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Abstract
Motivation: Predicting protein stability change upon variation through computational approach is a valuable tool to unveil the
mechanisms of mutation-induced drug failure and help to develop immunotherapy strategies. However, some machine learning
based methods tend to be overfitting on the training data or show anti-symmetric biases between direct and reverse mutations.
Moreover, this field requires the methods to fully exploit the limited experimental data.
Results: Here we pioneered a deep graph neural network based method for predicting protein stability change upon mutation.
After mutant part data extraction, the model encoded the molecular structure-property relationships using message passing and
incorporated raw atom coordinates to enable spatial insights into the molecular systems. We trained the model using the S2648
and S3412 datasets, and tested on the Ssym and Myoglobin datasets. Compared to existing methods, our proposed method showed
competitive high performance in data generalization and bias suppression with ultra-low time consumption. Furthermore, method
was applied to predict the Pyrazinamide’s Gibbs free energy change for a real case study.
Availability: https://github.com/shuyu-wang/ProS-GNN.
Contact: vincentwang622@126.com

1 Introduction
Proteins are composed of amino acids sequences, arranged into different
groups. Changes to an amino acid due to DNA variation is called a
missense mutation. Such mutations may result in changes of protein
stability or protein misfolding[1]. One way to infer mutation induced
protein stability change is to measure its ∆∆G. It refers to the change in
folding energy between the mutant and wild state. The negative sign of
∆∆G indicates the variation decreases protein stability, and the positive
sign means stability increases. Current study shows protein stability
changes is one of the major underlying molecular mechanisms in
multiple mutation-induced diseases[2]. Moreover, deeper insights into
how specific mutations affect protein stability or interactions can identify
possible drug resistance or sensitivity in patients[3], potentially leading
to new precision medicines. This is especially important for genomic
diseases such as cancers[4].

Recognizing the great potential of predicting protein stability
changes upon mutation, researchers developed different computational
tools, since they are low cost and high throughput. Prior attempts to
predict protein stability were developed by molecular dynamics
simulation[5]. They estimated free energy functions from protein
structures using principles of statistical physics[6] or use knowledge-

based terms of biophysical characteristics for regression fitting based on
molecular mechanics[7, 8]. These methods showed advantages in
characterizing the structural changes and the physical nature of the
predicted folding free energy changes[9].

Data driven methods based on machine learning (ML)technologies
are another promising branch to predict protein stability changes upon
mutation. They are appealing due to efficient computation and high
performance[10, 11]. Algorithms, such as support vector machines
(SVM) [12-15], decision tree[16, 17], random forest (RF)[14, 18],
gradient boosting[19, 20], and neural networks[21-23], or combinations
of the above[24, 25] have been used for the purpose with preliminary
successes. Before feeding the data to the ML pipeline, these methods
need feature extraction. Some of the works only need sequence-based
data and others might require structure-based data[26, 27]. Typically,
methods using the 3D structures outperform the sequence-based
methods[28]. Yet many prior works are prone to be biased on one
direction variation or be overfitted[10]for practical usages. So the
problem lies in how to fully exploit the limited experimental data and
capture informative features.

End-to-end deep learning frameworks appeared to be a promising
solution, which can enable useful features learning for various symbolic
data. It can learn input features in the training process instead of fixing

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465658


them and obtain data-driven features by directly utilizing the training
dataset[29]. 3D CNN has been used to predict protein stability change
with high performance[30]. It treated protein structures as if they were
3D images with voxels parameterized using atom biophysical properties.
However, 3D grid representation entails void space where no atoms
reside, leading to inefficient computation[31].

From the point of view of a many-body system, proteins are graphs
by nature, in which a vertex is an atom and edges are a chemical
bonds[32]. The total free energy is a sum over all atomic energy
contributions. The graph neural networks(GNN) offers a new viable
solution to elucidate the structure-property relationship directly from
protein structural data. It shows high accuracy with a relatively low
computational cost due to less parameters. It can identify important atom
features determining molecular properties by analyzing relations
between neighboring atoms[33], since the message passing process
extracts structural features and then relates them with the target
properties[34]. Similar approach has been demonstrated for atomic
energies prediction from a quantum-chemical view[35], which implies
GNN’s potential for protein related energy prediction. However, to the
authors’ best knowledge, protein stability change prediction using GNN
remained unexplored.

