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2 

Abstract 27 

It has not been fully understood in real fields what environment stimuli cause the 28 

genotype-by-environment (G × E) interactions, when they occur, and what genes react to them. 29 

Large-scale multi-environment data sets are attractive data sources for these purposes because they 30 

potentially experienced various environmental conditions. Here we developed a data-driven 31 

approach termed Environmental Covariate Search Affecting Genetic Correlations (ECGC) to identify 32 

environmental stimuli and genes responsible for the G ×  E interactions from large-scale 33 

multi-environment data sets. ECGC was applied to a soybean (Glycine max) data set that consisted of 34 

25,158 records collected at 52 environments. ECGC illustrated what meteorological factors shaped 35 

the G × E interactions in six traits including yield, flowering time, and protein content and when 36 

they were involved. For example, it illustrated the relevance of precipitation around sowing dates and 37 

hours of sunshine just before maturity to the interactions observed for yield. Moreover, genome-wide 38 

association mapping on the sensitivities to the identified stimuli discovered candidate and known 39 

genes responsible for the G × E interactions. Our results demonstrate the capability of data-driven 40 

approaches to bring novel insights on the G × E interactions observed in fields. 41 

 42 

Keywords 43 

genotype-by-environment interactions, genetic correlation, genome-wide association, 44 

multi-environment trial, environmental covariate, historical data 45 

 46 

Key message 47 

The proposed method is able to identify environmental stimuli and genes responsible for the G × E 48 

interactions observed in multi-environmental trials. The method is based on similarity search 49 

between genetic correlation and environmental stimuli among environments. 50 

 51 
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Introduction 53 

Genotype-by-environment (G × E) interactions have been one of main interests in plant research 54 

for decades (Mather & Jones, 1958; van Eeuwijk et al., 2005; Des Marais et al., 2013). However, 55 

understanding the interactions in fields is not an easy task because a number of players including 56 

environmental stimuli and genes can be involved in at various growth stages. Thus, it has been a 57 

great challenge to depict comprehensive landscapes on how genes and environment stimuli cause the 58 

G × E interactions together in fields. So far, studies have successfully used environmental stimuli in 59 

statistical models to map quantitative trait loci (QTLs) and/or predict crop phenotypes (Malosetti et 60 

al., 2013; Jarquin et al., 2014; Li et al., 2018; Millet et al., 2019; Guo et al., 2020). These studies 61 

show the usefulness of a reaction norm approach where phenotypes/genotypic values are regressed 62 

on quantitative indices of environment stimuli to model the sensitivity of genotypes. An important 63 

point of this approach is, however, that the sensitivity of genotypes is not necessary associated with 64 

the observed G × E interactions. Methods to identify environmental stimuli and genes directly 65 

related to the G × E interactions have been lacked. 66 

Here, we propose a novel method termed Environmental Covariate Search Affecting 67 

Genetic Correlations (ECGC) to reveal quantitative environmental stimuli (referred to as 68 

environmental covariates) and genetic architecture underpinning the G × E interactions using 69 

large-scale multi-environment data sets. ECGC searches environmental covariates whose similarity 70 

matrices between environments are significantly correlated with genetic correlation matrices between 71 

environments which can be regarded as indicators of the G × E interactions (Hayes et al., 2016). 72 

This proposed method is able to identify the environmental stimuli and genes directly related to the 73 

observed G × E interactions. Moreover, because genetic correlations between environments can be 74 

estimated using mixed models, ECGC is robust to missing records and unbalanced data structure that 75 

often characterize multi-environment data. Here we applied the proposed method to a large-scale 76 

multi-environment data of soybean (Glycine max). The traits were days to flowering (DTF), days to 77 

maturity (DTM), stem length (SL, cm), protein content of seeds (PR, %), yield (YI, kg/a) and seed 78 
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weight (SW, g/100 seeds). 79 

 80 

Materials and Methods 81 

Model description 82 

As described above, ECGC searches environmental covariates whose similarity matrices between 83 

environments are correlated with genetic correlation matrices between environments. Here it will be 84 

illustrated how the similarity of environmental covariates is associated with genetic correlation 85 

between environments.  86 

For the jth environment, the phenotype adjusted for variations due to years and management 87 

conditions, 𝒚̃
𝑗
, is decomposed as 88 

𝒚̃
𝑗
= 𝐮𝑗 + 𝐞𝑗 89 

where 𝐮𝑗 and 𝐞𝑗 are the additive genetic effect and residual, respectively. Note that 𝒚̃
𝑗
 and 𝐮𝑗 90 

include all adjusted phenotypes and additive genetic effects of genotypes evaluated at the 91 

environment. 𝐮𝑗  and 𝐞𝑗  are assumed to follow multivariate normal distributions (MVN) as 92 

𝐮𝑗~MVN(𝟎, 𝐆𝜎𝑢𝑗
2 ) and 𝐞𝑗~MVN(𝟎, 𝐈𝜎𝑒𝑗

2 ), respectively, where 𝐆 is the genomic relationship 93 

matrix and I is the identity matrix. After scaling with the genetic standard deviation (𝜎𝑢𝑗), the 94 

additive genetic effect is assumed to be further decomposed into two components, one affected by an 95 

environmental covariate, 𝑥𝑗, and the other is free of it, as 96 

𝐮𝑗 = 𝜎𝑢𝑗(𝛃𝑥𝑗 + 𝐮̃𝑗) 97 

where 𝛃 is the slopes of varieties that represent the sensitivity to the environmental covariate, and 98 

𝐮̃𝑗  is the residual genetic effects. Here 𝛃 is assumed to be 𝛃~MVN(𝟎, 𝐆𝜎𝛽
2) which means 99 

𝐮̃𝑗~MVN [𝟎, 𝐆𝜎𝑢̃𝑗
2
] where 𝜎𝑢̃𝑗

2 = 𝜎𝑢𝑗
2 − 𝑥𝑗

2𝜎𝛽
2 . Then the genetic covariance of the additive genetic 100 

effects between environments j and k can be represented as 101 
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cov(𝐮𝑗 , 𝐮𝑘) = cov[𝜎𝑢𝑗(𝛃𝑥𝑗 + 𝐮̃𝑗), 𝜎𝑢𝑘(𝛃𝑥𝑘 + 𝐮̃𝑘)]102 

