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Transcriptomics has revealed the exquisite diversity of cortical inhibitory neurons'~7, but it is not known whether
these fine molecular subtypes have correspondingly diverse activity patterns in the living brain. Here, we show that
inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is
organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-
photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes
in ex vivo slices. We used transcriptomic clusters* to classify inhibitory neurons imaged in layers 1-3 using a three-
level hierarchy of 5 Families, 11 Classes, and 35 Subclasses. Visual responses differed significantly only across Fam-
ilies, but modulation by brain state differed at all three hierarchical levels. Nevertheless, this diversity could be
predicted from the first transcriptomic principal component, which predicted a cell type’s brain state modulation
and correlations with simultaneously recorded cells. Inhibitory Subclasses with narrower spikes, lower input re-
sistance, weaker adaptation, and less axon in layer 1 as determined in vitro® fired more in resting, oscillatory brain
states. Subclasses with the opposite properties fired more during arousal. The former cells had more inhibitory
cholinergic receptors, and the latter more excitatory receptors. Thus, despite the diversity of V1 inhibitory neurons,

a simple principle determines how their joint activity shapes state-dependent cortical processing.

The cerebral cortex contains a rich diversity of neurons,
particularly amongst inhibitory cells. While this diversity
was visible to early anatomists®!!, the underlying com-
plexity of cortical inhibitory cell types has emerged only
with the advent of transcriptomics'7. Single-cell RNA se-
quencing and Patch-seq analysis suggest that inhibitory
neurons of primary visual cortex (V1) are divided into five
major Families, named Pvalb, Sst, Lamp5, Vip, and
Sncg?#+8. However much finer transcriptomic distinctions
exist within these families, with cluster analysis defining
60 different fine inhibitory Subclasses. Moreover, this
analysis may underestimate the diversity of cortical inhib-
itory neurons, which exhibit not only discrete classes but
also variations along transcriptomic continua?'2'3, which
can predict intrinsic physiological properties?.

A key open question is whether this fine molecular diver-
sity of cortical inhibitory neurons is mirrored in vivo by
diverse activity patterns, and whether there are simplify-
ing principles that can help understand the relationship
between gene expression and activity in these myriad cell
types. Three main methods have been used to character-
ize the in vivo activity of molecularly identified cells. The
first is to record from them juxtacellularly and then apply
post-hoc morphological reconstruction and immuno-
histochemistry*. This method however has limited
throughput, as juxtacellular electrodes can only record
one cell at a time. The second is to record from transgenic
mice with electrophysiology or 2-photon calcium imag-
ing'*34. However, transgenic lines can only identify one

molecular group of cells at a time, and the groups these
mouse lines identify are broad, containing cells of multi-
ple Subclasses or even Families. The third and potentially
most powerful method is to combine two-photon calcium
imaging with ex-vivo molecular identification of the rec-
orded neurons*°. This method can record the activity of
large numbers of neurons from multiple cell types simul-
taneously, and its ability to assign cells to fine molecular
subclasses is limited only by the molecular methods used
to subsequently identify these neurons.

Here, we used two-photon microscopy to record from
large populations of neurons in mouse primary visual
cortex (V1), and applied in situ transcriptomics to the im-
aged tissue to localize mRNAs for 72 genes chosen to
identify fine inhibitory neuronal Subclasses. While most
differences in sensory tuning appeared at the level of
main families (Pvalb/Sst/Vip/Sncg/Lamp5), fine Sub-
classes showed significant differences in their modulation
by cortical state. These differences in state modulation
could be explained in large part by a single genetic con-
tinuum, which also correlated with the intrinsic mem-
brane properties and morphology of these subclasses as
assessed in vitro®, and with their expression of excitatory
and inhibitory cholinergic receptors.

Identifying inhibitory subclasses recorded in vivo

We performed 2-photon calcium imaging in mice express-
ing mCherry in inhibitory neurons (Gad2-T2a-NLS-
mCherry), injected with a pan-neuronal GCaMPém virus
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(AAV1.5yn.GCaMP6m.WPRE.SV40), and then applied in
situ transcriptomics to sagittal slices of the imaged region.
The expression of mCherry allowed these neurons to be
localized in vivo and ex-vivo and thus to serve as fiducial
markers for registration of the two imaging modalities.
During imaging, mice were free to run on an air-sus-
pended Styrofoam ball, and their behavioural state was
monitored through facial videography. Spontaneous ac-
tivity was recorded in front of a blank screen, and visual
responses were elicited by presenting stimuli such as
drifting gratings and natural images. Recordings typically
spanned 0-250 um below the brain surface, targeting cor-
tical layers 1-3. At the end of each session, we obtained a
high-resolution 2-photon z-stack volume (Fig. 1a). After
functional imaging was complete, brains were removed
and frozen unfixed, and the imaged volume was cut into
15 um thick sections with a cryotome.

To identify the locations of 72 pre-selected genes we de-
veloped a method termed coppaFISH (combinatorial pad-
lock-probe-amplified fluorescence in situ hybridization),
which is a development of a previous approach of in situ
sequencing*!. This method amplifies selected transcripts
in situ using barcoded padlock probes?-# and reads out
their barcodes combinatorially through 7 rounds of 7-col-
our fluorescence imaging (Methods; Extended Data Fig.
1). The method detected 148+59 transcripts per cell (mean
+ SD). The slices were aligned to the in vivo z-stacks with
a point-cloud registration algorithm, using inhibitory
neurons identified in vivo with mCherry and ex wvivo
through gene expression, as fiducial markers (Fig. 1b-e;
Extended Data Fig. 2). We applied this method to 17 re-
cording sessions from 4 mice, obtaining 89+30 (mean +
SD) molecularly-identified inhibitory cells together with
393+173 pyramidal neurons per session, making a total of
1,028 unique molecularly-identified identified inhibitory
cells (some of which were recorded in multiple sessions;
Extended Data table 1).