In this regard, we propose a novel and agile approach to predict
protein stability change upon mutation using a deep learning model.
After trimming the non-mutant part of the protein, the model maps the
3D structural information and element compositions of the protein to a
high-dimensional representation, and automatically captures the key
factors leveraging a gated GNN. Our key conceptual advance is

implementing the model to predict structure-property following the
underlying biochemistry law. We then demonstrate the method’s high
performance by training with the S2648 and S3412 dataset, and tested on
Ssym and Myoglobin dataset. Then we applied the method to predict the
mutation effect on the drug for tuberculosis, Pyrazinamide (PZA), for
drug resistance management.

2 Methods
2.1 Problem formulation
Our task is to predict the change of Gibbs free energy between mutant

protein and wild protein. Our concept is derived from the many body
Hamiltonian concept to embrace the principles of biochemistry, while
maintaining the flexibility of a complex data-driven learning machine.
The input data is extracted from the PDB files, which contain the

element composition and structural information. We formulate the
protein feature vector hi for the ith atom, containing the vertices and
edges information. This feature vector encodes the element information,
the number of adjacent atoms, the number of adjacent hydrogen atoms,
implicit valence, and aromatic bonds. Thee feature vectors are combined
to form the input feature matrix H = [h1, ···, hn+r] for a protein, and
H ( ) 30n r  . n and r are the atomic numbers of mutant and non-mutant
parts, respectively. The wild and mutant type’s feature matrixes are
denoted as Hw 30n and Hm 30n . Similarly, the coordinate
matrixes of the wild and mutant type atoms are Dw 3n and
Dm 3n , and the adjacency matrixes Aw n n and Am n n denote
the adjacent relationship between atoms in the two proteins. These
matrices form the input features to predict y, ΔΔG. So the overall
problem can be elucidated simply as:

Fig. 1. (A) The architecture of ProS-GNN. (B) Illustration of the input molecular features, adjacency matrix, and message passing in the gated GNN.
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  , , , , ,w w m m w my MLP GNN H A H A D D (1).

HereMLP is short for multiple layer processing.

2.2 Non-mutant part trimming
Different from prior methods, which process the complete protein feature
matrix H, our model only processes the information of the mutant
residue and its two adjacent ones, denoted as He

30n . The residual Hr
30r is trimmed by an automated script ( e rH H H   ).

2.3 Gated GNN
We expand the dimension of the feature vectors at the first layer

(1)
eH with a parameter matrix We

30 1140 as (1)
eH = HeWe

( (1)
eH 1140n ). In the GNN, the l-th layer’s atom feature ( )l

eH are
processed by iterations of graph convolution to produce a set of updated
atom features:

( 1) ( )_ ( )l l
e eH Leaky relu WAH  (2)

where W n n is a learnable weight matrix and A n n . Leaky_relu
is the activation function.

This is a simplified the message passing process, where each atom
gathers local information from its neighboring atoms and bonds, and
then update information. Through information sharing between atoms, a
global feature can be extracted based on this technique. In this way, the
GNN implicitly learns the property to be predicted from the structure.

To improve the feature extraction performance, we integrated the
gating mechanism into the network[31]. The gated graph layer is a linear
combination of ( )l

eH and ( 1)l
eH  1140n :

( ) ( 1)(1 )gate l l
e e eH GH G H    (3)

with
( ) ( 1)( )l l

gate e eG f W H H B    (4)

where Wgate
1140n is a learnable matrix. B 1140n is a bias matrix. f

is the Sigmoid non-linear activation function. The feature matrix of the
gated connection gate

eH ,
1140n is then added to the first layer He(1) :

(1)gnn gate
e e eH H H  (5)

gnn
eH 1140n is the final output of GNN.

Then, we concatenate gnn
eH with the coordinate matrix D 3n to

generate a feature matrix d
eH = [ gnn

eH D] =[ 1
dh ,···, d

nh ] 1143n .

Here we assume d
ih

1143 represents the energy contribution from the
ith atomic vector, so the sum of them corresponds to the total molecular
energy:

1

n
d

out iz h (6)

Finally, the feature vectors of the mutant type is subtracted from the
wild type to get a contrasted feature vector. This feature vector is used
for ΔΔG prediction after MLP. The process mentioned above can be
expressed as follows:

 _ ( ( ) )m w
out out out outy MLP Leaky relu W z z b   (7)

where Wout
1024 1024 is a weight matrix and bout

1204 is a bias
vector.

