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ABSTRACT 

Gene-based association analysis is an effective gene mapping tool. Many gene-based methods 

have been proposed recently. However, their power depends on the underlying genetic architecture, 

which is rarely known in complex traits, and so it is likely that a combination of such methods could 

serve as a universal approach. Several frameworks combining different gene-based methods have 

been developed. However, they all imply a fixed set of methods, weights and functional annotations. 

Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce 

sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from 

genome-wide association studies (GWAS). It is an extended and modified version of STAAR 

framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range 

of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, 

weighting functions and probabilities of genetic variants being causal. The methods used in the 

framework were adapted to analyse genes with large number of SNPs to decrease the running time. 

The framework includes the polygene pruning procedure to guard against the influence of the strong 

GWAS signals outside the gene. We also present new improved matrices of correlations between the 

genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a 

state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data. 
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AUTHOR SUMMARY  

Gene-based association analysis is an effective gene mapping tool. Quite a few frameworks 

have been proposed recently for gene-based association analysis using a combination of different 

methods. However, all of these frameworks have at least one of the disadvantages: they use a fixed set 

of methods, they cannot use functional annotations, or they use individual phenotypes and genotypes 

as input data. To overcome these limitations, we propose sumSTAAR, a framework for gene-based 

association analysis using GWAS summary statistics. Our framework allows the user to arbitrarily 

define a set of the methods and functional annotations. Moreover, we adopted the methods for the 

analysis of genes with a large number of SNPs to decrease the running time. The framework includes 

the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the 

gene. We also present new improved matrices of correlations between the genotypes of variants 

within genes, which now allows to include ultra-rare variants in analysis. 
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INTRODUCTION 

Gene-based association analysis is an effective replacement of genome-wide association analysis 

(GWAS) in identification of rare genetic variants 1, 2. Many gene-based methods have been proposed 

recently. Their power depends on the underlying genetic architecture that is rarely known in complex 

traits. Therefore, a combination of such methods could serve as a universal approach. 

Among popular combined tests, SKAT-O was the first, for which the distribution of test 

statistics was analytically described 3. For other combined tests, p-values were estimated empirically 

at the cost of dramatically increased computation time. The task to analytically combine the p-values 

obtained by different methods has been solved in the aggregated Cauchy test, ACAT-O 4. This gave 

impetus to create a range of frameworks in order to one-by-one calculate a number of gene-based tests 

and then combine them by ACAT-O 5-9. The frameworks differ from one another by the task, input 

data, methods used, and ways to include functional biological annotations. All these frameworks have 

a disadvantage: they are not flexible. They use the fixed set of methods, weights and combinations of 

functional annotations. Moreover, the majority of existing frameworks use individual phenotypes and 

genotypes as input data. Such data cannot be deposited in open-access databases, and so they are 

unavailable to a wide range of investigators. Recently, it was demonstrated that all popular methods of 

gene-based association analysis based on the linear regression models can use summary statistics 

instead of individual data 10. Previously, we presented formulas for the wide range of association tests 

and implemented them in the sumFREGAT package 11.  

The framework named STAAR (variant-set test for association using annotation information) 

stands out among others as a comprehensive and powerful tool that effectively incorporates SNP-

weighting by allele frequencies, variant categories and multiple complementary annotations6. Here we 

propose the extended and modified version of the STAAR framework, which we called sumSTAAR. 

The modification concerns the input data: STAAR uses raw genotypes and phenotypes, and 

sumSTAAR uses GWAS summary statistics (effect sizes, standard errors, sample sizes etc.). 

Extension relates to the gene-based association analysis methods used: STAAR uses a fixed set of 

three methods, and sumSTAAR uses an arbitrary set including up to six methods.  
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The methods comprised by the sumSTAAR framework are modified in two ways compared 

with those previously described.11 First, they involve a special algorithm for the analysis of large 

genes with >500 SNPs. Second, they use more effective computational algorithms for matrix 

operations. An additional empowering feature of the framework is the use of new LD matrices 

estimated on an extended sample: 265K instead of 503 individuals from the 1000G project. For the 

first time, due to these high-coverage estimates, it became possible not to discard the large amount of 

rare variants when analyzing summary statistics with a wide range of powerful gene-based methods. 