We classified these inhibitory cells using a 3-level hierar-
chy (Fig. 1f). The lowest hierarchical level (“Subclass”)
comprised the fine transcriptomic clusters defined by
Tasic et al.#, and the top level (“Family”) was the Pvalb,
Sst, Lamp5, Vip, and Sncg groupings defined by these
same authors. An intermediate level (“Class”) was sug-
gested by UMAP analysis of scRNA-seq data (Extended
Data Fig. 3), which revealed collections of Subclasses that
we could putatively associate to morphological cell types
(see Methods for full explanation). We named these inter-
mediate-level Classes Pvalb-Tacl (putative Pvalb-basket
cells), Pvalb-Vipr2 (chandelier cells), Sst-Reln (Martinotti
cells); Sst-Tacl (non-Martinotti Sst cells); Lamp5-Npy
(neurogliaform cells); Lamp5-Tmem182 (canopy cells);

Lamp5-Chrna?7 (layer 1 alpha?7 cells); Vip-Reln (layer 1
Vip cells); Vip-Cp (other Vip cells); Sncg-Pdzn3 (Large
Cck cells); and Sncg-Vip (Small Cck/Vip cells). UMAP
analysis (Extended Data Fig. 3) suggested that while Clas-
ses were usually discrete, their constituent Subclasses of-
ten merged continuously into each other, tiling dimen-
sions of continuous variability of inhibitory neurons.

Cells functionally imaged in vivo were assigned to a Sub-
class (and thus also a Class and Family) using pciSeq*, a
Bayesian algorithm that computes for each cell a probabil-
ity distribution over cell types defined by previous
scRNA-seq data. Expression levels were sufficient to as-
sign cells with high probability to a single Subclass (Fig.
1g-i, Extended Data Fig. 4), and we therefore assigned
each cell to a single subclass of maximum a posteriori prob-
ability. As expected from the restriction of 2-photon im-
aging to the superficial layers, the imaged cells were as-
signed to just 35 of the 60 total Subclasses defined by the
original scRNA-seq study. The number of cells recorded
varied across Subclasses (Fig. 1f), and Subclasses to which
less than 3 cells were identified were excluded from fur-
ther analysis (eight cells in total). The gene expression for
the 72 genes in our panel showed consistent differences
across the 35 Subclasses recorded (Fig. 1j).

To verify the accuracy of our cell type assignments, we
performed two analyses using independent data. First, we
took advantage of the fact that different fine inhibitory
Subclasses reside at different depths in V1, as revealed by
a recent Patch-seq study®. We found that the depth distri-
bution of the Subclasses assigned by our method closely
matches that found by this independent study (Fig. 1k).
Importantly, this did not only reflect depth differences be-
tween the main inhibitory Families (p<0.001, ANCOVA
controlling for Family) or even Classes (p<0.001, AN-
COVA controlling for Class). For example, while Sst-ex-
pressing neurons are most often found in deep layers, spe-
cific Subclasses such as Sst-Calb2-Necabl were localized
in superficial layers by both our method and the inde-
pendent Patch-seq data. Second, we compared the func-
tional recordings to 2-photon calcium imaging that iden-
tified cells with three transgenic lines (Sst, Pvalb, Vip)®.
Analysing our data after grouping together cells expected
to be labelled in each of these lines, we found results con-
sistent with previous work (Extended Data Fig. 5). We
thus conclude that our methods accurately identify fine
Subclasses, and that the functional correlates of these cells
match those previously observed at the Family level with
previous methods.

State modulation of inhibitory Subclasses
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Figure 1 | Post-hoc transcriptomic identification of recorded neurons. a, 3D representation of an example reference Z-Stack (white:
GCaMP6m, expressed virally in all neurons, red: mCherry expressed transgenically in inhibitory neurons). Axis scale in ym. b, Digital
sagittal section of this Z-Stack (maximum intensity projection of a 15 um slice), same colours as in a. Scale bar: 100 ym. ¢, Portion of
the ex vivo section aligned to the cut in b after 72-fold mRNA detection with coppaFISH. Individual dots represent detected mRNAs (see
top of j for colour code). Scale bar: 100 um. d, Expanded view of the dashed rectangle in b and ¢ showing in vivo mCherry fluorescence
(red) and ex-vivo Gad1 mRNA detections (blue). Scale bar: 20 ym. e, Expression of all 72 genes in this same region, plotted as in c.
White lines indicate two functional imaging planes. Gray background: DAPI stain for cell nuclei. Scale bar: 20 ym. f, Hierarchical classi-
fication of recorded cell types into 5 Families, 11 Classes, and 35 Subclasses. Number of unique cells of each Subclass given in paren-
theses. g, h, Higher magnification view of Cells 1 and 2 from e. Gene detections are indicated by coloured letters (code at top of j). Gray
background: DAPI image. Insets: pie plots indicating the posterior probabilities of assignment to different Subclasses. Scale bar: 5 um.
i, Deconvolved calcium traces for the two example cells, shown together with running speed. j, Mean expression of the 72 detected
genes (pseudocoloured as log(1+GeneCount)) for the 35 Subclasses ordered as in f (=4 animals). k, Comparison between the mean
cortical depth of each Subclass found using coppaFISH (on N = 14 sections from a brain in which mRNAs were detected down to Layer
6), and the cortical depth found by an independent study using Patch-seq?. (r=0.91, p<0.001). Only Subclasses with at least 3 cells for
each dataset were considered. The black line represents equality.

We next asked to what extent fine transcriptomic types af-
fect a neuron’s in vivo activity patterns. We generated ras-
ter plots showing the simultaneous activity of V1 popula-
tions, with all inhibitory neurons identified to fine tran-
scriptomic Subclasses (Fig. 2a). Examining these rasters
during spontaneous activity revealed complex patterns of
correlated activity, which varied with ongoing behaviour

as measured by two assays of arousal: locomotion and pu-
pil diameter. It has been possible to plot such rasters be-
fore, but without identifying the transcriptomic identity
of the recorded neurons. We therefore first asked how ac-
tivity of the identified cell types depended on cortical
state, a correlate of these assays of arousal?!2%3%3346-48,
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Figure 2 | State modulation of inhibitory Subclasses. a, Raster of spontaneous neuronal activity (blank screen). Each row represents
a neuron. Top, excitatory cells (ECs; mCherry-negative), sorted by weight on the first principal component (PC) of their activity. Middle:
inhibitory cells, grouped and coloured by Subclass (symbol code in b). Bottom: running speed (cm/s), pupil size (pixels), and mean activity
of the 10% of ECs with most negative PC weights. Three columns on right: expanded view of time windows marked in colour above main
raster, illustrating three behavioural states. b, Left: pseudocolour representation of mean activity of each Subclass in each state. Right:
distribution of state modulation (Running vs. Stationary Synchronized) for cells of each class (n=4 animals; 17 sessions). Top p-values:
Omnibus test for Family/Class/Subclass effects. p-values on right: post-hoc tests for effect of Class within each Family; stars on right for
effect of Subclass within each Class (Benjamini-Hochberg corrected). Coloured/black arrows on left: significant state modulation for each
Class/Subclass (Benjamini-Hochberg corrected, number of arrowheads indicates significance). ¢, State modulation for Running vs. Sta-
tionary Desynchronized states, against modulation for Stationary Synchronized vs. Desynchronized states. Each glyph shows median
values for a Subclass, symbols as in b (p<0.001, ANCOVA controlling for session). d, Modulation for Running vs. Stationary Desynchro-
nized states against locking to the synchronized-state oscillation. Each glyph shows median values for a Subclass. (p<0.001, ANCOVA
controlling for session). e, State modulation for cells in the Lamp5-Plch2-Dock5 and Lamp-Lsp1 Subclasses, against Subclass probability
index (log(pSubclass1/pSubclass?2); left), or Ndnf (middle) and Cck (right) gene expression. These three variables correlated significantly
with state modulation (p<0.001, Pearson correlation), even controlling for a common effect of Subclass (p<0.05, ANCOVA). Dashed lines:
linear fits. *, p<0.05, **, p<0.01, ***, p<0.001; 1, 2, or 3-headed arrows in b indicate the same significance levels, with direction indicating
the sign of the modulation.

