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Abstract  13 

Metagenomic data sets of host-associated microbial communities often contain host DNA that is 14 

usually discarded because the amount of data is too low for accurate host genetic analyses. 15 

However, if a reference panel is available, genotype imputation can be employed to reconstruct 16 

host genotypes and maximise the use of such a priori useless data. We tested the performance of 17 

a two-step strategy to input genotypes from four types of reference panels, comprised of deeply 18 

sequenced chickens to low-depth host genome (~2x coverage) data recovered from metagenomic 19 

samples of chicken intestines. The target chicken population was formed by two broiler breeds 20 

and the four reference panels employed were (i) an internal panel formed by population-specific 21 

individuals, (ii) an external panel created from a public database, (iii) a combined panel of the 22 

previous two, and (iv) a diverse panel including more distant populations. Imputation accuracy was 23 

high for all tested panels (concordance >0.90), although samples with coverage under 0.28x 24 

consistently showed the lowest accuracies. The best imputation performance was achieved by the 25 

combined panel due to the high number of imputed variants, including low-frequency ones. 26 

However, common population genetics parameters measured to characterise the chicken 27 

populations, including observed heterozygosity, nucleotide diversity, pairwise distances and 28 

kinship, were only minimally affected by panel choice, with all four panels yielding suitable results 29 

for host population characterization and comparison. Likewise, genome scans between the two 30 

studied broiler breeds using imputed data with each panel consistently identified the same sweep 31 

regions. In conclusion, we show that the applied imputation strategy enables leveraging insofar 32 

discarded host DNA to get insights into the genetic structure of host populations, and in doing so, 33 

facilitate the implementation of hologenomic approaches that jointly analyse host genomic and 34 

microbial metagenomic data.  35 

Author summary  36 

We introduce and assess a methodological approach that enables recovering animal genomes 37 

from complex mixtures of metagenomic data, and thus expand the portfolio of analyses that can 38 

be conducted from samples such as faeces and gut contents. Metagenomic data sets of host-39 
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associated microbial communities often contain DNA of the host organism. The principal drawback 40 

to use this data for host genomic characterisation is the low percentage and quality of the host 41 

DNA. In order to leverage this data, we propose a two-step imputation method, to recover high-42 

density of variants. We tested the pipeline in a chicken metagenomic dataset, validated imputation 43 

accuracy statistics, and studied common population genetics parameters to assess how these are 44 

affected by genotype imputation and choice of reference panel. Being able to analyse both 45 

domains from the same data set could considerably reduce sampling and laboratory efforts and 46 

resources, thereby yielding more sustainable practices for future studies that embrace a 47 

hologenomic approach that jointly analyses animal genomic and microbial metagenomic features. 48 

Introduction 49 

The large molecular data sets generated through shotgun DNA sequencing usually contain useful 50 

information to characterise taxa, functions and structures beyond the primary aim of the study. 51 

This is especially true in metagenomic data sets that often present mixtures of DNA from 52 

eukaryotic, prokaryotic and viral origin (1,2). While primarily used for characterising the genomic 53 

architecture of microbial communities, metagenomic data generated from gut contents or faeces 54 

can also be used for extracting useful genomic information of the animal host (3). In fact, 55 

hologenomic approaches that entail joint analysis of animal genomes along with metagenomes of 56 

associated microorganisms to study animal-microbiota interactions, can benefit from such 57 

optimisation strategies (4,5).  58 

However, mining host genomic data from metagenomic data sets entails a number of challenges. 59 

The fraction of host sequences in the metagenomic mixture is often unpredictable, and can range 60 

from a negligible proportion (<5%) to an almost complete representation (>95%) of the sample (6), 61 

even within a single taxon and sample type (7). Hence, a given amount of metagenomic 62 

sequencing effort does not ensure that the desired depth of host DNA sequencing will be reached. 63 

When the host DNA fraction in the metagenomic mixture is low, achieving the desired sequencing 64 

depth requires increasing sequencing effort, with its respective economic burden. In consequence, 65 

the amount of host DNA sequences generated is often insufficient for accurate variant calling. 66 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465664
http://creativecommons.org/licenses/by/4.0/


 

4 

One useful strategy for efficient data mining of host genomic information from metagenomic 67 

mixtures is genotype imputation, which consists in estimating missing haplotypes of poorly 68 

characterised genomes using a reference panel of high-quality genotypes (8). Using this approach, 69 

the information gaps of genomes with very low sequencing depth can be reconstructed based on 70 

the haplotype information of a properly characterised representative panel of genomes. Genotype 71 

imputation of single nucleotide polymorphisms (SNPs) is a widely employed approach in 72 

association studies to increase the density of variants of genomic data sets (9–11). In model 73 

organisms, the recent generation of large high-quality genomic databases, such as the human 74 

1000 Genomes Project (12) and the 1000 Bull Genomes Project (13), has improved the accuracy 75 

of imputation and increased the statistical power of association analyses, especially for rare 76 

variants (14,15). However, ideal reference panels are only available for a limited number of model 77 

and farm species, and they also require high computational capacity.  78 

When large reference panels are not available for small or isolated populations, an alternative 79 

strategy is to create a custom panel using a representative subset of genomes of the studied 80 

population (16,17). Due to its lower computational requirements, this approach can be more cost-81 

efficient when studying closely related individuals, such as chickens from a given hatchery. This is 82 

because when haplotype diversity is limited, genomic information of a subset of the population can 83 

efficiently input haplotype information to the rest of the population. Moreover, the study-specific 84 

panel can be combined with individuals from public databases (16,17). This approach has been 85 

successfully employed in sheep (18), pig (19) and chicken (20) studies, for example.  86 