We also present the procedure of polygene pruning to guard against the influence of strong association 

signals outside the gene on the results of gene-based association analysis 12. 

 

METHODS 

Gene-based association analysis 

The sumSTAAR framework combines (a set of) the following methods: burden test (BT), 

SKAT, SKAT-O, aggregated Cauchy association test (ACAT-V), the tests using functional linear 

regression model (FLM) and principal component analysis (PCA). Variant-specific weights can be 

applied to all of these methods. We also introduced the probabilities of genetic variants being causal 

estimated using different functional annotations in BT, SKAT, SKAT-O, FLM, PCA and ACAT-V. 

All these modified tests and the parameters of their distributions are presented in Supplementary 

Materials. The sumSTAAR() function (Fig. 1) allows the user to arbitrarily choose a set of tests that 

differ in method, weighting function and probabilities of genetic variants being causal, calculate these 

tests, and then combine them using ACAT-O. 

Analysis of large genes 

To decrease the running time for association analysis of genes with a large number of SNPs, we 

propose the following algorithm. Using thresholding technique, we divide all SNPs within a gene into 

two groups by p-values, which correspond to their weighted z-scores. Since multiple linear regression 

models include SNP-specific weights, we form SNP groups taking into account these weights. We 

used a threshold of 0.8, which was selected empirically (see below). We apply a chosen gene-based 
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test to the group with the smaller weighted p-values and calculate the simple mean weighted p-value 

for another group. Then we combine p-values obtained for the two groups by ACAT-O. Obviously, 

this algorithm is an approximation to the chosen gene-based test, however it proves to be very 

effective for the genes with more than 500 SNPs. We introduced it in SKAT, SKAT-O, PCA and 

FLM methods.  

Selecting the threshold  

To choose the threshold, below which weighted p-values are considered as small when 

analyzing large genes, we performed an empirical assessment of the approximation on the material of 

summary statistics for neuroticism from UK Biobank dataset 13(for details, see Supplementary 

Materials). We calculated the approximated SKAT statistics using a range of values as threshold 

(from 0.05 to 0.95) on 2,103 genes having from 500 to 10,000 SNPs. For each threshold value, we 

measured the total elapsed time and calculated R2 between the original and approximated SKAT 

statistics (log10(p-values)). Since the approximated SKAT p-values deviated in both directions from 

original ones, we assessed both deviances using the formula  

��� �  ���log�� ���  log�� �����
�

. 
Here ��� and ���  are the approximation and original p-values for the i-th gene, respectively; dev 

for conservativeness and inflation of the approximated test statistics was calculated using � �
���� �  ���� and  � � ���� �  ����, respectively. 

LD matrices 

The LD matrices of genotype correlations are required as input data for all packages using 

summary statistics. Such matrices are obtained using reference samples of genotypes, usually from the 

1000 Genomes Project. However, due to a small sample size, rare variants are not involved in the 

calculation of correlation matrices. Using the UK Biobank resource under application #59345, we 

calculated Pearson correlation coefficients (r) between genotypes of variants within gene for 19,426 

genes using 265,000 participants of European ancestry from the UK Biobank cohort 14 and LDstore 
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software v1.1 15. Only variants with MAF>10-5 and imputation quality r2>0.3 were used for the 

calculations.  