= 𝜎𝑢𝑗𝜎𝑢𝑗[𝑥𝑗𝑥𝑘𝐆𝜎𝛽
2 + 𝑥𝑗cov(𝛃, 𝐮̃𝑘) + 𝑥𝑘cov(𝐮̃𝑗 , 𝛃) + cov(𝐮̃𝑗 , 𝐮̃𝑘)]103 

= 𝐆𝜎𝑢𝑗𝜎𝑢𝑗[𝑥𝑗𝑥𝑘𝜎𝛽
2 + 𝑥𝑗𝜎𝑘,𝛽 + 𝑥𝑘𝜎𝑗,𝛽 + 𝜎𝑗,𝑘] 104 

by letting cov(𝛃, 𝐮̃𝑘) = 𝐆𝜎𝑘,𝛽 and cov(𝐮̃𝑗 , 𝐮̃𝑘) = 𝐆𝜎𝑗,𝑘. Thus, the genetic covariance between 105 

environments j and k, 𝜎𝑢𝑗𝑘, is 106 

𝜎𝑢𝑗𝑘 = 𝜎𝑢𝑗𝜎𝑢𝑗[𝑥𝑗𝑥𝑘𝜎𝛽
2 + 𝑥𝑗𝜎𝑘,𝛽+ 𝑥𝑘𝜎𝑗,𝛽+𝜎𝑗,𝑘] 107 

and the genetic correlation between these environments, 𝛲𝑗,𝑘, is 108 

𝛲𝑗,𝑘 = 𝑥𝑗𝑥𝑘𝜎𝛽
2 + 𝑥𝑗𝜎𝑘,𝛽+ 𝑥𝑘𝜎𝑗,𝛽 +𝜎𝑗,𝑘 (1). 109 

Eq. 1 illustrates how the similarity of environmental covariates (𝑥𝑗𝑥𝑘) is related to genetic correlation 110 

between environments (𝛲𝑗,𝑘). Genetic correlations between environments poses information of 111 

relative magnitudes of genotypic values among varieties that change across environments, i.e., G × 112 

E interactions. Thus, ECGC searches the environment covariates that are associated with the G × E 113 

interactions by scanning cor𝑗,𝑘(𝛲𝑗,𝑘, 𝑥𝑗𝑥𝑘)  where cor𝑗,𝑘  means taking correlations across all 114 

combinations of environments. The squared cor𝑗,𝑘(𝛲𝑗,𝑘, 𝑥𝑗𝑥𝑘) (i.e., r2) represents the proportion of 115 

the variance of 𝑥𝑗𝑥𝑘𝜎𝛽
2 in the variance of 𝛲𝑗,𝑘. The significantly detected environmental covariates 116 

will be able to be used for various purposes. Here we focus on revealing genes underlying the G × 117 

E interactions. To this end, GWA mapping was conducted on the slopes (𝛃) associated with the 118 

detected environmental covariates as the final step of ECGC. 119 

Eq. 1 shows that environmental covariates (𝑥𝑗𝑥𝑘) are associated with G × E interactions 120 

(𝛲𝑗,𝑘) when 𝜎𝛽
2  is not zero and the term 𝑥𝑗𝜎𝑘,𝛽 + 𝑥𝑘𝜎𝑗,𝛽+𝜎𝑗,𝑘 does not conceal 𝑥𝑗𝑥𝑘𝜎𝛽

2. This fact 121 

implies that 𝜎𝛽
2  itself is not an evidence that the environmental covariate is associated with G × E 122 

interactions; even when 𝜎𝛽
2  significantly deviates from zero, the effect of 𝜎𝛽

2  on the genetic 123 

correlation can be concealed by the term 𝑥𝑗𝜎𝑘,𝛽 + 𝑥𝑘𝜎𝑗,𝛽+ 𝜎𝑗,𝑘. That is, non-zero 𝜎𝛽
2  is a necessity 124 

condition for the association rather than a sufficient condition. On the other hand, significant 125 

correlations between 𝛲𝑗,𝑘  and 𝑥𝑗𝑥𝑘  can be the direct evidence of association between the 126 
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environmental covariate and G × E interactions because, when the term 𝑥𝑗𝜎𝑘,𝛽 + 𝑥𝑘𝜎𝑗,𝛽+𝜎𝑗,𝑘 127 

conceals 𝑥𝑗𝑥𝑘𝜎𝛽
2 , 𝑥𝑗𝑥𝑘 is no longer correlated with 𝛲𝑗,𝑘. This fact also implies that statistical 128 

testing on 𝜎𝛽
2  is not an alternative of ECGC. Both approaches (ECGC and testing on 𝜎𝛽

2) have 129 

different roles (detecting environment covariates associated with G × E interactions and genotype 130 

sensitivity, respectively). 131 

 132 

Data analysis overview 133 

To apply ECGC to real data, five steps are required. 134 

(1). Calculation of environmental covariates (𝑥𝑗). 135 

(2). Calculation of similarities of environmental covariates between environments (𝑥𝑗𝑥𝑘). 136 

(3). Estimation of genetic correlation between environments (𝛲𝑗,𝑘). 137 

(4). Scanning environmental covariates associated with genetic correlation based on 138 

cor𝑗,𝑘(𝛲𝑗,𝑘, 𝑥𝑗𝑥𝑘). 139 

(5). Estimation of slopes (𝛃) which representing the sensitivity of varieties to the environmental 140 

covariates detected in Step 4 and conduct GWA mapping on the slopes. 141 

These steps correspond with Fig. 1b–f. In the following sections whose titles start as “ECGC step”, 142 

we explain how these steps were conducted in our analyses using a large-scale multi-environment 143 

data of soybean. Preceding to these steps, we also conducted model development and fitting for each 144 

environment-trait combination to calculate the phenotypes adjusted with fixed effects (𝒚̃
𝑗
). This step 145 

may not be always necessary for ECGC, but required for our data. This step is referred to as Step 0. 146 
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 147 

Fig. 1 Illustration of the framework of ECGC. (a) Forty-one fields and 52 environments were analysed 148 

in this study. The blue points indicate fields where multiple management conditions were regarded as 149 

different environments. E and L denote early and late sowing, and D and S denote dense and sparse 150 

plant densities, respectively. (b) Calculation of environmental covariates representing each environment. 151 

Precipitation is illustrated as a meteorological factor. The whole growth periods of plants were divided into 152 

30 stages (10 from sowing to flowering and 20 from flowering to maturity), and the meteorological values 153 

within each stage were averaged. These averaged values were again averaged across all plants at the 154 

environment, thus creating 30 environmental covariates (red and blue boxes in the upper-right triangle). 155 

The environmental covariates were then averaged across all spans within the 30 stages (1st to 2nd stages, 156 

1st to 3rd stages, etc.), thus generating 435 additional covariates (pale-blue boxes in the triangle). In total, 157 

465 (30 + 435) environmental covariates for each trait-meteorological factor combination were generated. 158 

Because 14 meteorological factors were considered, 465 × 14 = 6510 environmental covariates were 159 

generated for each trait. (c) Calculation of the similarity matrix of environmental covariates between 160 

environments. The figure illustrates the similarity matrix of precipitation at the 1st to 3rd growth stage, as an 161 

example. For each environmental covariate, values were extracted from the 52 environments and a 52  162 

52 similarity matrix was calculated using the linear kernel. (d) Estimation of genetic correlations between 163 

environments. Using mixed models and genome-wide SNPs, genetic correlations were estimated for the 164 
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52 environments in a pairwise manner. (e) Calculation of the Pearson correlation coefficient (r) of 165 

off-diagonal elements between the similarity and genetic correlation matrices. r was calculated for all 166 

similarity matrices, and −log10 P values are presented as heat maps. (f) Genome-wide association 167 

mapping for uncovering genetic architecture. For the environmental covariates significantly detected in 168 

(E), slopes were estimated for each variety by regressing the additive genetic effects estimated using 169 

mixed models on the environmental covariates. Genome-wide association mapping was conducted on 170 

the slopes. 171 

 172 

Multi-environment data of soybean 173 

The data set used in this study consisted of 25,158 records of 624 varieties evaluated at 41 fields 174 