Nevertheless, in addition to the size and diversity of the panel (21), imputation strategy may also 87 

affect the accuracy of recovered genotypes (22). In contrast to the standard imputation method, in 88 

which low density SNP arrays are imputed to high density based on a reference panel, shallow 89 

shotgun sequenced data displays particular challenges, as no genotype is known with certainty 90 

and SNPs may be distributed unevenly. Recently, a two-step imputation strategy for ultra low-91 

depth coverage samples (<1x) was introduced (23). This approach relies on updating genotype 92 

likelihoods before imputing the missing genotypes using a reference panel in order to recover a 93 

higher density of SNPs with greater confidence. It was first proposed in human population genetics 94 
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as an alternative to genotyping arrays for genome-wide association studies (23), and later applied 95 

to recover ancient human genomes (24). To the best of our knowledge, such a two-step imputation 96 

strategy has not been implemented yet in non-model animal populations with variable coverage 97 

and a limited number of available samples as a reference panel. Hence, there are no specific 98 

recommendations about the bioinformatic procedures for host genome recovery from 99 

metagenomic data sets and the choice of the most optimal panel to maximise accuracy of the 100 

imputation process. We also ignore how the choice of a custom reference panel could determine 101 

downstream analyses, such as measuring population genetics parameters.  102 

Here, we present a straightforward approach to recover high-quality host genomes from gut 103 

metagenomic data, showcased in two broiler chicken breeds. We evaluate how the reference 104 

panel composition and sample depth of coverage affects imputation performance using four panels 105 

designed according to the resources scientists studying microbial metagenomics may have access 106 

to. We first calculate imputation accuracy between imputed and true genotypes in three 107 

chromosomes using 12 validation samples for which high-depth sequencing data is also available. 108 

Then, we employ a bigger data set of 100 individuals to impute all autosomal chromosomes and 109 

explore how the choice of the reference panel affects parameters commonly used in population 110 

genetics. Aiming at facilitating its implementation by other researchers, we provide the 111 

bioinformatic pipeline and guidelines for the choice of the most suitable panel and minimal depth 112 

threshold for a successful imputation.  113 

Methods 114 

Ethical statement 115 

Animal experiments were performed at IRTA’s experimentation facilities in Tarragona under the 116 

permit FUE-2018-00813123 issued by the Government of Catalonia, in compliance with the 117 

Spanish Royal Decree on Animal Experimentation RD53/2013 and the European Union Directive 118 

2010/63/EU about the protection of animals used in the experimentation.  119 
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Target population and reference panels  120 

Our study design involved genotype imputation from four reference panels with different origins 121 

and genetic features to a target chicken population characterised through low genomic coverage 122 

from intestinal metagenomic data. 123 

Target population 124 

Genomic information of the target population of 100 chickens belonging to two broiler breeds (Ross 125 

308 and Cobb 500, hereafter simply Ross and Cobb) was generated from metagenomic DNA 126 

extracted from the caecum contents of the birds. In short, ca. 100 mg of caecum content was 127 

collected right after euthanizing the animals and preserved in E-matrix tubes with DNA/RNA Shield 128 

buffer (Zymo Research, Cat. No. BioSite-R1200-125) at -20 ºC until extraction. After physical cell 129 

disruption through bead-beating using a Tissuelyser II machine (Qiagen, Cat. No. 85300), DNA 130 

extraction was performed using a custom nucleic acid extraction protocol (details explained in 131 

(25)), and sequencing libraries were prepared using the adapter ligation-based BEST protocol 132 

(26). Paired-end 150 bp-long reads were generated on a MGISEQ-2000 sequencing platform over 133 

multiple sequencing lanes. Sequencing effort was decided based on the desired depth of the 134 

metagenomic fraction of the samples, which was the primary objective of the data generation. A 135 

preliminary screening revealed that caecum contents contain a large fraction of microbial DNA 136 

(>80-95%), and a limited relative amount of host DNA (< 5-15%) (Fig 1A). Aiming at about 15 GB 137 

(gigabases, ca. 50 million reads) of bacterial DNA per sample, caecum samples yielded between 138 

0.5 and 4 GB of host DNA, which is equivalent to 0.5-4x depth of coverage of the chicken genome 139 

(~1.05 GB). 140 

 141 
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 142 

Fig 1. Study design and imputation pipeline for recovering host DNA. 143 

(A) The characteristics of the three data sets. (B) Composition and number of samples of the four 144 

reference panels used for imputation. Breeds are coded as Br1 = broiler line A, Br2 = broiler line 145 

B, L1 = white layer, L2 = brown layer, RJF= red junglefowl. (C) The study design has three data 146 

sets: the target population, internal reference and external reference samples. The bioinformatic 147 

procedure is divided into three steps: pre-processing, variant calling, and imputation. The input 148 

format of the starting step is a FASTQ file. After mapping we obtain a BAM file and from variant 149 

calling to the final step, procedures are performed using VCF file. The green box represents the 150 

steps proposed by Hui et al. (2020). Genotype probability (GP) filters are used during imputation 151 

and missing call rate (MCR) filters during panel design. 152 
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Reference samples 153 

Internal and external high-quality genome sequence data was used to create the reference panels. 154 

The internal reference data were generated from ileum content samples of 12 randomly selected 155 

individuals included in the target population (7 Ross and 5 Cobb), following the same procedures 156 

as explained above. In contrast to caecum samples, ileum contents contain a very large fraction 157 

(>90-95%) of host DNA, and a small representation of microbial DNA. Hence, in order to generate 158 

a comparable amount of microbial data to that of the caecum, ileum samples were sequenced 159 

aiming 100 GB/sample. This sequencing effort yielded about 90 GB of host DNA (ca. 80-90x depth 160 

of chicken genome), which enabled generating a high-quality internal reference panel from a 161 

subset of the studied population. In addition, chicken DNA sequence data of 40 broilers, 20 layers 162 

and 20 red junglefowls (RJF) generated by Qanbari et al. (2019) from blood samples were used 163 

as external reference data (Fig 1A). 164 

Composition of reference panels 165 

We used different combinations of the internal and external reference samples to create the four 166 

reference panels used to evaluate imputation accuracy and impute the target population: (i) The 167 

internal panel comprised 12 animals from our target population (7 Ross and 5 Cobb), (ii) the 168 

external panel comprised 40 animals from two broiler breeds (different to our target population), 169 