We characterized cortical state using the activity of theex- ~ component of population activity) were more active when
citatory population. As previously described®, some ex-  the mouse was aroused (fast running, large pupil) while
citatory cells (positively weighted on the first principal  other excitatory cells (with negative weights) fired during
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inactive periods (no running, small pupil). Additionally,
we found that behavioural inactivity was sometimes ac-
companied by low-frequency fluctuations in population
activity, which strongly entrained the excitatory neurons
as visible in the mean activity of the negatively weighted
cells (Fig. 2a). The frequency of these fluctuations cannot
be determined from our data as our two-photon micro-
scope’s 4.3 Hz sampling rate aliases frequencies above
2.15 Hz, but they likely correspond to the 3-6 Hz oscilla-
tion that has been described in mouse visual cortex and
hypothesized as a homolog of the primate alpha
rhythm®®>3. We thus distinguished three cortical states
corresponding to decreasing levels of arousal: periods
when the mouse is running; periods when the mouse is
stationary but the network desynchronized; and station-
ary periods with synchronized, oscillatory population ac-
tivity. To quantify a cell’s modulation by cortical state we
compared the activity of each cell during the two extreme
states: Running vs. Stationary Synchronized.

Statistical analysis of differences between inhibitory cell
types must avoid two potential confounds. First, the large
number of Subclasses presents a potential multiple com-
parisons problem. Second, different recordings will by
chance sample different proportions of each cell type, and
thus recording-to-recording variability could be mistaken
for variability between cell types. To avoid these con-
founds, we used a hierarchical permutation test (Meth-
ods), which tests for a main effect of Family, Class, or Sub-
class on a variable of interest by shuffling the molecular
labels of cells within an experiment, at each of the 3 hier-
archical levels.

The hierarchical permutation test revealed significant dif-
ferences in state modulation at all three levels: Family,
Class, and Subclass (Fig. 2b). Post-hoc tests revealed large
differences in activity across Classes in the Pvalb Family:
Pvalb-Tacl cells were strongly active during oscillatory
states and less active during running, while Pvalb-Vipr2
cells showed the opposite behaviour (consistent with pre-
vious results®). Likewise, in the Sst Family, Sst-Tacl cells
were most active during synchronized states while Sst-
Reln cells were more active during running. Similar di-
chotomies were observed in the Lamp5 Family. Vip and
Sncg cells were more active during running, except for
Vip-Reln cells, which showed the opposite behaviour.
Post-hoc statistical tests at the Subclass level revealed that
the most prominent difference was within the Lamp5-
Npy (putative neurogliaform) Class; a trend toward dif-
ference was also seen in Sst-Reln (putative Martinotti)
cells (p<0.05, significant on its own but not after Benja-
mini-Hochberg correction). Analysis of the Stationary

Desynchronized state revealed intermediate activity com-
pared to the two extreme states (Extended Data Fig. 6a-b).
The modulations between either one of the extreme states
and the intermediate state (Stationary Desynchronized)
were strongly correlated, indicating a linear progression
of neural activity across the three states (Fig. 2b-c). A Sub-
class’s state modulation was correlated with its degree of
phase-locking to the Synchronized state oscillation, with
Subclasses more active during Running less locked to the
oscillation during the Stationary Synchronized periods
(Fig. 2d).

The dependence of state modulation on Subclass was con-
sistent with smooth variation along a continuum of ge-
netic types, rather than a sharp difference between dis-
crete groups. For example, amongst Subclasses of the
Lamp5-Npy Class, Lamp5-Lsp1 cells were most active in
the Synchronized state, while Lamp5-Plch2-Dock5 cells
fired more during Running. The division between these
Subclasses however reflects a largely arbitrary dividing
line along a continuous dimension of genetic variability
(Extended Data Fig. 3). To test if their divergent state
modulation followed a continuous, rather than discrete
transcriptomic variable, we quantified each imaged cell’s
position along the continuum by its ratio of posterior
probabilities of assignment to the two Subclasses. We ob-
served a smooth dependence of state modulation along
this continuum, which ANCOVA analysis showed de-
pended on this continuous genetic score better than on
discrete Subclass assignment (Fig. 2e). Similar continuous
dependence was visible at the single-gene level, with state
modulation within Lamp5-Npy cells correlating with ex-
pression of Cck and Ndnf (Fig. 2e) even after controlling
for Subclass. Similar results were seen for Sst-Reln Sub-
classes (Extended Data Fig. 6c¢).

Sensory responses of inhibitory Subclasses

We next probed the responses of different inhibitory types
to visual stimuli: drifting gratings of various sizes and ori-
entations, and natural images. Unlike state modulation,
visual responses showed significant differences only at
the level of Families, not Classes or Subclasses.