(Supplementary Data 1). This data set was extracted as described below from a historical data of 175 

soybean including 72,829 records of 6,106 varieties evaluated at 440 fields over 55 years in Japan 176 

(from 1961 to 2015). The overview of this historical data is provided in Supplementary Methods 1. 177 

In nine fields, multiple management conditions (e.g. early or late sowing dates) were consistently 178 

conducted in multiple years. For these fields, different management conditions were defined as 179 

different environments as described later. As a result, a total of 52 environments were defined from 180 

41 fields (Table S2, Fig. 1a). Thus, in this study, “environments” denote the combinations of fields 181 

(locations) and management conditions. 182 

 183 

DNA extraction and SNP genotyping 184 

Seeds of varieties included in the historical data were collected from the breeding centres and NARO 185 

genebank (as many seeds as possible). The seeds were sown in pots and grown until the first 186 

trifoliate leaves emerged in greenhouses. Total genomic DNA was extracted from the first trifoliate 187 

leaves of one plant using a method based on guanidine hydrochloride and proteinase K (Khosla et al., 188 

1999), with modifications. Among the 2,000 varieties with extracted DNA, 573 varieties were 189 

genotyped using the Axiom SNP custom array (ThermoFisher, MA, USA), which was designed for 190 

Japanese soybean varieties. These 573 varieties consisted mainly of breeding lines that had been 191 

evaluated until later generations (typically F8 or later) as promising lines. In addition, from the 192 
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~2,000 varieties, 149 varieties that were registered as major varieties by the Ministry of Agriculture, 193 

Forestry and Fisheries and 187 varieties included in the soybean core collection (Kaga et al., 2012) 194 

were also genotyped using the array. The 573 varieties were selected to avoid overlap with the 336 195 

(149 + 187) varieties. Among the SNPs genotyped, SNPs that showed high genotyping quality (i.e. 196 

SNPs termed ‘PolyHighResolution’ in the Axiom genotyping system) and could be mapped to the 197 

Williams 82 genome assembly version 2.0 (Wm82.a2.v1/Glyma 2.0) were extracted (138,555 SNPs) 198 

(Table S1). The average call rate of SNPs was 0.998 (SD ± 0.003). Missing genotypes were imputed 199 

using Beagle 4.1 (08Jun17.d8b) (Browning & Browning, 2016). 200 

 201 

Extraction of phenotypic records 202 

The varieties that had SNP genotypes from the Axiom custom array were subjected to subsequent 203 

analyses. Because the names of varieties usually change with the advancement of generations, the 204 

variety names were integrated using the names at the last generations. Among the 440 fields included 205 

in the historical data, 41 fields were selected for analyses because of the number of records and 206 

balanced geological locations across Japan (Fig. 1a). For each field, phenotypic values that were out 207 

of the mean ± 3SD (standard deviation) range were treated as missing values. 208 

The following six traits were selected for analyses: DTF (days), DTM (days), SL (cm), PR 209 

(%), YI (kg/a) and SW (g/100 seeds). These traits were selected because of their importance for 210 

breeding and the number of phenotyped records. In Japanese soybean breeding, to unify the 211 

measuring methods of traits, regulations on trait measurement were established in 1954 by a 212 

committee where the Ministry of Agriculture and Forestry at the time took the leading role. Although 213 

these regulations seem to have undergone several minor updates to date, trait definitions were largely 214 

common across the study period. Briefly, DTF was defined as the date when 40%–50% of the buds 215 

of the strains reached flowering. DTM was the date when 80%–90% of the pods of the strains 216 

showed variety-unique colours at maturity. SL was the length of the main culm between the ground 217 

surface and the growth point. PR was mainly measured using near-infrared spectroscopy, but there 218 
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seemed to be some variations in the measuring methods and used machines. YI and SW were defined 219 

as the weight with 15% moisture, although there also seemed to be some variations in the moisture 220 

percentage among stations and years. 221 

Records that had at least one observation for these six traits were extracted for subsequent 222 

analyses. As a result, the extracted records consisted of 25,158 records of 624 varieties evaluated at 223 

41 fields (Supplementary Data 1). The summaries of the extracted phenotypic data and used varieties 224 

are presented in Tables S2 and S3, respectively. 225 

 226 

Meteorological factors 227 

Meteorological information was taken from MeteoCropDB ver. 1.0 (Kuwagata et al., 2011). The 228 

database was designed to help the utilisation of crop growth models and provides daily values at each 229 

weather station of the Japan Meteorological Agency (JMA). Meteorological information for each 230 

environment was taken from the nearest JMA station. In this study, 13 meteorological factors, i.e. 231 

mean temperature (℃), maximum temperature (℃), minimum temperature (℃), precipitation (mm), 232 

vapour pressure (hPa), vapour pressure deficit (hPa), relative humidity (%), minimum relative 233 

humidity (%), wind speed (m/s), maximum wind speed (m/s), hours of sunshine (h), solar radiation 234 

(W/m2) and potential evapotranspiration (mm), were used. Among these factors, wind speed and 235 

maximum wind speed were adjusted as observed at 2.5 m of altitude by the developer of the database 236 

from the original values of the JMA. Solar radiation was estimated by the database developer from 237 

the observations of the JMA regarding hours of sunshine. Potential evapotranspiration was also 238 

estimated by the developer based on mean temperature, vapour pressure, wind speed, solar radiation 239 

and air pressure. The values of the other factors were according to the observations of the JMA. In 240 

addition to these factors, photoperiod (h) was calculated for each environment. For simplicity, daily 241 

length was also considered as a meteorological factor. The values of these meteorological factors are 242 

included in Supplementary Data 1, together with the phenotype records. 243 

 244 
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ECGC Step 0: Developing mixed models at each environment 245 

Single-trait mixed models were fitted to the records at each environment. This process had two 246 

purposes; the first was to eliminate variations attributable to years and management conditions from 247 

phenotypic values, that is, to create 𝒚̃
𝑗
. The adjusted phenotypes 𝒚̃

𝑗
 were then used for estimating 248 

genetic correlations between environments (ECGC Step 3). The second was to estimate the additive 249 

genetic effects of varieties at each environment. The additive genetic effects were then used to 250 

estimate the slopes of genetic effects on environmental covariates (ECGC Step 5). 251 

The year effects were added as fixed effects in the mixed models. The conditions of three 252 

management methods (plant density, fertiliser and sowing date) were modelled in various ways. In 253 

nine fields (F04, F07, F08, F09, F22, F24, F25, F27 and F34), multiple management conditions were 254 

consistently conducted in multiple years. For these fields, different conditions were defined as 255 

different environments resulting in a total of 52 environments (Table S2, Fig. 1a). 256 

In most fields, however, the management conditions often varied across years. When the 257 

effects of management conditions were indistinguishable from those of year effects, the effects were 258 

absorbed to the year effects and not modelled. Otherwise, the effects were added in the mixed 259 

models. The modelling schemes varied according to the environments and management methods. 260 

Although the conditions of plant density, fertilizer, and sowing date are intrinsically continuous 261 

variables, when the number of conditions at an environment was few, these conditions were regarded 262 

as categorical variables and the effects were modelled as fixed effects. Otherwise, the conditions 263 

were regarded as continuous and the effects were model using basis functions (e.g. B-splines, Hastie 264 

et al., 2009). In each case, the interactions between genotypes and management were also considered. 265 