(iii) the combined panel combined the previous two panels, and (iv) the diverse panel contained 170 

more distant populations (Fig 1B). The four panels varied in size and genomic diversity in order to 171 

see whether the composition of the reference panels affected imputation accuracy. With the 172 

internal panel, we tested if a small subset of the target population was enough for a proper 173 

imputation in low-quality host sequence data derived from metagenomic samples. The use of an 174 

external panel only was considered to test if it was a viable option for studies with a shortage of 175 

samples or a limited budget for high-depth host sequencing. The combined panel, on the other 176 

hand, permits combining both resources, the study-specific and database samples. Lastly, the 177 

diverse panel enabled us to test whether including distantly related individuals would be more 178 

effective than the three previously mentioned strategies. 179 
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Pipeline for recovering host genotypes from metagenomic 180 

data 181 

Data pre-processing 182 

All the metagenomic sequence data we generated, which contained both host and microbial DNA, 183 

were pre-processed using identical bioinformatic procedures. In short, sequencing adapters were 184 

removed using AdapterRemoval (v2.2.4) (27) and exact duplicates using seqkit rmdup (v0.7.1) 185 

(28) prior to the read-mapping. Read-alignment to the chicken reference genome (galGal6; NCBI 186 

Assembly accession GCF_000002315.6) was conducted with BWA-MEM (v0.7.16a) (29). We 187 

employed default parameters except for the minimum seed length (-k), which was increased to 25 188 

in order to reduce the number of incorrectly aligned read pairs. We added the flag -M, which was 189 

used to mark shorter split hits as secondary mappings. Aligned reads were sorted and converted 190 

into sample-specific BAM files before filtering out the metagenomic fraction (unmapped) using 191 

SAMtools view (v1.11) (30) with “-b” and “-F12” flags. Mapping statistics including depth and 192 

breadth of coverage as well as percentage of mapped reads were calculated using SAMtools’ 193 

depth and flagstat functions.  194 

Pure genomic data (with no microbial fraction) generated by others (31) was downloaded from the 195 

EMBL-EBI ENA database, and mapped to the same chicken reference genome using BWA-MEM 196 

with -k default value and -M flag. 197 

Variant calling and genotyping 198 

Variants in the target population were called by chromosome with the mpileup utility of SAMtools 199 

using standard parameters (-C 50 -q 30 -Q 20). Variant calling was performed with “-m” and “-v” 200 

flags to allow variants to be called on all samples simultaneously. Raw variants were filtered using 201 

BCFtools (v. 1.11) (32) commands “-m2”, “-M2” and “-v snps” to keep only bi-allelic SNPs.  202 
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Variants of the internal reference samples were called the same way, but additionally, low quality 203 

variants with a lower base quality than 30 (QUAL<30) and variants with a base depth higher than 204 

three times the average (DP<(AVG(DP)*3) were removed to ensure only highly reliable variants 205 

were retained. 206 

 207 

Since we were solely interested in imputing variants present in our target population, the external 208 

reference samples were genotyped by defining variant sites detected in the internal reference 209 

samples. Genotyping was performed for all autosomal chromosomes with GATK (v4.1.7.0) (33) 210 

HaplotypeCaller using the “--min-base-quality-score 20”, “--standard-min-confidence-threshold-211 

for-calling 30”, “--alleles” and “-L” parameters to obtain calls at all given positions, followed by 212 

GATK SelectVariants "--select-type-to-include SNP” to only include SNPs.  213 

In preliminary analyses, we also called variants in the external reference panel in order to examine 214 

the overlap with the variants present in the internal reference samples. We used the same 215 

procedures explained above for GGA1. Genotyping based on the positions of the internal panel 216 

and variant calling from scratch were compared by using the 40 broilers from the external reference 217 

panel for GGA1 (Fig 1B). A similar number of variants had been obtained for the genotyped (2.5 218 

M) and the variant called VCF files (2.7 M). Moreover, 28% of the variants from the 40 broilers 219 

were not present in the internal reference samples (Fig S2). Thus, we decided to genotype the rest 220 

of the samples to reduce possible bias through the high number of variants specific to the external 221 

reference for the imputation of our target population.  222 

Two-step imputation via genotype likelihood updates  223 

We imputed genotypes from the four aforementioned reference panels to the target population 224 

using a two-step strategy. Prior to imputation, the reference panels were filtered by excluding 225 

variants with missing genotypes to remove any potential noise caused by inference errors, and 226 

subsequently phased using SHAPEIT (v4) (34). 227 
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Imputation was performed in two steps following Homberg et al. (2019) and Hui et al. (2020). First, 228 

genotype likelihoods were updated based on one of the reference panels using Beagle 4.1 (35). 229 

Beagle 4.1 accepts a probabilistic genotype input with “-gl” mode, and it only updates sites that 230 

are present in the input file. Second, missing genotypes in the input file were imputed using Beagle 231 

5.1 with “-gt” mode using the same reference panel. Beagle 5.1 only accepts files with a genotype 232 

format field, like later versions than Beagle 4.1. Therefore, the latest version cannot be used for 233 

both steps. Format field genotype probabilities (GP) were generated in both steps in order to enrich 234 

confident genotypes. We required the highest GP to exceed a threshold of 0.99 after both steps 235 

using BCFtools +setGT plugin. The rest of the parameters were set to default. Both steps’ input 236 

and output files were in VCF format. The schematic steps detailed in methods can be found in Fig 237 

1C and the scripts in the following link (https://github.com/SofiMarcos/Host-genome-recovery.git). 238 