2.4 Training

2

1

1 ˆ( )
N

i i
i

y y
N 

  (8)

where yi and ˆiy stand for the predicted ΔΔG and the experimental ΔΔG
for the i-th sample, respectively. Given all ΔΔG labels in the training data set
when mutations occur, the training goal is to minimize the mean squared error
(MSE) loss.
Table 1. Comparison of different methods on the Ssym dataset

method σdir rdir σrev rdir rdir-rev δ

ProS-GNN 1.23 0.61 1.30 0.56 -0.94 0.04
ThermoNet 1.56 0.47 1.55 0.47 -0.96 -0.01
POPMuSiCsym 1.58 0.48 1.62 0.48 -0.77 0.03
DDGun 1.47 0.48 1.50 0.48 -0.99 -0.01
MAESTRO 1.36 0.52 2.09 0.32 -0.34 -0.58
FoldX 1.56 0.63 2.13 0.39 -0.38 -0.47
DUET 1.20 0.63 2.38 0.13 -0.21 -0.84
mCSM 1.23 0.61 2.43 0.14 -0.26 -0.91
SDM 1.74 0.51 2.28 0.32 -0.75 -0.32
I-Mutant 3.0 1.23 0.62 2.32 -0.04 0.02 -0.68
CAPSAT 1.71 0.39 2.88 0.05 -0.54 -0.72
iSTABLE 1.10 0.72 2.28 -0.08 -0.05 -0.60
NeEMO 1.08 0.72 2.35 0.02 0.09 -0.60
Rosetta 2.31 0.69 2.61 0.43 -0.41 -0.69
STRUM 1.05 0.75 2.51 -0.15 0.34 -0.87
INPS 1.42 0.51 1.44 0.50 -0.99 -0.04

3 Experiments
3.1 Dataset
To train and test our model, we use several data sets listed below.
S3421 contains 3421 experimentally determined mutations from 150
proteins.
S2648 includes 2648 single-point mutation in 131 different globular
proteins.
Ssym contains 684 variations, and half of them are reverse variations.
Myoglobin is consisted of 134 mutations scattered throughout the
protein chains. Myoglobin is a cytoplasmic globular protein that
regulates cellular oxygen concentration.

3.2 Implement and evaluation

This work used a Nvidia Geforce GTX 3070 GPU for computing. We
implemented the model using Pytorch and tuned the parameters by grid
search. The dimension of the vertices vector is 1120 and the dimension
of the full connected (FC) layers is 1024. The GNN and FC both have
four layers. The model shows improved generalization, when the weight
decay is 5×10-5 , drop-out rate is 0.5 and the batch size is 16. In addition,
the model is optimized by an Adam optimizer.
The following measures are adopted to evaluate the performance of

ProS-GNN. The primary measures for evaluating prediction accuracy are
the Pearson correlation coefficient (r) and the root-mean-squared error
(RMSE) (σ) of the experimental and predicted ΔΔGs. rdir-rev and δ dir-rev

are used to evaluate the prediction bias between the direct and reverse
mutation prediction.

4 Results and Discussion
4.1 Trained using S2648 dataset
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We first trained ProS-GNN using the S2648 dataset, and then tested with
S2648, Ssym, and Myoglobin datasets, respectively. When tested with the
S2648 dataset, the proposed method achieved r = 0.62，σ = 1.11 on
direct mutations (Fig. 2 (A)), r = 0.60, σ = 1.12 on reverse mutations
(Fig. 2 (B)), and r = -0.94, δ = 0.04 on direct-reverse prediction(Fig. 2
(C)). The performance on the Ssym dataset achieved r = 0.61，σ = 1.23
on the direct mutations, r = 0.56，σ = 1.30 on the reverse mutations and
r = -0.94, δ = 0.04 on direct-reverse prediction (Fig. 2 (D)-(F)). Then, we
compare our results with fifteen methods on the Ssym dataset and list
them in Table1. It clearly showed our model outperformed other prior
methods in prediction accuracy with little bias. On the Myoglobin
dataset, the ProS-GNN achieved r = 0.48， σ = 1.27 on the direct
mutations and achieved r = 0.43，σ = 1.19 on the reverse mutations and
r = -0.90, δ = 0.07 on direct-reverse prediction (Fig.2(G)-(I)), which
potentially suggested generalization in real-life applications. These
results showed that our method could effectively learn feature
representations with high performance.