Variance components were estimated using REML implemented in airemlf90 (Misztal et al., 2002), 266 

and model selection was conducted using the AICs provided by the programme. The covariance 267 

structure of additive genetic effects among varieties (i.e. genomic relationship matrix) was defined 268 

using the genome-wide SNPs (VanRaden, 2008). The A.mat function provided by the R package, 269 

rrBLUP (ver. 4.6.1) (Endelman, 2011; R Core Team, 2020), was used for calculation (Supplementary 270 
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Data 2). Thus, the mixed models applied here were the so-called genomic or genome-enabled BLUP 271 

(GBLUP) (de los Campos et al., 2013). The details of this procedure are described for each 272 

environment in the Supplementary Methods 2. Narrow-sense SNP heritability estimated by the 273 

selected models are presented in Table S4. 274 

 275 

ECGC Step 1: Calculation of environmental covariates 276 

Environmental covariates were calculated for each environment, i.e., combination of fields and 277 

management conditions. Because trials had been conducted for multiple years at each field (Table 278 

S1), in principle, environmental covariates were calculated by averaging meteorological values 279 

across years. The details are explained below. 280 

Even on the same calendar day, the growth stages of plants can vary depending on the 281 

sowing date and growth speed, which depend on the environmental conditions (e.g. temperature) and 282 

genotypes. Thus, a meteorological event (e.g. high or low temperature) on a calendar day can have 283 

different effects on plants with different growth stages. To consider the difference in growth stage, 284 

the growth period between the sowing dates and days of flowering was divided into 10 equal-sized 285 

stages (on average 5.5 ± 1.2 days per stage), and the period between the days of flowering and days 286 

of maturity was divided into 20 equal-sized stages (3.8 ± 0.5 days per stage). For each variety at each 287 

environment and year, the daily meteorological values within stages were averaged (Fig. 1b). 288 

Meteorological values representing each environment were then obtained by averaging the 289 

above-mentioned meteorological values of all plants included in the environment, yielding 30 values 290 

for the 30 growth stages for each environment (Fig. 1b, Tables S5–10). In addition, meteorological 291 

values were averaged across stages, e.g. averages across the 1st to 2nd stages, across the 1st to 3rd 292 

stages, etc. This procedure was inspired by the joint genomic regression analysis (Li et al., 2018). As 293 

a result, 435 (30 × 29 / 2) additional representative values were generated, resulting in 465 values for 294 

each environment (Fig. 1b). That is, 465 × 14 (meteorological factors) = 6510 environmental 295 

covariates were generated. 296 
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Two issues were notable in this procedure. First, the number of stages will depend on the 297 

prior knowledge or assumptions on growth stages. For soybean, typically five and eight growth 298 

stages are assumed for the vegetative and reproductive phases (Fehr & Caviness, 1977). The number 299 

of stages used here (30) were determined to be able to discriminate these known growth stages. If a 300 

crop experiences more growth stages, setting a larger number will facilitate interpretation. Second, 301 

although the growth stages of plants can be represented using cumulative temperature and/or 302 

photoperiod, we avoided using these indices, to simplify the procedures as much as possible. 303 

 304 

ECGC Step 2: Calculation of similarities of environmental covariates between environments 305 

For each environmental covariate (i.e. combination of growth stage and meteorological factor), 52 306 

representative values corresponding to 52 environments were used to calculate the similarity between 307 

environments (Fig. 1c). The similarity was defined using a linear kernel. That is, the similarity 308 

between the jth and kth environments were calculated as xjxk where xj and xk indicate the deviations of 309 

the environmental covariate values at environments j and k, respectively. As a result, a 52 × 52 310 

similarity matrix was obtained for each environmental covariate. Total 465 growth stages × 14 311 

meteorological factors = 6510 similarity matrices were obtained for each trait. 312 

 313 

ECGC Step 3: Estimation of genetic correlation between environments 314 

Genetic correlations between environments were estimated bivariate mixed models in a pairwise 315 

manner. The model can be written as 316 

[
𝒚̃𝑗
𝒚̃𝑘
] = [

𝐙𝑗 𝟎

𝟎 𝐙𝑘
] [
𝐮𝑗
𝐮𝑘

] + [
𝐞𝑗
𝐞𝑘
] (2) 317 

where 𝐙𝑗 and 𝐙𝑘 are the design matrices. Here it is assumed that [
𝐮𝑗
𝐮𝑘
] ~MVN(𝟎, 𝚺𝑢𝑗𝑘

2 ⊗𝐆) and 318 

[
𝐞𝑗
𝐞𝑘
]~MVN(𝟎, 𝚺𝑒𝑗𝑘

2 ⊗ 𝐈) where 𝚺𝑢𝑗𝑘
2

 and 𝚺𝑒𝑗𝑘
2

 are the genetic and residual covariance matrices, 319 

respectively and ⊗ denotes the Kronecker product. To fit this model, first, the records at each 320 

environment (i.e., records in 𝒚̃
𝑗
 and 𝒚̃

𝑘
) were matched to each other. Records were matched 321 
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according to the varieties and evaluation years. That is, same varieties evaluated at the same year 322 

were matched to each other. When multiple records could be matched (i.e., when a variety was 323 

evaluated at an environment multiple times in a single year), matching was determined randomly. As 324 

a result of matching, the phenotypic data consisting of 25,158 records was arranged to a matrix of 325 

7,887 by 52 (Supplementary Data 3 and 4). Note that most records did not match to any other records. 326 

Thus, the resulting 7,887 by 52 matrix was sparse: the non-missing proportion was at most 25,158 / 327 

(7,887 × 52) = 0.061. Because PR was absent in 22 environments, the matrix for PR becomes 7,887 328 

by 30 (Supplementary Data 3 and 4). 329 

Subsequently, for each trait, genetic correlations between environments were estimated in a 330 

pairwise manner. First, the bivariate mixed model (Eq. 2) was fitted to all pairs of environments (52 331 

× 51 / 2 = 1326 pairs), to estimate the genetic covariances between environments (𝚺𝑢𝑗𝑘
2

). The 332 

diagonal elements of the covariance matrix (i.e. genetic variances) were estimated by averaging the 333 

estimates of these bivariate model analyses, which were duplicated 51 times. This pairwise manner 334 

of estimation of covariance matrices can be interpreted as a pseudo-likelihood-based approach 335 

(Fieuws & Verbeke, 2006). The resulting genetic covariance matrix was then set as a positive definite 336 

using the nearPD function of the Matrix package (ver. 1.2-18) of R, and a genetic correlation matrix 337 

was calculated by standardising the covariance matrix (Fig. 1d, Tables S11–16).  338 

It is notable that genetic correlations between environment can be estimated using methods 339 

other than the pairwise estimation described here (e.g., standard multivariate models or factor 340 

analytic models). But the pairwise estimation will be one of the easiest methods to conduct in 341 

particular when the number of environments is great. 342 

 343 

ECGC Step 4: Scanning environmental covariates associated with the genetic correlation 344 

Now we have the 6510 (465 growth stages × 14 meteorological factors) similarity matrices of 345 

environmental covariates and six (number of traits) genetic correlation matrices. The sizes of both 346 

kind matrices were 52 (number of environments) × 52 for the traits except for PR where the sizes 347 
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were 30 × 30. The Pearson’s product moment correlation coefficients between the upper (or lower) 348 

triangle off-diagonals of the similarity matrices and genetic correlation matrices were then calculated 349 