Imputation accuracy using 12 validation samples 239 

The accuracy of the imputation using the four reference panels was tested using the 12 individuals 240 

for which we generated both low-depth (target population) and high-depth (internal reference 241 

samples) sequence data from caecum and ileum contents, respectively, hereafter referred to as 242 

validation samples. The low-depth samples of the 12 individuals had a depth of coverage spanning 243 

0.05x to 3.73x. For an unbiased evaluation, we employed a leave-one-out cross-validation 244 

(LOOCV) approach by excluding each of the 12 validation samples once from the reference panel 245 

in each of the different imputation scenarios. Considering the large size-variation of avian 246 

chromosomes, a macrochromosome (GGA1, 197.6 MB), a mid-size chromosome (GGA7, 36.7 247 

MB) and a microchromosome (GGA20, 13.9 MB) were selected for the test to optimise runtime 248 

and computational resources. Concordance between the internal reference samples and imputed 249 

genotypes was calculated for each individual chicken using VCFtools, with the“--diff-discordance-250 

matrix” option. Precision of heterozygous sites was also calculated, since these alleles are the 251 

most difficult to impute correctly. Kruskal-Wallis test was performed to test for differences across 252 

chromosomes. A paired sample T-test and F-test were performed for both parameters to verify if 253 

the difference in means and variances were significant between reference panels. T-test p-values 254 
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were adjusted using Bonferrini’s correction method. Moreover, imputation accuracy was estimated 255 

for variants in different minor allele frequency (MAF) bins to evaluate whether rare and common 256 

variants are equally correctly imputed. We thus extracted variant frequencies from the internal 257 

panel by analysing precision of heterozygous (het.) sites for the GGA1 in bins of 0-0.05, 0.05-0.1, 258 

0.1-0.3 and >0.3. 259 

Impact of reference panel on population genetics inference 260 

We explored the implications of using different reference panels in downstream analyses of 261 

population genetic inferences, including population structure, genetic diversity, and genome scans 262 

for signatures of selection. 263 

These analyses were run in all but two outlier samples with depths of coverage of 0.07x and 0.05x, 264 

which were below the threshold of 0.28x corresponding to the lowest successfully imputed sample 265 

in the validation set (genotype concordance of >0.90 and het. sites precision of >0.75, see results 266 

below). We thus used 100 samples (53 Ross and 47 Cobb) for which we ran the host DNA recovery 267 

pipeline for all the autosomal chromosomes and analysed common population genetics 268 

parameters including observed heterozygosity (O.Het), nucleotide diversity (π), pairwise distance 269 

as estimated through identity-by-state (1-IBS) and kinship. The same analyses were also 270 

conducted for 10 validation samples (for the low-depth and high-depth samples) after excluding 271 

two of them, whose respective counterparts in the target populations (with 0.05 and 0.07x depth) 272 

were filtered out. The imputed data sets with each of the panels were filtered for missingness 0 273 

with PLINK (v1.9) (36). 274 

For measuring population genetics parameters, the VCF files were filtered for MAF >0.05. O.Het 275 

was calculated for each individual using the command “--het” in PLINK (v1.9). π was calculated in 276 

40 kb windows with 20 kb step size across autosomal chromosomes using VCFtools. For the 277 

validation samples whole-genome windowed values were averaged to generate a genome-wide π 278 

for each individual. For the target population, π was calculated for each breed population. Paired 279 

sample T-tests were performed for O.Het and π parameters. Pairwise distance was calculated 280 
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using “--distance square 1-ibs” in PLINK (v1.9). Kinship was calculated with the command “--make-281 

king square” using PLINK (v2). To test the correlation between the resulting matrices from the 282 

pairwise distance and kinship analyses using different panels, a Mantel test was performed with 283 

the R package ade4 (37). 284 

We further tested whether genome scans for selection between the Cobb and Ross population 285 

with each of the imputed datasets yielded consistent results. To this end, we calculated population 286 

differentiation along the genome using fixation index (FST) between both breeds using each panel. 287 

FST was calculated in sliding windows of 40 kb with 20 kb overlap across autosomal 288 

chromosomes. Window-based FST values were then normalised, and regions with values above 289 

the 99th and 99.9th percentile were considered as putative selective sweep regions (38). The 290 

overlap of these regions across the datasets using the different reference panels were used as an 291 

estimate of consistency. 292 

Results 293 

Alignment and coverage 294 

The mapping statistics of the 100 samples used to characterise the target population (caecum 295 

content) and the 12 internal reference samples (ileum content) were drastically different. Caecum 296 

samples showed an average of 1.84±2.35x (mean±SD) depth of coverage and 52.41±24.20% of 297 

breadth of coverage. Ileum samples had 92.70±7.64% of host DNA and an average depth of 298 

93.16±9.07x, practically covering the entire reference genome (98.89±0.01%). 299 

Pipeline fitting  300 

The pipeline required some tests and adjustments to optimise it to our system. The standard 301 

alignment (seed length 19) presented an unconventional distribution of reads across the genome, 302 

i.e. unspecified read mapping leading to regions being stacked with 80+ reads (Table S1). In order 303 

to remove as many remaining microbial reads as possible, we increased the seed length to 25. 304 
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Standard deviation of the depth of coverage decreased considerably (from 202.79 to 3.66), while 305 

the mean depth decreased from 2.78x to 1.73x. The breadth of coverage decreased by 9% (Fig 306 

S1).  307 

Imputation accuracy of 12 validation samples 308 

The internal (n=12), external (n=40), combined (n=52) and diverse (n=92) reference panels were 309 

used to study (i) the effect of panel size and diversity and (ii) sample depth of coverage threshold 310 

on imputation accuracy in three chromosomes with contrasting dimensions. Variant calling in the 311 

internal reference samples detected 2.4 M, 470 K and 182 K putative SNPs in chromosomes 312 