Most inhibitory Classes contained neurons responding to
grating stimuli (Fig. 3a-d; Extended Data Fig.7). Pvalb
and Sst cells responding to gratings were almost exclu-
sively excited by them, whereas Sncg cells, whose visual
responses to our knowledge have not yet been studied,
were almost exclusively inhibited. Lamp5 and Vip cells
contained a mixture of excited and inhibited cells, with
Vip cells more often excited. Orientation and direction
tuning was relatively low for most Families?283655-%7, with
a slight tendency for Sst and Vip cells to show stronger
tuning. Most cells showed significant coding of natural
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Figure 3 | Sensory responses of inhibitory Subclasses. a, Pseudocolour rasters of trial-averaged activity around onset of drifting
grating stimuli (duration 0.5s), for different stimulus sizes (5°, 15°, 60°) and locomotor states. Each row shows average activity of a
Subclass. Dashed grey lines: stimulus onset. b, Cross-validated direction tuning curves for each Subclass, shown in pseudocolour as a
function of grating direction. Tuning curves were averaged over odd trials, shifted and normalized according to the preferred direction on
even trials, and averaged across cells of the same Subclass. ¢, Hierarchical analysis of responsiveness to drifting gratings (measured at

the stimulus size eliciting the largest negative or positive response),

stimulus responses. Top row, from left: fraction of cells of each Class

plotted as in Fig. 2b. d, Additional statistical analyses of visual
significantly excited or suppressed by grating stimuli; hierarchical

analysis of differences between mean response to large and small gratings in stationary and running conditions, and modulation of visual
response by running averaged over all sizes, plotted as in Fig.2b but only showing the Class level. Bottom row: hierarchical analysis of
orientation and direction selectivity indices, responsiveness and tuning to natural image stimuli. e, Size tuning curves for each Class.
Dashed lines and triangular markers correspond to mean stimulus response during stationary periods. Solid lines and circular markers
correspond to mean stimulus response during running epochs. Black dashed and solid lines indicate respectively the average activity

during baseline for Running or Stationary (interstimulus periods).

image stimuli, which again differed significantly between
Families, being weakest for Sncg cells.

The most striking difference in the grating responses of
different inhibitory cell types was in their tuning to grat-
ing size and its modulation by cortical state (Fig. 3e). Size

tuning was significantly modulated at the Family level: as
previously reported'¢1?, Sst cells showed little or no sur-
round suppression, with strong responses to large stim-
uli. Sncg cells showed a strikingly opposite pattern in
which they were progressively more suppressed by larger
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Figure 4 | A single genetic axis explains state modulation. a, Left: violin plots showing distribution of the first genetic principal
component (gPC1) for each Subclass. Right: weighting of each gene in this principal component. b, Correlation between state modula-
tion and gPC1. Each glyph represents median values for a Subclass, symbols as in a (p<0.001, ANCOVA controlling for session). c,
Correlation between state modulation and expression of Slc6a1 and Gad1 measured in situ. Each dot represents median values for a
Subclass, coded as in a. (Slc6a1: p<0.001, ANCOVA controlling for session; Gad1: p<0.001, ANCOVA controlling for session). d, Matrix
of pairwise correlations between simultaneously recorded Classes. The Classes are sorted by gPC1, showing a significant effect of
gPC1 on the pairwise correlations (p=0.013, permutation test). e, Correlation between state modulation and electrophysiological prop-
erties measured by an independent Patch-seq study®. Each symbol represents median values for a Subclass, coded as in a. Rheobase:
r=0.39; Spike Adaptation: r=0.47; Spike Shape Index: r=0.23; log(1): r=0.32. (Significance: Pearson correlation). f, Correlation between
state modulation and Cholinergic receptor expression obtained from an independent scRNA-seq study*. Each symbol represents median
values for a given subclass, coded as before. Chrm4: r=0.24; Chrm3: r=0.38; Chrna4: r=0.23; Chrna5: r=0.12. Gq and Gi indicate
metabotropic receptors coupled to a Gq (excitatory) and Gi (inhibitory) pathways, E indicates excitatory ionotropic receptor. Correlations
of state modulation with excitatory cholinergic receptor expression were higher than with inhibitory receptor expression (including those
not shown here; p = 0.01, ANOVA,; only receptors with > 2 counts in at least 10 Subclasses were considered, making 10 in total). *,
p<0.05, **, p<0.01, ***, p<0.001; Dashed lines are linear regression fits.

stimuli (Fig. 3e). Modulation of grating response by loco-
motion was significantly different between Families, with
Sst, Pvalb, and Vip cells showing various degrees of in-
crease with locomotion and Sncg a decrease.

In summary, sensory responses showed significant differ-
ences between Families, but not between Classes and Sub-
classes. The most striking differences between Families
were in size tuning and its modulation by state. A lack of
statistical significance of course does not exclude the pos-
sibility that Subclasses may differ in sensory tuning in
ways too small for our methods to detect; but the fact that
the same statistical tests found Subclass differences in
state modulation suggests that any such differences in
sensory tuning are likely to be subtle.

A single genetic axis predicts state modulation

Although the number of inhibitory Subclasses is large and
their state modulation is diverse, we found that a large
portion of this diversity can be explained by a single ge-
netic axis. This axis was defined independently of the
physiological data: we simply computed the first princi-
pal component of the gene expression vectors measured
in situ (genetic PC 1, or gPC1). A similar approach previ-
ously applied to scRNA-seq data from CA1 inhibitory
neurons revealed a continuum ranging from cells target-
ing excitatory cell somas at one end, to cells targeting dis-
tal dendrites and inhibitory neurons at the other’®. Apply-
ing genetic PCA to the in situ transcriptome of our cells
revealed a similar continuum (Fig. 4a). The classes with
the most negative gPC1 values were Pvalb-Tacl and Sst-
Tacl cells; those with the highest were Sncg, Vip, Lamp5-
Chrna?7 and Lamp5-Tmem182 cells; Sst-Reln and Lamp5-
Npy Classes occupied the centre of the continuum. Genes
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negatively correlated with the continuum included Gad1
and Slcoal (Fig. 4a), which are involved in GABA synthe-
sis and transport, consistent with previous analysis sug-
gesting that cell types negatively weighted on this contin-
uum exert stronger inhibition on their targets and have
faster metabolic rates’s.

The state modulation of a Subclass correlated with its po-
sition along the genetic continuum gPC1 (Fig. 4b). Cells
with negative gPC1, such as Pvalb-Tpbg (putative basket
cells) were most strongly active in Synchronized states,
while cells with positive gPC1 such as Sncg cells were
most active during Desynchronized and Running states.
State modulation was significantly correlated with gPC1,
(p<0.001, ANCOVA controlling for session; Fig. 4b). For
example, Sst-Tacl cells, which show a faster-spiking
physiological profile than Sst-Reln cells?, had the lowest
gPC1 values and greatest preference for oscillatory states
amongst the Sst population (Fig. 4b). These effects could
be seen at a single-gene level, with a Subclass’s state mod-
ulation negatively correlated with expression of Slc6al
and Gadl (p<0.001, ANCOVA controlling for session).
Thus, different inhibitory subclasses have diverse rela-
tionships to cortical state, but these relationships can be at
least partially predicted by a single genetic axis, with the
side of this axis associated with stronger GABA synthesis
and release showing more activity in oscillatory states.