(Fig. 1e) using the cor.test function of the R package stats (ver. 4.0.3). P values of the coefficients 350 

were also calculated using the function. The significance of the coefficients was judged after 351 

Bonferroni correction of the P values. Considering the number of environmental covariates (6510) 352 

and traits (6), the threshold of significance was set at 0.05 / (6510 × 6) = 1.28e–6. 353 

Even after Bonferroni correction, 10397 environmental covariate/trait combinations 354 

remained significant. This was attributed to redundancy in the environmental covariates. For 355 

example, a value at the 10th to 12th growth stages was often highly correlated with a value at the 9th to 356 

13th growth stages. To eliminate this redundancy, environmental covariates were clustered using the 357 

hierarchical clustering implemented in the hclust function of R. Similarities were defined based on 358 

Euclidean distance, and complete-linkage clustering was used. The number of clusters was 359 

determined using the gap statistic (Tibshirani et al., 2001). The clustering results are presented in Fig. 360 

S1. When multiple environmental covariates were significant at a cluster, the combination with the 361 

highest r2 was selected, resulting in 555 significant environmental covariate/trait combinations 362 

(Table S17). 363 

 364 

ECGC Step 5: Estimation of slopes and GWA mapping on the slopes 365 

For each significant environmental covariate/trait combination, the additive genetic effects of the 624 366 

varieties at each environment were regressed on the environmental covariates, and the slopes (𝛃) 367 

were calculated for each variety (Fig. 1f, Supplementary Methods 3, Table S18). The additive genetic 368 

effects were estimated using single-trait mixed models, as described in ‘ECGC Step 0: Developing 369 

mixed models at each environment’. The additive genetic effects were scaled with the additive 370 

genetic variance (𝜎𝑢𝑗), and the meteorological values were standardised before this regression 371 

analysis. Considering these slopes as phenotypic values, GWA mapping was conducted (Fig. 1f) 372 

using the GWAS function of the rrBLUP package (ver. 4.6.1). The genomic relationship matrix was 373 
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calculated using the A.mat function of the package. No principal components were included in the 374 

models because P values did not inflate (Fig. S2). SNPs with minor allele frequencies > 0.05 were 375 

subjected to the statistical tests. This conservative threshold (0.05) was adopted to prevent false 376 

positives. This GWA mapping involved more than 6.40e+7 statistical tests (on average, 115,312 377 

SNPs × 555 environmental covariate/trait combinations); thus, the application of strict multiple 378 

testing correction, such as Bonferroni correction, is unrealistic. Instead, we applied a method that 379 

controlled the false discovery rate (FDR) (Storey & Tibshirani, 2003). The threshold of significance 380 

was calculated using an R script implemented in the GWAS function of rrBLUP, with modifications. 381 

The threshold for FDR < 0.05 was 9.086278e−06 (5.041614 in the −log10p expression). The 382 

distribution of the P values is shown in Fig. S2. By grouping significant SNPs that were less than 383 

100k bp apart from each other into the same regions, 1486 regions were detected for 270 384 

environmental covariate/trait combinations with overlaps (Table S19). 385 

 To verify the validity of these associations, subsampling analyses were conducted for these 386 

270 combinations. Specifically, 500 (80 %) varieties were randomly selected from the 624 varieties 387 

and subjected to GWA mapping. Random sampling was adopted because the aim of this subsampling 388 

is to perturbate the genetic structure which might produce false positives. This procedure was 389 

repeated 10 times. Then replications where the regions detected using the full data also showed 390 

significant associations were counted (threshold −log10p = 5.041614; Table S19). Regions with 391 

counts > 4 were regarded as reliable results. As a result, 948 regions were remained for 179 392 

environmental covariate/trait combinations. These regions were found to be constituted with 39 393 

regions by removing overlaps between combinations (Table S19). 394 

Orthologs of Arabidopsis thaliana mapped in the detected regions were extracted from 395 

JBrowse provided by Phytozome ver.12.1 396 

(https://phytozome.jgi.doe.gov/jbrowse/index.html?data=genomes/Gmax). Gene ontology of these 397 

orthologs were surveyed with overrepresentation analyses provided by PANTHER ver.16.0 398 

(http://pantherdb.org/) using Arabidopsis genes as a reference. 399 
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 400 

Simulation analyses 401 

Simulation analyses were conducted to assess the performance to ECGC to detect environment 402 

covariates. As illustrated in Eq. 1, the detection power of ECGC depends on the proportion of the 403 

variance of 𝑥𝑗𝑥𝑘𝜎𝛽
2 to that of 𝛲𝑗,𝑘 (i.e., r2) and the number of environments denoted as M. The 404 

detection power was expected to increase as r2 and M increase. For the sake of simplification, 𝜎𝑗,𝛽 =405 

0 and 𝜎𝑢𝑗
2 = 1  for any environment j, and 𝜎𝛽

2 = 1  throughout the simulations. Consequently, 406 

𝛲𝑗,𝑘 = 𝑥𝑗𝑥𝑘 +𝜎𝑗,𝑘. The genetic correlation matrices between environments were simulated as follows. 407 

(1). Assign values for r2 and M from grids 0.01, 0.018, 0.025, 0.035, 0.053, 0.075, 0.1, and 0.15, and 408 

5, 10, 15, 20, 30, 40, 50, and 60, respectively. 409 

(2). Generate 𝑥𝑗 from the standard normal distribution for all j (1 ≤ 𝑗 ≤ 𝑀), and calculate the 410 

variance of 𝑥𝑗𝑥𝑘 (1 ≤ 𝑗 < 𝑘 ≤ 𝑀). 411 

(3). Determine the variance of 𝜎𝑗,𝑘 according to r2 and the variance of 𝑥𝑗𝑥𝑘. 412 

(4). Generate 𝜎𝑗,𝑘 from the LKJ distribution using the R package rethinking (ver. 2.13) (McElreath, 413 

2020). Parameter 𝜂 of the distribution was arbitrary set to four. Scale 𝜎𝑗,𝑘 according to the 414 

variance of 𝜎𝑗,𝑘. 415 

(5). Generate a symmetric matrix by adding 𝑥𝑗𝑥𝑘 to 𝜎𝑗,𝑘. Here 𝑥𝑗𝑥𝑗 (i.e., diagonal elements) is set 416 

to the average of 𝑥𝑗𝑥𝑗 (1 ≤ 𝑗 ≤ 𝑀). 417 

(6). Convert the symmetric matrix of (5) to the correlation matrix. 418 

For each combination of r2 and M, the genetic correlation matrix was simulated 2000 times. For each 419 

simulated matrix, 99 additional environment covariates that were not associated with the correlation 420 

matrix were also simulated as true negatives. Then the Pearson correlation between 𝛲𝑗,𝑘 and 𝑥𝑗𝑥𝑘 421 

was tested for these simulated environmental covariates. The performance of ECGC was assessed 422 

using the ROC curves drawn by the R package ROCR (ver. 1.0-11) (Sing et al., 2005). 423 