GGA1, GGA7 and GGA20, respectively. After genotyping the external reference samples and 313 

combining them to create the external, combined and diverse panels, each panel was filtered 314 

before being phased. As a consequence, the filtering step decreased the number of SNPs by 315 

13.83±1.36% for the external and combined, and by 23.80±0.99% for the diverse panel, which 316 

yielded panels with different numbers of SNPs (Fig 2A). More than 96% of the total SNPs in each 317 

panel successfully passed the multiple filters of the pipeline, even for samples with less than 1x 318 

coverage (Fig 2B). Furthermore, the proportion of imputed SNPs increased and gained uniformity 319 

across samples when the panel was larger but had fewer SNPs. The mean number of imputed 320 

SNPs across samples differed between all the panels: internal vs external (t=14.58, p-value < 321 

0.001), external vs combined (t=13.56, p-value < 0.001) and combined vs diverse (t=11.63, p-322 

value < 0.001). The F-test to compare variances was significant only between the diverse and the 323 

rest of the panels: internal vs diverse (F= 30.54, p-value<0.001), external vs diverse (F=24.24, p-324 

value< 0.001) and combined vs diverse (F= 11.31, p-value<0.001). Results indicate that the 325 

variance across samples for the diverse panel greatly decreased compared to the rest of the 326 

panels (Fig 2B).  327 
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 328 

Fig 2. Imputation statistics.  329 

(A) Number of SNPs in each reference panel for chromosomes GGA1, GGA7, GGA20. (B) Depth 330 

of coverage and proportion of successfully imputed variants of the 12 validation samples for the 331 

three chromosomes tested. Capitalised letters refer to panel names: I=internal, E=external, 332 

C=combined and D=diverse. 333 

 334 

For each imputation scenario, genotype concordance and precision of het. sites were assessed in 335 

the 12 validation samples by comparing imputed and true genotypes per individual. Depth of 336 

coverage of low-depth samples ranged from 0.05x to 3.5x, and breadth of coverage from 10% to 337 

80%. After performing LOOCV with the four reference panels, average values of genotype 338 

concordance for the 12 validation samples exceeded 0.90 for every panel (Fig 3A) and precision 339 

of het. sites ranged from 0.78 to 0.91 (Fig 3B). According to Kruskal Wallis tests, the values of 340 

concordance (p-valueinternal > 0.85, p-valueexternal > 0.85, p-valuecombined > 0.95 and p-valuediverse > 341 

0.95) and precision of het. sites (p-valueinternal > 0.95, p-valueexternal > 0.85, p-valuecombined > 0.85 342 

and p-valuediverse > 0.85) did not differ across chromosomes. However, mean values differed 343 

between panels for each chromosome (Fig 3). Concordance values significantly differed when 344 

comparing the internal, external and combined panels (Fig 3A). But no differences were detected 345 
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between the combined and the diverse panels, indicating that no significant increase in imputation 346 

accuracy can be achieved in terms of overall concordance by adding more distant individuals. For 347 

precision of het. sites, differences were detected for all panels (Fig 3B), including for the combined 348 

and the diverse except for GGA20. This suggests that the heterozygous positions are the most 349 

sensitive to the imputation process.  350 

 351 

 352 

Fig 3. LOOCV test results and comparison of imputation reference panels.  353 

(A) Genotype concordance, and (B) precision of heterozygous sites between imputed (low-depth 354 

12 validation samples) and true (internal reference samples) genotypes on chromosomes GGA1, 355 

GGA7 and GAA20. Paired T-tests were performed to identify significant differences in means: the 356 

following symbols ( "**", "*", "ns") indicate different p-value cut-points (>0.001, 0.001, 0.05). 357 
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 358 

In an attempt to further assess imputation accuracy, we classified variants according to their MAF 359 

in four bins (0-0.05, 0.05-0.1, 0.1-0.3 and >0.3) and calculated precision of het. sites, and the 360 

number of correctly imputed variants for the 12 validation samples for GGA1 (Fig 4). The internal 361 

panel, while recovering the largest number of variants, was also the panel with the lowest 362 

performance in adequately inferring low-frequency variants, especially for the variants with MAF 363 

<0.1 (Fig 4A). Although there was no improvement from the external to the combined panel for the 364 

smallest MAF bin, a substantial improvement was seen for the rest of the bins. Some significant 365 

differences but not as pronounced were also observed from the combined to the diverse. 366 

Therefore, the combined panel showed overall the best results with the highest number of correctly 367 

imputed variants in all MAF bins (Fig 4B), while maintaining a very similar number of imputed SNPs 368 

as the external panel. The diverse panel inferred fewer low-frequency variants, but did so more 369 

effectively (Fig 4).  370 
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 371 

Fig 4. Minor allele frequency variants of LOOCV test.  372 

(A) Precision of heterozygous sites and (B) number of imputed low-frequency variants for 373 

chromosome one (GGA1) divided into four different bins of minor allele frequency ranges: 0-0.05, 374 

0.05-0.1, 0.1-0.3 and >0.3. The lower bars represent correctly imputed variants, while the bars with 375 

greater transparency represent the number of all imputed variants within the respective MAF bin. 376 

Variants that coincided between imputed (low-depth 12 validation samples) and true (internal 377 

reference samples) genotypes were considered correctly imputed variants. Paired T-tests were 378 

performed to identify significant differences in means across panels: the following symbols ( "**", 379 