The main gPCl1 axis also largely predicted correlations be-
tween the spontaneous activity of inhibitory Classes, with
positive correlations between Classes of similar gPC1 val-
ues, and negative correlations between Classes of oppo-
site gPC1 values (p<0.05, permutation test; Fig. 4d). This
also held true when considering correlations computed
within any of the three states independently (Extended
Data Fig. 8).

A cell type’s state modulation and position on the gPC1
axis also correlated with many aspects of its intrinsic
physiology and morphology (Fig. 4e). To demonstrate
this, we analysed data from an independent Patch-seq
study®. Subclasses that were active during synchronized
states (low arousal levels) had faster membrane time con-
stants and spike repolarization speeds, more hyperpolar-
ized resting potential, lower membrane resistance, larger
rheobase (i.e. the amount of current required to drive
spiking), and less spike frequency adaptation (Fig. 4e; Ex-
tended Data Fig. 9a). Subclasses active during running
had the opposite properties. This Patch-seq data also re-
vealed an intriguing correlate of gPC1 and axonal mor-
phology. Within the Sst and Lamp5 Families, cells with
larger values of gPC1 (which thus would show more ac-
tivity in alert states in vivo) had a greater fraction of their
axon in layer 1, and a smaller fraction in layer 2/3 (p<.001,

Pearson correlation with Benajamini-Hochberg correc-
tion; Extended Data Fig. 9b). This correlation was not seen
for the other Families, for which axonal projections to
layer 1 were rare.

Finally, we hypothesized that variation in state modula-
tion along the gPC1 axis might reflect variation in cholin-
ergic receptor expression. Acetylcholine levels are higher
in active states and contribute to cortical desynchroniza-
tion®-¢4. Moreover, acetylcholine differentially affects in-
hibitory neuronal types by acting through different recep-
tors, with nicotinic and Gg-coupled muscarinic receptors
exciting some inhibitory types and Gi-coupled muscarinic
receptors inhibiting others®-70. To test this hypothesis, we
examined the correlation between state modulation and
expression of each cholinergic receptor type across Sub-
classes. Consistent with the hypothesis, we found positive
correlations between state modulation and the expression
level of all nicotinic or Gq-coupled muscarinic receptors,
and negative correlations between state modulation and
expression levels of Gi-coupled muscarinic receptors (Fig.
4f; excitatory receptors significantly more positively cor-
related than inhibitory receptors, p<0.05, ANOVA). This
suggests that differential expression of cholinergic recep-
tor subtypes may contribute to the smooth variation of
state modulation along the main axis of genetic variation
gPCl.

Discussion

By genetically identifying the transcriptomic Subclasses
of simultaneously recorded V1 neurons, we discovered
fine functional differences across cellular Subclasses and
a simple ordering along a main axis of genetic variation.
These differences and this ordering were seen not in the
sensory responses of the neurons — which differed primar-
ily across high-level Families — but rather in the relation
of their activity with cortical and behavioural state. State
modulation can vary significantly between fine Sub-
classes within a Class, but this appears to reflect continu-
ous genetic variation rather than discrete Subclasses. Fur-
thermore, a single, simple, axis of genetic variation across
inhibitory cells — the first principal component of gene ex-
pression (gPC1) — largely explains differences in state
modulation between Subclasses, and predicts their spon-
taneous correlations. This genetic axis also correlates with
a Subclass’s membrane physiology, layer 1 axon content,
and expression of excitatory and inhibitory cholinergic re-
ceptors.

The diversity that we observed across Subclasses may ex-
plain why previous reports of state modulation of differ-
ent interneuron types, based on transgenic lines, have at
times given apparently conflicting results. Previous work
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has uniformly shown that the activity of Vip-Cre labelled
neurons in V1 is enhanced by running!®123371 and our
data are fully consistent with this. Recent work has shown
that most V1 cells labelled in Ndnf-Cre mice fire more in
aroused states?. This is again consistent with our results:
Ndnf is found in the Lamp5 family but not the Lamp5-
Lsp1l Subclass, which was the only Lamp5 Subclass we
found to have significantly negative state modulation.
Measurements of running modulation in Pvalb-Cre mice
(which will label mainly basket cells in V1) have shown
mixed results'*2?, which may be explained by an effect
of cell depth on running modulation: cells above 300 um
show primarily suppression by running and cells below
that depth primarily excitation’. Our data involved only
cells above 300 um depth and showed close to uniform
negative state modulation in Pvalb-Tacl (putative basket)
cells but positive modulation in Pvalb-Vipr2 (putative
chandelier), consistent with recent data from Vipr2-Cre
mice®*. We speculate that the deeper-layer cells positively
modulated in Pvalb-Cre mice correspond to additional
Pvalb-Tacl Subclasses not recorded in this study. An ad-
ditional factor that may explain differing results in previ-
ous work is light level. Work in Sst-Cre mice has shown
that running suppresses activity in pitch darkness, but has
mixed effects in light121.293272; our data were conducted in
light, and we speculate that the mixed effects seen in Sst-
Cre mice might reflect a Class difference, with Sst-Tacl
cells suppressed but Sst-Reln cells activated.

It is remarkable that a single transcriptomic dimension —
derived from gene expression patterns without regard to
physiological properties — correlates with state modula-
tion that we measured in vivo, with intrinsic physiology
measured in vitro®, and with the expression of cholinergic
receptors with opposite signs for excitatory and inhibitory
receptors*. The continuum we observed is similar to one
previously described in scRNA-seq data from CA1 inhib-
itory neurons'?, but with one notable exception: in CA1l,
Sncg Subclasses occupied multiple locations along the
continuum, rather than all being at the positive end as in
V1. This might be related to the existence of fast-spiking
CCK basket cell subtypes in CA17, and the fact that CA1
Sncg cells can be inhibited by locomotion®.

Although we have focused here on one dimension of
arousal/desynchronization, the space of cortical states is
unlikely to be one dimensional, as multiple dimensions of
V1 excitatory cell activity correlate with ongoing behav-
iour®. Characterizing how the multidimensional space of
cortical states relates to multiple inhibitory classes and on-
going behaviours remains an important topic for future
work, as does understanding whether this relationship

varies between different cortical regions. High-through-
put application of the current methods will make this pos-
sible.

