variants and 1,000,000 non-825 

mutated sites for training, and 5,000 rare variants and 100,000 non-mutated sites for 826 

validation. 827 

The variant dataset of D. melanogaster used in our analysis was from Drosophila 828 

Genetic Reference Panel (DGRP) 44, which sequenced 205 inbred lines. The original 829 

variant file in VCF format contained 3,837,601 polymorphic sites (excluding sex 830 

chromosomes and heterochromatic sequences). Because of being derived from inbred 831 

lines, each polymorphic site was homozygous for each individual and original AN and AC 832 

tags in the variant file were corresponding to counts of individuals rather than alleles. We 833 

extracted 702,864 singleton rare variants by requiring AC to be 1 and AN of >= 100. Then 834 

the dataset of rare variants was divided into A/T sites (285,374) and C/G sites (418,713), 835 

respectively. Because there is little methylation at CpG sites in the genome of D. 836 

melanogaster 45 and the mutation rate of CpG>TpG is not exceptionally high in this 837 

species, we did not separate non-CpG and CpG C/G sites for training. For each of the AT 838 

and CG models, we randomly selected 100,000 rare variants and 2,000,000 non-mutated 839 

sites for training, and 10,000 rare variants and 200,000 non-mutated sites for validation.  840 
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The configurations of hyperparameters for MuRaL models of the three species were 841 

provided in Supplementary Tables 8-10. For each training task, the checkpointed model 842 

with lowest validation loss among all trials was used for predicting base-wise mutation 843 

rates in the whole genome. The calculation of k-mer and regional mutation rate 844 

correlations was the same as that for the human data. 845 

 846 
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