"*", "ns") indicate different p-value cut-points (>0.001, 0.001, 0.05). 380 

 381 
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Despite the high overall imputation accuracy, the two samples with depths of 0.05x and 0.07x were 382 

outliers that did not achieve a sufficiently high concordance (>0.90) and precision (>0.75) with any 383 

of the panels and chromosomes (Fig 3). They were thus excluded from the target population, and 384 

we refer from now on to 10 validation samples instead of 12. 385 

Panel choice impact on population genetic inference 386 

Number of variants and their allele frequency distribution in the imputed 387 

target population 388 

The final number of SNPs recovered from all autosomal chromosomes in the target population 389 

with different panels decreased as more distant individuals were included (Fig 5A). This was due 390 

to the missing call rate (MCR) filter during the two-step imputation. Using the internal panel, we 391 

recovered 11.7 M filtered SNPs in the target population. These were 30% more recovered variants 392 

than when using the diverse panel (8.9 M). Most of the excess variants from the internal panel are 393 

low-frequency variants that cannot be confidently recovered (Fig 5B), as seen in the less effective 394 

imputation of low-frequency variants with the internal panel (Fig 4A). Both Ross and Cobb 395 

populations showed extreme allele frequencies (peaks at both ends of the distribution, Fig 5B) 396 

revealing a high proportion of fixed or nearly fixed variants in the respective populations. The Ross 397 

population had a higher density of low-frequency variants than Cobb (Fig 5C), indicating a higher 398 

number of fixed variants than in the Cobb population. 399 

 400 
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401 

 402 

Fig 5. Imputed variants in the target population and their allele frequencies for all autosomal 403 

chromosomes.  404 

(A) Number of variants in the target population when imputed using the different panels. (B) Allele 405 

frequencies of variants imputed in the target population, with a vertical line indicating minor allele 406 

frequency (MAF) 0.05, a standard threshold for quality control filtering in genomic datasets. (C) 407 

Percentage of variants with a MAF lower than 0.05 by breed for all the panels. 408 

 409 

Population genetic parameters in the target population  410 

In order to explore the effect of panel choice in downstream analyses, we measured five 411 

parameters commonly used in population genetics; namely, observed heterozygosity (O.Het), 412 

nucleotide diversity (π), fixation index (FST), pairwise distance as measured by 1-identity-by-state 413 

(1-IBS) and kinship.  414 

 415 
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Mean O.Het values differed across all panels for both Cobb and Ross (Fig 6a). The values 416 

estimated by imputation tended to increase with panel size and diversity for both breeds. Individual 417 

O.Het percentage values displayed a higher variance when imputed with the internal panel and 418 

tended to equalise across samples with the external, combined and diverse panels, following the 419 

same trend as with the accuracy statistics (Figs 3 and 6A). This high variance displayed by the 420 

internal panel might stem from the fewer correctly imputed variants in the internal panel. For the 421 

Cobb population, none of the panels reached the heterozygosity values seen with the 4 Cobb 422 

individuals (from the high-depth validation samples) (Fig 6A). For Ross, on the contrary, the 423 

external and combined panels showed very similar values to the validation samples, while the 424 

diverse panel overestimated O.Het values. The very same trend can be seen when comparing 425 

imputed and high-depth validation samples (Fig S3). There were some outlier samples (two from 426 

Cobb and one from Ross) that presented lower O.Het than the high-depth validation samples (Fig 427 

6A). These samples apparently underwent an incorrect imputation process, but it was not 428 

necessarily related to a low mapping depth.  429 
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 430 

Fig 6. Comparison of the choice of reference panels for imputed target population for all 431 

autosomal chromosomes.  432 

(A) Observed heterozygosity for the 10 validation samples (true genotypes) and for the imputed 433 

target population by breed. Capitalised letters in the legend refer to the following names: I=internal, 434 

E=external, C=combined D=diverse and V=Validation samples. (B) Nucleotide diversity of the 435 

target population by breed. Paired T-tests were performed to identify significant differences in 436 

means: the following symbols ("**", "*", "ns") indicate different p-value cut-points (>0.001, 0.001, 437 

0.05). (C) Kinship and (D) pairwise distance correlation matrices for the target population. 438 

Capitalised letters in the x and y axes refer to panel names: I=internal, E=external, C=combined 439 

and D=diverse. (E) Boxplot showing number of variants in the common windows of the 99th and 440 

99.9th percentiles from the FST genome scan. (F) Venn diagram depicting overlap of significantly 441 

differentiated windows as estimated by FST genome scans between Cobb and Ross populations 442 
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using the different panels for imputation. Significance thresholds were set at the 99th and 99.9th 443 

percentiles. 444 

 445 

Nucleotide diversity, on the other side, decreased with increasing panel size and diversity (Fig 6B), 446 

which was directly related to the lower number of variants retained in the external, combined and 447 

diverse panels compared to the internal. There were significant differences in means except 448 

between the external and combined panels for both breeds, most likely because of the similar 449 

number of variants both panels share (Fig 5A). When comparing the imputed population with the 450 

validation samples, π of imputed samples and of the target population were underestimated for all 451 

panels (Figs 6B and S3). 452 

Regarding the population genetic interpretation, both populations were very similar, but the 453 

imputation tended to accentuate differences between the two populations (Figs 6 and S4). Within 454 

population pairwise distance and kinship values did not vary much according to the panel. For 455 

pairwise distance, the diverse panel resulted in larger interindividual distances within breeds (Fig 456 

S4). Kinship values were lower when computed with the internal panel, since a larger number of 457 

SNPs were retained, in particular, low-frequency variants which are typically unique to one or few 458 

individuals thus decreasing kinship (Fig S4). Mantel R tests did not show any significant differences 459 

for pairwise distance and kinship matrices, giving the same result for all panel comparisons (Mantel 460 

statistic, p-value < 0.001). Correlation values for pairwise distance were very similar and close to 461 

1 (Fig 6D), even for the validation samples (true genotypes) when compared with any panel (Fig 462 

S3). For kinship instead, it seemed that the internal panel differed more from the rest (Figs S3 and 463 

6C). In both cases, the 10 validation samples were most correlated with samples imputed with the 464 

combined and diverse panels (Fig S3). 465 

Whole-genome mean FST values between Ross and Cobb populations were very similar (internal 466 