 424 

 425 
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Results 426 

The multi-environment data set used here consisted of 25,158 records of 624 varieties that were 427 

evaluated from 1961 to 2015 at 41 fields. The included varieties consisted of cultivars and breeding 428 

lines developed in Japan for the sake of food production, such as tofu (Table S3). Among the 41 429 

fields, in nine fields, multiple management conditions (early/late sowing dates and sparse/dense plant 430 

densities) were consistently conducted in multiple years. For these fields, different management 431 

conditions were defined as different environments as described in Materials and Methods. As a result, 432 

a total of 52 environments were defined from 41 fields (Fig. 1a and Table S2). 433 

The steps of ECGC are shown in Fig. 1b–f. In the first step, environmental covariates 434 

representing each environment were calculated (Fig. 1b). Here, we considered 14 meteorological 435 

factors as the environmental stimuli (Materials and Methods). We divided the whole growth period 436 

of a plant, from sowing to maturity, into 30 stages; this was achieved by dividing the growth period 437 

(from sowing to flowering) into 10 stages, and the period from flowering to maturity into 20 stages 438 

(Fig. 1b). For each meteorological factor (e.g. daily mean temperature), the meteorological values 439 

within each stage were averaged, yielding 30 values for each plant. These values were then averaged 440 

across plants evaluated at the environment for all the years, thus yielding 30 values for each 441 

environment (Tables S5–S10). Subsequently, the values were further averaged across the 30 stages, 442 

i.e. across the 1st to 2nd stages, the 1st to 3rd stages, etc. This procedure yielded 465 (30 + 30 × 29 / 2) 443 

environmental covariates for each trait−meteorological factor combination. Thus, total 465 × 14 444 

(meteorological factors) = 6510 environmental covariates were generated. 445 

In the second step, for each environmental covariate (e.g. precipitation at the 1st to 3rd 446 

stages), values were extracted from the 52 environments, and the linear kernel (i.e. the similarity 447 

matrix) between environments was calculated (Fig. 1c). In the third step, genetic correlations of 448 

additive genetic effects between environments were estimated using mixed models for each trait (Fig. 449 

1d, Tables S11–S16, Fig. S3). Estimated genetic correlations suggest strong G × E interactions 450 

particularly for traits other than SW (Fig. S3). In the fourth step, the genetic correlation matrices 451 
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were compared with the linear kernels (i.e., similarity matrices) of the environmental covariates (Fig. 452 

1e). Stronger associations between these matrices indicated that the environmental covariate affected 453 

the G × E interactions with greater magnitude. These associations were measured using the 454 

Pearson’s moment product correlation coefficient (r) between the off-diagonal elements of the 455 

matrices. Fig. 2 shows the distributions of the −log10 P values of r calculated for 10 meteorological 456 

factors (the complete results are presented in Fig. S4). Generally, YI and SW, and DTT, DTM and SL 457 

shared similar P values patterns, whereas PR exhibited unique patterns. A total of 555 environmental 458 

covariates were significantly detected for the six traits (P < 0.05 after Bonferroni correction, Table 459 

S17). 460 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465681doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465681
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 461 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465681doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465681
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Fig. 2 Associations of environmental covariates with genetic correlations between environments. 462 

The heat maps represent the −log10 P values of correlation coefficients of off-diagonal elements between 463 

the similarity matrix of each environmental covariate and the genetic correlation matrix. The diagonal 464 

elements of the triangles correspond with the 1st to 30th growth stages, from the lower left to the upper 465 

right. The off-diagonal elements correspond to the growth periods that span multiple stages, where the x 466 

and y axes denote the start and end of the periods, respectively. The broken lines indicate flowering time. 467 

Abbreviations: YI, yield; SW, seed weight; DTF, days to flowering; DTM, days to maturity; SL, stem length; 468 

PR, protein content; T, mean temperature; Tmax, maximum temperature; Tmin, minimum temperature; Pr, 469 

precipitation; e, vapour pressure; VPD, vapour pressure deficit; N, hours of sunshine; Sd, solar radiation; 470 

EP, potential evapotranspiration; Ph, photoperiod. 471 

 472 

For YI, three regions in Fig. 2 showed high −log10 P values. The first region was detected 473 

around the 2nd to 22nd growth stages (upper-left part of the triangles in Fig. 2) of the 474 

temperature-related environmental covariates, such as mean temperature, minimum temperature and 475 

vapour pressure. The highest −log10 P values of these meteorological factors were observed at the 476 

2nd to 22nd growth stages (r2 = 0.036, −log10𝑃 = 11.554), the 4th to 17th stages (r2 = 0.033, 477 

−log10𝑃 = 10.677) and the 2nd to 19th stages (r2 = 0.039, −log10𝑃 = 12.460), respectively. The 478 

22nd growth stage corresponded on average to 30.4–34.2 days before maturity. According to the 479 

well-known system used to stage soybean development (Fehr & Caviness, 1977), this period largely 480 

corresponds to the R5 soybean growth stage (Egli, 2010). Because the R5 stage is defined as the 481 

beginning of seed filling (Fehr & Caviness, 1977), it is likely that the temperature-related covariates 482 

affect the G × E interactions on YI by modifying the upper limit of the number of seeds. The 483 

second region was a period around sowing in relation to precipitation. The highest −log10 P value 484 

was 10.888 at the 1st to 3rd stages (r2 = 0.034). This stage corresponds to a period from sowing to, on 485 

average, 16.5 days after sowing. Soybeans are vulnerable to waterlogging, and, in particular, 486 

waterlogging around germination has a severe impact on YI (Kokubun, 2013). In addition, genetic 487 

variations exist in root development in flood conditions (Sakazono et al., 2014). Thus, our results are 488 

reasonable and clearly suggest the importance of precipitation around germination for the G × E 489 

interactions regarding YI. The third region was a period just before maturity in relation to hours of 490 
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sunshine and solar radiation. The highest −log10 P value was 11.682 observed for hours of sunshine 491 

at the 26th to 29th stages (r2 = 0.037). During this period, these meteorological factors also showed a 492 

high −log10 P value for SW; the highest value for SW around this period was 11.101 for hours of 493 

sunshine at the 29th to 30th stage (r2 = 0.035). 494 

The highest −log10 P value for SW was observed in relation to potential evapotranspiration 495 

at the 8th to 10th stages (r2 = 0.050, −log10𝑃 = 15.715). Potential evapotranspiration (or potential 496 

evaporation) can be regarded as the upper limit of evapotranspiration from a crop field (Kuwagata et 497 

al., 2011), which can reflect photosynthesis activity. The other meteorological factors detected, i.e. 498 

mean temperature and maximum temperature (highest r2 = 0.032 and 0.036 at the 5th stage; 499 

−log10𝑃 = 10.199 and 11.570, respectively) and vapour pressure deficit (r2 = 0.029 at the 9th 500 

stage, −log10𝑃 = 9.261619), also suggest the relevance of photosynthesis. The influence of these 501 

factors started before flowering, when seed filling has not started. Thus, it is likely that these factors 502 

affected SW indirectly via the modification of the number of seeds, because soybean shows 503 

compensation effects between SW and seed number. 504 

For DTF, the significant environmental covariates included mean temperature at the 6th 505 

stage (r2 = 0.140, −log10𝑃 = 44.930 ), minimum temperature at the 6th stage (r2 = 0.127, 506 