The existence of these correlations with gPC1 suggests
that many observations, made on individual inhibitory
types, could be consequences of a general principle apply-
ing to all interneurons. For example, acetylcholine has
been shown to have diverse effects on different inhibitory
types®7-9, such as the classical “cholinergic switch”7
whereby fast spiking (putative Pvalb basket) cortical neu-
rons are inhibited by muscarinic receptors but low-thresh-
old spiking (putative Sst Martinotti) neurons are excited
by nicotinic receptors. This result is consistent with the re-
ceptor expression profile of these Classes, and with our
finding that the Pvalb-Tac1 Class is inhibited, and the Sst-
Reln Class excited in Desynchronized and Running states.
In fact, our data suggest that the behaviour of these two
cell types is a manifestation of a more general principle: at
least in superficial V1, inhibitory cells with lower gPC1
values exhibit physiological properties closer to Pvalb
basket cells, lower levels of nicotinic and excitatory mus-
carinic receptors, more inhibitory muscarinic receptors,
and negative state modulation, and the reverse is true for
cells with larger gPC1 values. Differences in cholinergic
receptor expression likely contribute to differences in in
vivo state modulation: acetylcholine levels are largest in
locomotion and lowest in synchronized states, and state
modulation of at least some interneuron classes depends
on cell-type-specific nicotinic and muscarinic currents?%.
Direct cholinergic input is of course unlikely to be the only
factor mediating state dependence of an interneuron
class: interneurons receive input from pyramidal cells,
and from each other in specific ways such as the well-
known “disinhibitory circuit”'2>¢. Nevertheless, the cor-
relation of cholinergic receptor expression and state mod-
ulation we observed suggests that cell-type-specific cho-
linergic modulation may play a substantial role, at least in
superficial V1.

What computational role might be served by this state-de-
pendent switch in the activity of different inhibitory cell
types? Our data are consistent with a long-standing view
that alert states and cholinergic modulation biases cortex
towards feedforward inputs from primary thalamus, and
away from top-down inputs from elsewhere in cortex”-7s.
Indeed, the Classes most suppressed by alert states (puta-
tive Pvalb basket and Sst non-Martinotti) preferentially
target thalamorecipient layers 4 and 5b, while the Sncg,
Lamp5, Sst-Martinotti and Vip cells more excited in alert
states preferentially target either interneurons, or pyram-
idal cells in other layers™#!. Our data furthermore sug-
gests that the degree of state modulation for Sst and
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Lampb Subclasses correlates with their axonal innerva-
tion of layer 1, which receives top-down input. Opposing
cholinergic modulation of these inhibitory classes might
thus alter the balance between bottom-up and top-down
inputs.

In summary, while V1 inhibitory neurons are very genet-
ically diverse, we found that their sensory tuning is deter-
mined largely by their top-level transcriptomic Family,
and their state modulation can be predicted in large part
from a single genetic axis that also correlates with their
intrinsic physiology, morphology, and cholinergic recep-
tor expression. As emerging experimental techniques al-
low for ever-greater amounts of information to be col-
lected on the physiology, connectivity, and firing corre-
lates of cortical interneuron classes, these simple princi-
ples may help organize this information.
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Methods

All experimental procedures were conducted in accordance with the UK Animals (Scientific Procedures Act) 1986. Ex-
periments were performed at University College London under personal and project licences released by the Home
Office following appropriate ethics review.

Mice

Experiments were performed on mice aged between 12 and 15 weeks maintained on a 12-h light/dark cycle, at 20-24 °C
and 45-65% humidity, in individually ventilated cages. For post-hoc identification of transcriptomic Subclasses, four
(two males and two females) Gad2-T2a-NLS-mCherry transgenic mice (Stock No: 023140, The Jackson Laboratory),
expressing the red fluorescent protein mCherry in the nuclei of Gad2 expressing cells, were used. For comparison to
transgenic mouse lines (Extended Data Fig. 5), additional experiments were performed as in Ref.* using one male
Pvalb<tml(cre)Arbr> and 2 male, 1 female Sst<tm2.l(cre)Zjh> crossed with Gt(ROSA)26Sor<tm14(CAG-
tdTomato)Hze>.

Surgical procedures

On the day of surgery, mice were anaesthetized with isoflurane (1-2% in oxygen), their body temperature was moni-
tored and kept at 37-38 °C using a closed-loop heating pad, and the eyes were protected with ophthalmic gel (Viscotears
Liquid Gel, Alcon). An analgesic (Rimadyl, 5 mg/kg) was administered subcutaneously before the procedure, and orally
on subsequent days. Dexamethasone (0.5 mg/kg, IM) was administered intramuscularly 30 min before the procedure to
prevent brain oedema. The exposed brain was constantly perfused with artificial cerebrospinal fluid (150 mM NaCl, 2.5
mM KCl, 10 mM HEPES, 2 mM CaCl2, 1 mM MgCI2; pH 7.3 adjusted with NaOH, 300 mOsm). During the surgery, we
first implanted a head-plate over the right hemisphere of the cranium for later head-fixation: a stainless-steel head plate
with a 10-mm circular opening was secured over the skull using dental cement (Super-Bond C&B, 10 Sun Medical). We
then made a circular craniotomy over V1 (3 mm diameter) using a biopsy punch. At this point 6-7 virus injections were
made at different positions inside the craniotomy. Finally, the craniotomy was sealed with a glass cranial window, using
cyanoacrylate adhesive (Vetbond, 3M) and dental cement.

All mice were injected with an unconditional GCaMP6ém virus, AAV1.Syn.GCaMP6m.WPRE.SV40 obtained from the
University of Pennsylvania Viral Vector Core. The virus was injected with a bevelled micropipette using a Nanoject I
injector (Drummond Scientific Company, Broomall, PA 1) attached to a stereotaxic micromanipulator. Six to seven boli
of 100-200 nL virus (2.23x102 GC/ml) were slowly (~20 nL/min) injected unilaterally into monocular V1%, 2.1-3.3 mm
laterally and 3.5-4.0mm posteriorly from Bregma and at a depth of L2/3 (200-300 mm).

After virus injection, a small bolus (10uL) of red fluorescent beads (FluoSpheres™ Carboxylate-Modified Microspheres,
2.0 um, red fluorescent (580/605), 2% solids, ThermoFisher Scientific) was injected at the most rostral part of the crani-
otomy, to allow orientation of the ex-vivo slices but not interfere with V1 imaging in the caudal part. Following recovery,
mice were habituated for handling and head-fixation for 3 days before carrying out recordings.