Sociodemographic, physical, lifestyle and health-related characteristics of the UK Biobank 

cohort have been reported by 16. In brief, individuals enrolled in the UK Biobank study were aged 40–

69 years; were less likely to be obese, to smoke, to drink alcohol; had fewer self-reported health 

conditions as compared to the general population. All study participants provided written informed 

consent, and the study was approved by the North West Multi-Centre for Research Ethics Committee 

(11/NW/0382). The participants of European ancestry (defined by SNP-based principal component 

analysis) were randomly selected to provide the GWAS discovery cohort. Genotyping and imputation 

data were obtained from the UK Biobank March 2018 data release. Genotyping was conducted using 

the Affymetrix UK BiLEVE and Affymetrix UK Biobank Axiom arrays. Imputation was performed 

with the IMPUTE4 program (https://jmarchini.org/impute-4/) 13 using the Haplotype Reference 

Consortium (HRC) 17 and merged UK10K and 1000 Genomes phase 3 reference panels. Details on the 

centralized analysis of the genetic data, genotype quality, properties of population structure and 

relatedness of the genetic data, and efficient phasing and genotype imputation have been reported 

previously 13. 

 
RESULTS 

All three gene-based methods implemented in STAAR (BT, SKAT and ACAT-V) are available 

in the sumSTAAR framework. We analytically showed the equivalence of these tests between the 

frameworks (see Supplementary Materials) and numerically compared their results obtained in 

STAAR and sumSTAAR. STAAR implies an omnibus weighting scheme of combining multiple 

differently weighted tests (see Supplementary Materials, Fig. S1). Using summary statistics, we 

reproduced this scheme in sumSTAAR. The R code to perform simulations and comparisons is 

available at https://github.com/nbelon/sumSTAAR-vs-STAAR-

comparison/blob/main/sumSTAAR.vs.STAAR.R. As can be seen in Supplementary Materials, 

Fig. S2, there is excellent agreement between the results obtained by two packages.  
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Then, we tested the new algorithm developed for analysis of large genes and picked up the 

threshold separating the two groups of SNPs in accordance with their weighted p-values. We tried to 

find a reasonable compromise between approximation accuracy and computation time. We observed 

the highest correlation between the original and approximated test statistics for threshold values 

ranging from 0.6 to 0.8 (Fig.2A). There was no prominent change in total elapsed time among these 

runs. However, the approximated test proved to be more conservative and inflation less frequent with 

increasing threshold values (Fig.2B). Therefore, to prevent an increase in false positive rate, we 

selected the threshold of the weighted p-value = 0.8 to separate the SNPs on two groups. 

Using the neuroticism summary statistics, we estimated the accuracy and efficiency of the 

modified methods implemented in the new version compared to the version of sumFREGAT without 

modifications. Figure 3 shows a good agreement between the p-values obtained by two packages and 

a decrease in the running time when using the new modified version of the package. For SKAT, 

SKAT-O, PCA and FLM methods, the running time was decreased by 2.4, 10.5, 3.4 and 2.6 times, 

respectively. The most prominent effect was shown for the most popular SKAT-O method. 

Within the framework, we introduce the new LD matrices for 19,426 genes estimated using 

genotypes of 265K participants of UK Biobank project. The matrices contain information about 

21,155,091 SNPs, with 17,142,006 (81%) of them having MAF < 0.01. For comparison, the widely 

used matrices of SNP-SNP correlations estimated on 503 European participants of 1000G project 

include 4,544,901 SNPs, with only 707,862 (16%) of them having MAF < 0.01. The UK Biobank 

matrices, therefore, provide 4.65 times higher SNP coverage and 24 times higher coverage for rare 

variants. 

For the polygene pruning procedure, we now publish an R-script to perform it step-by-step. 

 

DISCUSSION 

We developed a new framework for gene-based association analysis using summary statistics. 

This framework can include an arbitrary sets of methods for gene-based association analysis, 

weighting functions and functional annotations used for the estimation of SNP probability being 
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causal. Many of the methods used in the framework were adapted to the genes with large number of 

SNPs. This allows us to increase the computation speed of different methods by 2.4 – 10.5 times.  

We compared STAAR and sumSTAAR and demonstrated the strong agreement of the results 

obtained by BT, SKAT, ACAT-V and their ACAT-O-based combinations. Our sumSTAAR 

framework, however, provides an opportunity to expand the range of methods with the fixed-effects 

models (PCA and FLM). In addition, SKAT-O can be used instead of ACAT-O to combine the BT 

and SKAT. Being more computationally intensive, SKAT-O nevertheless provides an optimal, kernel-

based combination of the methods and higher statistical power compared with ACAT-O. 