−log10𝑃 = 40.286), maximum temperature at the 5th to 14th stages (r2 = 0.146, −log10𝑃 =507 

46.602) and vapour pressure at the 6th stage (r2 = 0.145, −log10𝑃 = 46.353). Photoperiod before 508 

flowering was also a significant covariate (r2 = 0.106 at the 4th to 5th stages, −log10𝑃 = 33.286). 509 

These results are reasonable considering that temperature and photoperiod are the main determinants 510 

of soybean flowering time (Sinclair et al., 1991). The results obtained for DTM and SL were close to 511 

those obtained for DTF, suggesting that the influence of meteorological factors on the G × E 512 

interactions for DTM and SL occurred via those of DTF. In other words, if DTF does not show a G 513 

× E interaction, DTM and SL will also not show. Finally, the results obtained for SL are reasonable, 514 

because the varieties commonly cultivated in Japan exhibit the determinate stem type, in which the 515 

prolongation of the stem ends shortly after flowering begins (Bernard, 1972). 516 
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The P value patterns of PR were different from those of the other traits. Meteorological 517 

factors generally exert their effects after flowering, around the 21st to 27th stages, as observed for 518 

mean temperature (highest −log𝑃 = 6.854 at the 27th stage, r2 = 0.062), maximum temperature 519 

(−log𝑃 = 5.544 at the 27th stage, r2 = 0.049), minimum temperature (−log𝑃 = 6.207 at the 27th 520 

stage, r2 = 0.056), vapor pressure (at the 21st stage, −log10𝑃 = 8.330, r2 = 0.076), solar radiation 521 

(−log𝑃 = 8.605 at the 21st to 24th stages, r2 = 0.079) and potential evapotranspiration (−log𝑃 =522 

8.658 at the 21st to 22nd stages, r2 = 0.079). The 21st to 27th stages occurred on average 38–64.6 days 523 

after flowering, when the accumulation of protein is past its rapidest growth period (20–40 days after 524 

flowering), but is still ongoing (Gayler & Sykes, 1981). The meteorological factors detected 525 

potentially affected the G × E interactions of PR via the photosynthetic activity at this stage, which 526 

is essential for nitrogen fixation. 527 

To assess the validity of these detected environmental covariates, the detective power of 528 

ECGC was verified with simulations. As illustrated in the Methods, the performance of ECGC is 529 

affected by r2 and the number of environment M. The receiver operating characteristic (ROC) curves 530 

obtained under different combinations of r2 and M are shown in Fig. 3. As expected, the performance 531 

of ECGC gained as r2 and M increased. In Fig. 4a and 4b, observed r2 values for each trait are shown 532 

for comparison with Fig. 3. The r2 values of the detected environmental covariates were greater than 533 

0.053 for PR (M = 30) and greater than 0.018 for the other traits (M = 52) (Fig. 4b). The ROC curves 534 

under the corresponding combinations of r2 and M in simulation results (0.053 and 30, and 0.018 and 535 

50, respectively) suggest that ECGC detected the environmental covariates with reasonable accuracy 536 

under these r2 and M values. 537 
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 538 

Fig. 3 Receiver operating characteristic (ROC) curves in simulation analyses. The titles of the plots 539 

denote the number of environments (M). The ROC curves of different r2 values are drawn with different 540 

colours. The x and y axes are the false positive rate and the true positive rate, respectively. In these 541 

simulations, 99 true negatives were simulated for each true positive. Thus, the coordinate (x, y) = (1, 0.01) 542 

means that one true positive is detected with 0.99 false positives. 543 

 544 
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 545 

Fig. 4 Observed r2 values of off diagonals between the similarity matrix of environmental 546 

covariates and the genetic correlation matrix. (a) Histograms for all environmental covariates. (b) 547 

Histograms for the environmental covariates significantly detected. Abbreviations: YI, yield; SW, seed 548 

weight; DTF, days to flowering; DTM, days to maturity; SL, stem length; PR, protein content. 549 

 550 

In the final step of ECGC, the genetic architecture underpinning the sensitiveness of the 551 

varieties to the detected environmental covariates was examined using association mapping (Fig. 1f). 552 

For the environmental covariates detected in the fourth step, slopes were estimated for each variety 553 

by regressing the additive genetic effects at each environment on the environmental covariates (Table 554 

S18). The slope represented the sensitivity of the variety to the changes in the environmental 555 

covariates, and genome-wide association (GWA) mapping was conducted on the slopes. By pruning 556 

with false discovery rate (FDR) < 0.05 and subsampling analyses, 39 chromosomal regions were 557 

significantly detected for traits except for SW (Fig. S5–S10 and Table S19). DTF shared one and two 558 
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regions with DTM and SL, respectively, and these three traits shared one region (Fig. 5a) which is 559 

located at near the known flowering gene (E2) (Watanabe et al., 2011). On the other hand, YI and PR 560 

shared no regions with each other, and nor with DTF, DTM, and SL (Fig. 5a). These results suggest 561 

that major genes responsible for the G × E interactions triggered by meteorological factors are 562 

generally not pleiotropic. This suggestion can be confirmed by the distributions of the meteorological 563 

factor/growth stage combinations where significant associations were detected (Fig. 5b and Fig. S11). 564 

For DTF, DTM, and SL, significant associations were generally detected for the temperature-related 565 

factors and photoperiod before flowering. For YI, associations were significantly detected for 566 

precipitation around sowing, hours of sunshine during maturity, and potential evapotranspiration and 567 

vapor pressure deficit (i.e., factors related to photosynthesis) around flowering. For PR, significant 568 

associations were mainly detected for temperature-related factors during maturity. That is, the major 569 

genes responsible for these traits affect the sensitivities to different meteorological stimuli occurred 570 

at different growth stages. 571 

 572 

Fig. 5 Summary of chromosomal regions detected by genome-wide association mapping. (a) 573 

Number of chromosomal regions significantly detected by association mapping for each trait. (b) 574 

Distributions of meteorological factor/growth stage combinations where significant associations were 575 
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detected. Red dots indicate the combinations with significant associations. See Figure S11 for the other 576 

traits and meteorological factors. The diagonal elements of the triangles correspond with the 1st to 30th 577 

growth stages, from the lower left to the upper right. The off-diagonal elements correspond to the growth 578 

periods that span multiple stages, where the x and y axes denote the start and end of the periods, 579 

respectively. The broken lines indicate flowering time. Abbreviations: T, mean temperature; Tmax, 580 

maximum temperature; Tmin, minimum temperature; Pr, precipitation; e, vapour pressure; VPD, vapour 581 

pressure deficit; N, hours of sunshine; EP, potential evapotranspiration; Ph, photoperiod. 582 

 583 

GWA mapping of ECGC could narrow down a genomic region that was suggested to be 584 

responsible for the G × E interactions by QTL mapping. Three close regions on chromosome 12 585 

spanning 17.86–18.85 Mbp were detected for the slopes of YI for precipitation at the 1st to 3rd stages 586 

(Fig. 6a and 6b, Table S19). These regions include the QTL (14.39–35.1 Mbp) for hypoxia tolerance 587 

of Japanese soybean breeds (Van Nguyen et al., 2017), which is related to root extension under flood 588 

conditions. Gene ontology analyses revealed that two orthologs of Glyma.12G142900 589 