Recording neuronal activity in V1
Two-photon calcium imaging

Each mouse was recorded for at least 3 sessions. In vivo recordings were performed 15-45 days after the virus injection.
We used a commercial two-photon microscope with a resonant-galvo scanhead (B-scope, ThorLabs, Ely UK) controlled
by ScanImage 4.2%, with an acquisition frame rate of about 30 Hz (at 512 by 512 pixels, corresponding to a rate of about
4.3 Hz sampling rate). The field of view was 550-600 pum large. We imaged 7 planes at 15-45 um steps, starting at various
positions below the brain surface (from 0 to -150 um) to sample different cortical depths and therefore Subclasses rec-
orded simultaneously during different sessions. Imaging calcium activity was performed at a wavelength of 920nm or
980nm. Three computer screens spanning -135 to +135 v° along the azimuth axis and -35 to +35 v° along the elevation
axis were used to display visual stimuli. During the presentation of visual stimuli, we switched off the red gun of the
monitors to prevent light from the monitors contaminating the red fluorescent channel.

13


https://doi.org/10.1101/2021.10.24.465600

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.24.465600; this version posted October 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

At the end of each recording session, reference Z-Stacks were acquired. Starting at the same position as the imaging
planes, we acquired two Z-Stacks of about 400um depth, with a 1-micron step between planes. The first one, called
GCaMP Z-Stack was acquired at the same wavelength as the calcium imaging (920 or 980nm). The second one, called
reference Z-Stack, was acquired at 1040nm to image mCherry fluorescence.

Before sacrificing each mouse, we acquired structural Z-stacks (ranging from the brain surface to 400um deep) at
1040nm to get an image of the mCherry cells across the whole craniotomy (including the position where the red fluo-
rescent beads were injected). This structural Z-stack was used to select slices on which to perform transcriptomic anal-
ysis, and to provide an initialization point for the registration algorithm.

Initial retinotopic mapping

All recordings were targeted to the V1 Monocular region (>60° azimuth). To find this region, during the first imaging
session, we initially mapped the retinotopy of different candidate fields-of-view, using single plane imaging. Sparse
noise stimuli were presented to the mouse, consisting in black or white squares of width 4.5° visual angle on a grey
background at a frame rate of 5 Hz for 10 minutes. Squares appeared randomly at fixed positions in a 16 by 60 grid,
spanning the retinotopic range of the computer screens. 1.5% of the squares were shown at any one time.

Visual Stimulation

Drifting gratings were centred on the mean receptive field of the microscope’s field of view. Gratings had a duration of
0.5 s, temporal frequency of 2 Hz and spatial frequency of 0.15 cycles/deg. The gratings drifted in 12 different directions
(from 0 to 330°, separated by 30°) and were of 3 different sizes (5°, 15° and 60° diameter).

Natural scenes from the ImageNet database were contrast-normalized and presented as described in Ref.*. Each image
was presented for 0.5 s with inter-stimulus interval uniformly distributed from 0.3 to 1.1 s. Five percent of the total
presentations were blank stimuli. During each session we presented a given set of 1050 different natural images twice
(corresponding to a subset of the 2800 images originally used in Ref.*).

On each recording session we presented the same random sparse noise stimuli used to map retinotopy (see above), for
30 minutes.

Spontaneous activity was recorded in front of a blank screen, set to a steady cyan level equal to the background of all
the stimuli presented for visual responses protocols. The duration of these blank screen presentations was typically
between 15 and 20 minutes long.

Eye-Tracking

We used a collimated infrared LED (SLS-0208-B, lpeak = 850nm; controller: SLC-AA02-US; Mightex Systems,Toronto,
Canada) to illuminate the eye contralateral to the recording site. Videos of eye position were captured at 30 Hz with a
monochromatic camera (DMK 21BU04.H, The Imaging Source, Bremen, Germany) equipped with a zoom lens
(MVL7000; Navitar, Rochester, NY), and positioned at approximately 50 degrees azimuth and 50 degrees elevation
relative to the centre of the mouse’ field of view. Contamination light from the monitors and the imaging laser was
rejected using an optical band-pass filter (700-900nm) positioned in front of the camera objective (long-pass 092/52x0.75,
The Imaging Source, Bremen, Germany; short-pass FES0900, Thorlabs, Ely UK).

Processing of calcium imaging

Two photon calcium data was processed using Suite2P3!. Neuropil contamination was corrected by subtracting from
each ROI signal its surrounding neuropil signal multiplied by a constant factor of 0.7. Calcium traces were deconvolved
using non-negative spike deconvolution®> with a calcium indicator decay timescale of 1.5 s. ROIs were manually curated
to make sure only cell bodies were considered for further analysis.

coppaFISH: Combinatorial Padlock-Probe-Amplified Fluorescence in Situ Hybridization

Many approaches to highly-multiplexed mRNA detection have been described*>438-102, The coppaFISH method is a
development of the in situ sequencing method of Ref.** (Extended Data Fig. 1). The method uses reverse transcription,
padlock probes, and rolling-circle amplification to amplify mRNAs to DNA rolling circle products (RCPs) containing
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multiple copies of a 20 nucleotide (nt) barcode sequence, and then detects their location combinatorially in 7 rounds of
7-colour fluorescence imaging.

Gene selection and DNA probe design

A panel of 73 genes was selected to allow the identification of cortical cell types. This gene panel was essentially the
same as the one used in Ref.*., except that some genes that were previously found not to help cell type identification
were removed. One gene (Yjefn3) was detected in our experiments, but could not be used to assign cells to tran-
scriptomic Subclasses, as it was not present in the reference scRNA-seq dataset*. In the main text we therefore refer to
a 72-gene panel.

Multiple padlock probes were designed for each gene, spanning the length of the cDNA (Extended Data Table 2). The
number of different padlock probes per gene was chosen based on the expression for each specific gene as determined
by scRNA-seq. This means that fewer padlock probes were used for genes with low expression and vice versa (for
example 4 padlock probes were designed for Sst but 10 were designed for Chodl). All padlock probes consisted of two
15-20nt recognition sites, a 20nt gene barcode (unique to each gene) and a 20nt anchor sequence (identical for all genes
and padlock probes).