0.071, external 0.071, combined 0.072 and diverse 0.072) indicating overall low differentiation 467 

between the breeds. When analysing the putative selective sweep regions using as threshold the 468 

99th percentile, 68.2% of the windows coincided across the four panels, but more interestingly, 469 
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75.9% of the windows were shared across the external, combined and diverse panels. When we 470 

raised the threshold to the 99.9th percentile, 77% of windows were identified by the genome-scans 471 

regardless of the choice of panel, indicating that the strongest signals are detected with any panel. 472 

Yet, there were some regions that only passed the threshold when imputation was performed with 473 

a particular panel (Fig 6F). The combined panel did not show specific sweeps when the percentile 474 

was set at 99.9, and it was the panel with the lowest panel-specific regions with the 99th percentile 475 

as well, potentially indicating the most robust results, i.e. without panel-specific biases. 476 

Surprisingly, the diverse panel detected the most panel-specific sweeps after the internal panel 477 

(Fig 6F). On the other side, in terms of density of variants in the common windows, the mean 478 

number of variants reduced significantly from the internal to the diverse panel (Fig 6E). This 479 

suggests that although in a broad sense the same sweep signals can be detected by all panels, a 480 

reduced number of imputed variants might give a smaller chance of detecting causative variants. 481 

Discussion 482 

Shotgun metagenomic datasets of host-associated microbial communities often contain host DNA 483 

that is usually discarded because the amount of data is too low for accurate host genetic analyses. 484 

Here, we introduced an effective and accurate approach to recover high-quality host genomes 485 

from gut metagenomic data, which can be used to study host population genetic analyses and 486 

ultimately contribute to a better understanding of host-microbiota interactions.  487 

Our analyses yielded drastic differences in mapping statistics between caecum samples used to 488 

characterise the target population and ileum samples employed to generate the internal reference 489 

panel. Although both sample types derived from gut contents, the caecum harbours a very small 490 

amount of the host DNA compared to the ileum, because the latter is known to contain fewer 491 

bacteria (39), and the higher permeability and a thinner mucus layer of the ileum probably entails 492 

higher release of epithelial cells to the lumen (40). Moreover, the low, yet variable, proportion of 493 

host DNA retrieved from caecum samples renders sequencing depth adjustment highly 494 

unpredictable, as previously reported (7). Notwithstanding, we showed that if a proper reference 495 

panel is designed, the low and variable fractions of host DNA recovered from such suboptimal 496 
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samples, can be used for accurately inferring host genetic features. It must be noted though, that 497 

the ratio of host and microbial DNA recovered from chicken caecum and ileum samples can not 498 

directly be extrapolated to other host taxa and sample types.  499 

The two-step imputation strategy performed efficiently despite the structural (e.g., study design, 500 

animal taxa, reference panel size) differences between our study system and the ones the strategy 501 

was originally designed for (23,24). First, we used custom reference panels with less than one 502 

hundred individuals, while the two-step strategy was originally tested with large reference panels 503 

such as the Human 1000 Genomes (12). Nevertheless, our accuracy values were comparable to 504 

the previous results, most likely because the individuals in our target population were closely 505 

related, as evidenced by the high kinship values. Second, although we had a similar range of target 506 

population sample depths (Hui: from 0.05x to 2x and Homburger: 0.54x to 1.76x), our samples 507 

consisted of real low-depth sequence data, instead of downsampled sequencing reads from high-508 

depth samples. Thus, mapping gaps across the reference genome were unevenly distributed. This 509 

is evidenced by the large difference between depth (1.8x) and breadth (50%) of coverage (S1 510 

Table), likely hampering accurate computation across the genome. Besides, Hui et al. (2020) 511 

documented that the proportion of correctly imputed heterozygous sites started decreasing at 0.5x 512 

of depth of coverage, reaching 50% of correctly imputed sites at 0.1x. In our system, >90% of the 513 

variants in samples with 0.28-0.5x could be recovered, and accuracy only dropped significantly in 514 

samples below 0.1x. Accordingly, we decided to set a mapping depth threshold at 0.28x, but we 515 

recommend adjusting it depending on the sample size and quality of the data set, as well as the 516 

accuracy needs of each study.  517 

The accuracy of low-frequency variants for all panels except for the internal, which showed much 518 

lower values, were comparable to previous works (24), most likely owing to the stringent filtering 519 

criteria applied in our study (MCR = 0). But the overall accuracy and the accuracy of heterozygous 520 

sites depends heavily on variant frequencies, therefore these comparisons should not be decisive. 521 

Finally, unlike humans, avian genomes present macro- and micro-chromosomes and the latter 522 

frequently undergo interchromosomal translocations (41). However, it seems that the possible 523 

interchromosomal translocations of the target population did not affect imputation, since we did not 524 
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find any significant differences in accuracy between chromosomes, revealing that the strategy 525 

worked equally well for large, mid-sized and small chromosomes with potentially different linkage 526 

patterns.  527 

4.1 Effect of reference panel on accuracy statistics 528 

Reference panel design depends on data availability as well as computational capacity. It is a 529 

common strategy for imputation of inbred populations to resequence a subset of samples with 530 

higher resolution in order to optimise imputation performance (35). Based on previous works, we 531 

estimated that 12 individuals out of 100 would be sufficient to represent the genetic diversity of the 532 

population. For instance, previous chicken studies deep-sequenced 25 individuals to impute 533 

approximately 450 chickens genotyped with 600-K SNP arrays (~5% of sample size) (20,42).  534 