We introduced the new LD matrices with high-coverage estimates of SNP-SNP correlations for 

human genes. Due to these matrices, it became possible to add the large amount of rare variants when 

analyzing summary statistics with a wide range of gene-based methods. The matrices can be used not 

only in our software, but also in any program for genetic analysis using summary statistics. 

The sumSTAAR framework suggests using the polygene pruning procedure to guard against the 

influence of the strong GWAS signals outside the gene. It has been shown that a substantial share of 

gene-based association signals is inflated by these GWAS signals 6, 12. To guard against this influence, 

the conditional GWAS summary statistics calculated using, for example, the GCTA-COJO package 18 

can be used in sumFREGAT as input data. However, to calculate the conditional statistics, this type of 

analysis relies on the simple multiple regression with all the attendant limitations. For example, 

conditional SNPs should be in complete linkage equilibrium with each other and their number, 

therefore, cannot be large. The procedure called “polygene pruning” 12 represents an alternative way 

to reduce the effect of strong GWAS signals outside the gene. Polygene pruning results in exclusion 

of some variants within the gene being in LD with outside GWAS-identified variants from gene-based 

analysis. In essence, this procedure is analogous to the extreme weighting of within-gene SNPs based 

on their LD with outer GWAS signals. Polygene pruning way can be preferable when the set of 

within-gene variants is large or includes rare variants. Moreover, the classical conditional analysis is 

impossible to perform when genotypes of top GWAS signals are not available, while correlation 

structure sufficient for polygene pruning can be shared more easily. 
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To our knowledge, sumSTAAR is the most flexible and one of the most comprehensive 

frameworks that allow researchers to perform state-of-the-art gene-based analyses using GWAS 

summary statistics. 

 

DATA AND SOFTWARE AVAILABILITY 

sumFREGAT: https://CRAN.R-project.org/package=sumFREGAT 

LD matrices based on UKBB sample: https://mga.bionet.nsc.ru/sumfregat/ukbb/ 

Polygene pruning: https://github.com/nbelon/Polygene_pruning 

GWAS summary statistics used: 

https://ctg.cncr.nl/documents/p1651/sumstats_neuro_sum_ctg_format.txt.gz 
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Figure 1. Workflow schematic. (A) Each set of SNPs (all, non-coding, exonic, nonsynonymous and 

others) is analyzed separately. (B) Input data for sumFREGAT include GWAS summary statistics (p-values 

and effect sizes), correlations between genotypes calculated using the same or reference sample, the matrix of 

weighting functions defined by the parameters of the beta distribution, the probabilities of SNPs being causal 

(e.g., estimated using different functional annotations http://favor.genohub.org/). The list of methods can 

comprise an arbitrary subset of BT, SKAT, SKAT-O, PCA, FLM, and ACAT-V. For each method, region-

based association analysis is repeatedly performed using different combinations of the weighting functions 

(i ∈ [1, I]) and probabilities of SNPs being causal (j ∈ [0, J]). ACAT-O is used for combining the p-values 

obtained by each method under different weighting functions and probabilities, and then for combining the 

results obtained by various methods. 
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Figure 2. Determination coefficient and deviances of approximated SKAT statistic related to the 

threshold value. (A) Determination coefficient (R2) between –log10(P value) of original and approximated tests 

shown in red. (B) Deviances indicating inflation and conservativeness of approximated test statistics compared 

with original shown in red and blue, respectively. 
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Figure 3. Accuracy and running time of four gene-based methods for association analysis under 

approximation. Each point represents a gene: 7,990 genes for FLM (genes that passed collinearity filter for 25 

basis functions, see Supplementary Materials for details) and 17,975 genes for other methods. Left panels 

show –log10(P values), red lines are regression lines and black lines represent one-to-one correspondence. On 

the right panels, lines represent the best-fitted polynomial functions. 
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