(18.503–18.505 Mbp) in Arabidopsis thaliana (AT4G27280 and AT5G54490) are involved in cell 590 

response to hypoxia. In addition, the gene (Glyma.12G142900) was reported to show higher 591 

expression on root tissues (Phytozome 12, accessed on March 30, 2021), suggesting the gene is a 592 

plausible candidate. 593 

Strong associations were observed on multiple adjacent regions on chromosome 10 594 

spanning 44.46–46.61 Mbp for various meteorological factors, including temperature-related 595 

covariates and photoperiod (Fig. 6c and 6d, Table S19, and Fig. S9). These regions were also 596 

detected for DTM and SL, reflecting the similar tendencies of the G × E interactions (Figs. S7 and 597 

S10). These regions included E2 (45.29–45.32 Mbp), which is an analogous gene of GIGANTEA of 598 

Arabidopsis and a major gene for flowering time in soybean (Watanabe et al., 2011). These regions 599 

also included two orthologs (Glyma.10G180600 and Glyma.10G209600) of Arabidopsis flowering 600 

genes (CRY2 and ELF6, respectively). Known flowering genes of soybean responsible for 601 

photosensitivity, such as E1 (Xia et al., 2012), E3 (Watanabe et al., 2009) and E4 (Liu et al., 2008), 602 

were not detected for any of the environmental covariates. It is notable that association mapping 603 
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using slopes can detect genes with effects that vary according to environmental covariates. Because 604 

the loss-of-function alleles of E1 (Tsubokura et al., 2014) were strictly used at higher latitudes 605 

(Supplementary Methods 4 and Table S20), the effects at lower latitudes could not be estimated. 606 

Thus, these effects would not be reflected in the slopes. Conversely, E3 and E4 were probably not 607 

involved in the G × E interactions because of constant gene effects across environments. Additional 608 

analyses that examined the allele effects of these flowering genes using sommer 609 

(Covarrubias-Pazaran, 2016) showed that the E2 gene effect was the most variable across 610 

environments (Supplementary Methods 5 and Fig. S12). 611 

 612 

 613 

Fig. 6 Examples of the genome-wide association mapping results. (a) Slopes of YI for precipitation at 614 

the 1st to 3rd growth stages. The x and y axes are the environmental covariates and the additive genetic 615 

effects, respectively. Both axes are standardised. (b) Manhattan and QQ plots of the association analysis 616 

of the slopes illustrated in (a). The horizontal dashed line indicates the false discovery rate (0.05) 617 

threshold. The x and y axes of the QQ plot are the expected and observed −log10 P values, respectively. 618 

(c) Slopes of days to flowering for maximum temperature at the 5th to 14th growth stages. (d) Manhattan 619 

and QQ plots for the slopes illustrated in (c). 620 

 621 

The slopes provide insights on how the G × E interactions were involved in the selection 622 

of modern varieties. For example, for YI, varieties with positive slopes for an environmental 623 
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covariate are expected to be more preferred at environments with greater environmental covariates. 624 

In other words, if a trait is directionally preferred, it is expected that the environmental covariates 625 

will be correlated with the averages of slopes of the varieties evaluated at each environment. In fact, 626 

the correlations were positive for YI and SW (Fig. 7a–c) and often significant (P < 0.05 after 627 

Bonferroni correction, Table S21). The negative correlations found for PR are attributable to the 628 

trade-off between YI and PR (i.e. a higher yield tends to lower PR). These results clearly suggest that 629 

varieties that exhibit high YI under the detected environmental covariates have been selected by 630 

breeders, intendedly or unintendedly. Conversely, for DTF, DTM and SL, the correlations were more 631 

moderate, and no significant correlation was found. This result is reasonable because these traits 632 

were not directionally preferred. Rather, a characteristic U-shaped trend was found for 633 

temperature-related environmental covariates and photoperiod (Fig. 7d). For DTF, this tendency 634 

indicates that a longer DTF is acceptable in lower latitudes (more temperate climates), whereas a 635 

shorter DTF is preferred in higher latitudes (less temperate climates). These results are coherent 636 

because early flowering is required in cold climates to avoid frost damage. 637 

 638 

Fig. 7 Correlations between environmental covariates and the averages of the slopes of the 639 
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varieties evaluated at each environment. Positive/negative correlations indicate directional selection 640 

for the environmental covariates. (a) Weighted averages of slopes for each trait. YI, yield; SW, seed 641 

weight; DTF, days to flowering; DTM, days to maturity; SL, stem length; PR, protein content. (b) Examples 642 

of correlations between the environmental covariates and the averages of the slopes observed for yield. 643 

The environment covariates that showed strong associations with the G × E interactions are shown. The 644 

red lines are the linear regression lines. (c) Example of correlations between the environmental 645 

covariates and the averages of the slopes observed for protein content. The environment covariates that 646 

showed the highest correlation with the G × E interactions are shown. (d) Examples of correlations 647 

between the environmental covariates and the averages of the slopes observed for days to flowering. The 648 

two environment covariates that exhibited the highest associations with the G × E interactions and 649 

photoperiod at the 4th to 5th stages are shown. The red lines were drawn using the local polynomial 650 

regression provided by the R package KernSmooth (ver. 2.23-17) (Wand & Jones, 1995). 651 

 652 

Discussion 653 

The base model of ECGC is a conventional model for reaction norm where the genotypic value is 654 

divided into a component representing sensitivity to environmental covariates and a component free 655 

from them (van Eeuwijk et al., 2005; Hayes et al., 2016). The novelty of ECGC is to associate 656 

similarity matrices of environmental covariates with the genetic correlation matrix, and the idea of 657 

ECGC can be derived by extending the base model as described in Materials and Methods. This 658 

approach brings the following advantages. First, the environmental covariate search by ECGC is 659 

directly related to the G × E interactions whereas the search based on the variance of slopes 660 

(sensitivities of genotypes) is not necessarily related to the G × E interactions. Second, because of 661 

the properties of mixed models used for estimating genetic correlations between environments, 662 

ECGC is applicable to data with missing values and/or unbalanced structure. Genetic correlations 663 

between environments can be estimated using mixed models and genomic relationship matrices even 664 

when varieties are not overlapped between environments. Estimation of genetic correlation without 665 

overlapped records can be found in, for example, estimation of between-sex genetic correlation 666 

(Crews & Kemp, 2001). Lastly, genetic covariances/correlations between multiple environments can 667 

be estimated in pairwise manner (Fieuws & Verbeke, 2006) and parallelized, which enables ECGC to 668 

be scalable with the number of environments. The last two advantages are particularly useful in 669 
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analysis of large-scale multi-environment data sets and/or historical data sets. 670 

Owing to these advantages, our proposed ECGC was applicable to the large-scale 671 

multi-environment data set of soybean, and able to depict comprehensive landscapes on how 672 

environment stimuli are involved in the G × E interactions for agronomic traits evaluated in real 673 

fields. Moreover, candidate QTLs/genes responsible for the interactions were detected. ECGC also 674 

provided interesting insights on how the G × E interactions are related to the selection of modern 675 

Japanese varieties. Thus, it can be concluded that ECGC will be a promising approach to understand 676 

the G × E interactions and to reveal the gene-by-environment stimuli interactions. 677 
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