4.2 Trained using S3421 dataset

Similarly, we also trained ProS-GNN using S3421 dataset and tested
with S3421, Ssym, and Myoglobin dataset, respectively. The testing
results on the S3421 dataset showed r = 0.69， σ = 1.73 on direct

mutations (Fig. 3 (A)), r = 0.71，σ = 1.69 on reverse mutations (Fig. 3
(B)), and r = -0.95, δ = -0.21 on direct-reverse prediction(Fig. 3 (C)).
When switched to the Ssym dataset, the ProS-GNN achieved r = 0.51，σ
= 1.47 on the direct mutations, r = 0.51， σ = 1.43 on the reverse
mutations, and r = -0.95, δ = 0.21 on direct-reverse prediction (Fig.
3(D)-(F)). We found the performance was moderately inferior to the
ones trained using S2648, which might be explained as S3214 shared no
homology with Ssym. Last, the tested performance on Myoglobin dataset
was also competitive, as it achieved r = 0.51，σ = 1.20 on the direct
mutations prediction, r = 0.45， σ = 1.13 on the reverse mutations
prediction and r = -0.88, δ = -0.18 on direct-reverse prediction (Fig. 3
(G)-(I)).

4.3 Case studies: ribosomal protein S1(RpsA)

In the real case study, we used two single-point mutations, D343N and
I351F, in Pyrazinamide (PZA). PZA is one of the first-line drugs,
effective against latent Mycobacterium tuberculosis isolates. Resistance
to this drug
emerges due to mutations in pncA and rpsA genes, encoding
pyrazinamidase (PZase) and ribosomal protein S1(RpsA), respectively.
We fetched the structure of RpsA (PDB ID 4NNI) from RCSB PDB,

and generated the molecule structures of D343N and I351F with

Fig. 2. ProS-GNN trained using S2648 dataset and tested on the three datasets. (A) Predicting ΔΔG for direct mutations in S2648. (B) reverse mutations in S2648. (C)

Direct versus reverse ΔΔG values of all the mutations in the S2648 . (D) Predicting ΔΔG for direct mutations in Ssym (E) reverse mutations in Ssym. (F) Direct versus

reverse ΔΔG values of all the mutations in the Ssym . (G)Predicting ΔΔG for direct mutations in Myoglobin. (H) reverse mutations in myoglobin. (I) Direct versus reverse

ΔΔG values of all the mutations in the Myoglobin .
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PYMOL(Fig. 4). The literature[36] indicates the ΔΔG of 4nniA-D343N
mutation and 4nniA-I351F are 3.2 kcal/mol and 2.9 kcal/mol. Our
proposed method predicted 1.6 kcal/mol and 2.6 kcal/mol, respectively.
While the one of the results showed discrepancies between predicted and
experimental value, the differences were within 1.6 kcal/mol, which was
still normal considering the method’s RMSE. Therefore, it demonstrated
the potential of ProS-GNN as a rapid estimator of ΔΔG upon protein
mutations in a medical environment.

4.4 Time consumption study

Since we only extracted the information from the mutant residue and its
two neighbors, the strategy substantially reduces the training and testing
time by one or two orders of magnitude.

For example, the training time for the S2648 data set is down to 6-10
seconds per epoch after mutation part extraction(Table 2). Even if
trained for 400 epoches, it only takes around one hour. Plus, the testing
last for only 1 second. This highly efficient manner clearly caters the
high throughput requirement in the pharmaceutical industry, where high
volume data needs to be tested. It is noteworthy that removing the
redundant data also boosts the overall prediction accuracy as the
irrelevant information has been eliminated.

Table 2. Time consumption comparison between with and without
mutant part data extraction

data extraction w/o data extraction

training time per epoch 6~10 seconds 900~1000 seconds
testing time 1 seconds 15~20 seconds

5 Conclusion
Here we pioneered into predicting protein stability change upon mutation
with an end-to-end GNN. To exclude irrelevant features and speed up the
training, we first extracted the mutant part data. Subsequently, the model
leveraged a gated GNN to capture the molecular features by message
passing. In addition, it incorporated the raw molecular coordinates into
the framework to predict ΔΔG. Rigorous experimental evaluations show
that our model performed highly competitively on the S2648, S3214,
Ssym, and Myoglobin datasets. Furthermore, the method led to reasonable
estimation for clinical drug resistance prediction. The substantial success
over the task suggests a new strategy for swift protein stability change
prediction and enlightens future GNN based method for improvement.
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Fig. 3. ProS-GNN trained using S3421 dataset and tested on the three datasets. (A) Predicting ΔΔG for direct mutations in S3421 (B) the reverse

mutations in S3421. (C) Direct versus reverse ΔΔG values of all the mutations in the S3421 . (D) Predicting ΔΔG for direct mutations in Ssym (E) reverse

mutations in Ssym. (F) Direct versus reverse ΔΔG values of all the mutations in the Ssym . (G) Predicting ΔΔG for direct mutations in Myoglobin . (H) reverse

mutations in myoglobin . (I) Direct versus reverse ΔΔG values of all the mutations in the Myoglobin .
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