In terms of panels SNP density, we decided to genotype variants that did appear in our target 535 

population rather than calling for specific variants in the rest of the breeds that composed the 536 

reference panels. Thereby, we aimed at reducing the noise that the excess of variant density could 537 

cause in the imputation process. Nevertheless, as the genetic distance between the selected and 538 

our breeds is very small (43), we expected them to share many variants, as we evidenced with 539 

preliminary analyses using GGA1 where 72% of variants identified by genotyping or by calling 540 

overlapped in the external panel (Fig S2).  541 

The internal panel resulted in a larger variance across samples. SNPs with low MAF had the lowest 542 

accuracy when imputed with the internal panel. Moreover, incorrectly imputed low-frequency 543 

variants can be easily overcome if a strict MAF filter is applied for downstream analysis. Another 544 

possible option is to sequence more individuals of the target population to increase the reference 545 

panel size. Hence, despite the internal panel only representing a small subset of the target 546 

population, and showing lower imputation values than in the external, combined, and diverse 547 

panels, for scientists without access to external reference samples, this approach is equally useful 548 

as overall imputation accuracy was higher than 90% and biological differences were still visible. In 549 

this sense, host resequencing of a small subset of the target population might represent a cost-550 

efficient option, especially for researchers working with non-model organisms and inbred 551 
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populations. Thus, our approach could be useful, for example, to study genome features of 552 

endangered populations relying on faecal samples recovered from the environment.  553 

Our results showed that the combined panel performed better in terms of overall accuracy, and 554 

specifically of minor allele frequency variants, than the internal and the external panels alone. 555 

Despite the fact that the external and combined panels had the same number of SNPs, including 556 

a subset of individuals from the target population was beneficial. Many studies already mentioned 557 

an improvement for the combined option (44,45). Lastly, the diverse panel showed the highest 558 

values of concordance and het. sites precision, most probably because of the lower number of 559 

SNPs recovered, especially low-frequency variants, which generally yielded lower imputation 560 

accuracies. In terms of imputation of low-frequency variants, the combined panel outperformed the 561 

diverse one, i.e. it correctly imputed a larger number of variants and tended to improve the 562 

precision of het. sites in some MAF bins. A recent large-scale study performed in a Chinese 563 

population showed that a population-specific reference panel worked the best compared to 564 

European reference panels such as 1000G (21). Imputation was greatly improved when the 565 

reference panel contained a fraction of an extra diverse sample, but they obtained a different 566 

pattern when the panel size was fixed (21). Thus, taking into consideration our and previous results 567 

on selection of imputation panels, it can be concluded that increasing panel size and diversity 568 

improves imputation, but a balance has to be found in the composition of the panel. The distance 569 

between the panel and the target population has to be taken into account.  570 

4.2 Effect of reference panel on biological inference 571 

Besides crude imputation accuracy statistics, we evaluated the impact of the panels on 572 

downstream population genetic parameters and their biological interpretation. As imputation 573 

accuracies were generally high with our applied pipeline and the stringent filtering approach, we 574 

expected population genetic inferences to follow similarly.  575 

Although overall results were in agreement, all the tested parameters showed slight trends 576 

according to the used reference panel. O.Het, pairwise distance and kinship values increased 577 

while mean FST and π values decreased with panel size and diversity (Figs 6 and S4). Such 578 
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biases were related to the composition of the panels and the associated number and distribution 579 

of recovered SNPs.  580 

Imputation worked slightly differently for the two breeds, as Ross population estimations were 581 

closer to the true values than for the Cobb population. Thus, accentuating the distance between 582 

both breeds. This is most likely due to a smaller representation of Cobb individuals in the reference 583 

panels, i.e. 5 Cobb and 7 Ross samples constituted the internal reference panel. Secondly, there 584 

were some samples that were incorrectly imputed because of their low O.Het values (Fig 6A). We 585 

do not know if there are individuals with lower heterozygosity in our Cobb and Ross populations. 586 

For instance, there was a Ross individual from the high-depth validation samples with lower O.Het. 587 

Chickens came from two different hatcheries, which might be the reason why some individuals 588 

might have slightly different genetic features. We may have under-represented one of the origins 589 

in the internal reference samples. Thus, it is necessary to be more cautious for the interpretation 590 

of individual genomes. Nevertheless, results appeared to be robust and similar across panels at 591 

the population level. The genome scans yielded overall very consistent results with major 592 

differentiation signals identified by any of the imputed datasets, likely indicative of a true selection 593 

signature between both breeds. However, downstream analyses such genome scans and GWAS 594 

must be performed with caution since this method is sensitive to low-frequency variants quality. 595 

Both breeds exhibited extreme minor allele frequencies, indicating that the genetic drift due to 596 

selection in a closed breeding population has a notable effect. Domestication and breeding history 597 

are the two major processes that shape haplotype structure (31,46). Cobb and Ross, together with 598 

other commercial breeds, have much smaller effective population size than other chickens (47). 599 

Broiler breeding methods are described as a pyramid strategy, in which pure, inbred lines are 600 

crossed, then F1 individuals are crossed between each other. In some cases, even a second or a 601 

third cross is performed in F2 and F3 generations before raising them for meat (48). Therefore, 602 

broilers are highly related populations, but at the same time present high heterozygosity values. 603 

Heterozygosity of our studied breeds were much higher O.Het than of local populations (49), but 604 

similar to other broiler breeds (46). Similarly, nucleotide diversity and mean fixation index values 605 

were comparable to those previously reported (31).  606 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465664
http://creativecommons.org/licenses/by/4.0/


 

29 

Conclusions 607 

Our results show that the two-step imputation implemented in this study can be used to 608 

successfully reconstruct genotypes and study population genetic properties of hosts from 609 

suboptimal metagenomic samples. The comparison among reference panels also demonstrated 610 

that this method is versatile and flexible. This approach could be used in many contexts and exploit 611 

different data sources to address a variety of research questions. This includes the possibility of 612 

mining published metagenomic data sets to recover discarded host DNA sequences. In our 613 

particular case, the reconstructed genotypes will be employed in the H2020 project HoloFood to 614 

detect interactions with microbial metagenomic features, and thus implement a hologenomic 615 

approach to improve animal production (50). Because ‘host-contamination’ should no longer be 616 

considered a problem, but an opportunity. 617 
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