Padlock probes were designed using the software of Ref.*!. Briefly, this software finds suitable RNA target sequences
by restricting the melting temperature of the binding sequence, and by aligning the candidate sequences to the mouse
whole transcriptome (RefSeq database) using BLAST+ to check for specificity. Any candidate targets for which another
transcript or non-coding RNA sequence matched the target with more than 50% coverage, 80% homology, and coverage
spanning the central 10nt of the target sequence were excluded. For each padlock probe we also designed a specific
primer for reverse transcription, a 15nt long DNA oligonucleotides which binds the region upstream to the mRNA
sequences targeted by the padlock probes (Extended Data Table 3). The use of specific primers greatly improved the
number of RCPs obtained per section compared to random primers (our unpublished observations).

To determine the gene-specific DNA barcode sequences (and the anchor sequence), 240,000 orthogonal 25-mer oligo-
nucleotide sequences'®® were trimmed to 20nt from the 5" end and screened for Tm (between 55 and 56 °C using Santa-
Lucia method). They were further screened for orthogonality with mouse sequences using BLAST+ with the NCBI
mouse genomic plus transcript (Mouse G +T) database. We used the following BLAST parameters: "-reward", 1, "-
penalty", -2, "-gapopen", 2, "-gapextend", 1, "-evalue", 10. Any matches in this blast search were removed from the pool.
Next, we checked for potential cross reactivity of the remaining sequences to themselves using the same BLAST param-
eters, and any hits were removed, resulting in 6397 possible sequences. The barcode sequences were chosen from this
pool.

The combinatorial imaging strategy used two types of DNA Probes. Seven “Dye probes” were designed, each consisting
of a 20nt long DNA oligo conjugated to one of the 7 following fluorophores: DY405, AF488, DY485xL, AF532, AF594,
AF647 and AF750; the same dye probes were used on each imaging round (Extended Data Table 4). Additionally, a set
of 40nt “Bridge probes” were designed for each imaging round, linking each gene’s RCP barcode to one of the 7 Dye
probes (Extended Data Fig. 1; Extended Data Table 5). These bridge probes thus caused each gene to show up in a
specific colour channel on each round. This two-part strategy of linking the 7 dye probes to the RCPs with bridge probes
provides a substantial cost saving over making Ngepes X Nyounas dye probes, as dye-coupled probes are much more
expensive than simple DNA.

Each gene was assigned a sequence of dyes for the 7 imaging rounds using a Reed-Solomon coding scheme'®(Extended
Data Table 6), which constructs sequences of minimum possible overlap. Specifically, the genes were numbered by
integers g, and converted to a base 7 representation g,g,g,. The dye assigned to gene g on round r was

Dyr = g% + g7 + 9o,

where addition and multiplication are understood to happen modulo 7. Codes 0 to 6, which correspond to the same
colour in each round, were not used as these codes could not be distinguished from fixed background fluorescence.

All custom DNA oligos (Padlock probes, primers, Bridge probes and Dye probes) were obtained from Integrated DNA
Technologies (Leuven, Belgium). Padlock probes were ordered as 5 phosphorylated 4 nmole Ultramer™ DNA oligos,
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all other oligos were ordered as classical 25 nmole DNA oligos. The DNA sequence for all 556 primers and padlock
probes, 511 bridge probes and 7 dye probes are provided in (Extended Data Table 2-5).

Tissue preparation

After the in vivo recordings were finished, mice were anaesthetized with isoflurane and then injected with a lethal dose
of sodium pentobarbital (0.01 ml/g). The fresh brains were then dissected out from the skull taking great care to preserve
the integrity of the tissue and avoid warping. The brains were then placed in OCT (Sakura Finetek) and left to freeze on
dry ice for 30min. The samples were then stored at -80°C until slicing. 15-pum thick sagittal sections were then obtained
using a Leica Cryostat for each brain and mounted on gelatine-coated borosilicate glass coverslips (22x55mm). Gelatine
coated coverslips allowed tissue section adhesion to the coverslip and RNA preservation throughout the protocol. To
make them, coverslips mounted on a rack were dipped for 30 seconds in solution of a 2% w/v gelatine and 0.2 % w/v
chromium potassium sulphate dodecahydrate in distilled water (https://www.rndsystems.com/resources/proto-
cols/protocol-preparation-gelatine-coated-slides-histological-tissue-sections). 2-3 brain sections were thaw-mounted on
each coverslip and then frozen and stored at -80°C.

In situ rolling circle product (RCP) production

The RCPs were prepared as in Ref.!, with some modifications. First, coverslips were taken out of the freezer and then
directly pre-fixed using 4% PFA for 5 minutes at room temperature. This pre-fixation was followed by a quick wash
with nuclease-free PBS, and incubation in 0.1 M HCI for 5 minutes at room temperature. After one more PBS wash, the
sections were incubated in 70% Ethanol for 1 minute and then in 100% Ethanol for 1 minute at room temperature. The
coverslips were then left to dry in air. To keep the reagents on the tissue sections, a barrier was drawn around each
section using a hydrophobic barrier PAP pen (ImmEdge® Hydrophobic Barrier PAP Pen H-4000 - Vector Laboratories).

The sections were then directly incubated in reverse transcription mix overnight at 37°C in a humidified chamber (Slide
staining system, StainTray™ M918, VWR™). The mix contained 0.5 mM dNTP mix (Thermo), gene specific primers (10
uM each), 0.2 pg/uL BSA (NEB), 1 U/uL RIBOPROTECT RNase Inhibitor (Blirt) and 20 U/uL TranscriptMe reverse
transcriptase (Blirt) in 1x reverse transcription buffer (Blirt). The mix was removed and fresh 4% (w/v) paraformalde-
hyde in PBS was added to the sections without any wash in between. This post-fixation step aimed to cross-link newly
synthesized cDNA to the cellular matrix and was carried out at room temperature for 30 minutes, followed by two
washes in PBS. RNaseH digestion, padlock hybridization and ligation were then performed using a single reaction mix.
The mix contained 0.05 M KCl (Sigma), 20% Ethylene Carbonate (EC) (Sigma), 10 nM of each padlock probe (557 probes),
0.2 pug/uL BSA, 0.3 U/uL Tth DNA Ligase (Blirt) and 0.4 U/uL RNase H (Blirt) in 1x Ampligase buffer (epicenter). The
sections were first incubated at 37°C for 30 min for RNaseH digestion and moved to 45°C for 60 minutes for stringent
hybridization and optimal DNA ligase activity. The sections were then washed twice in PBS. Finally, for rolling circle
amplification, the sections were incubated in a mix containing 5% glycerol (Sigma), 0.25 nM dNTP mix, 0.2 pg/uL BSA,
0.2 U/uL EquiPhi29 DNA Polymerase (Thermo Fisher Scientific) and 1x EquiPhi29 buffer (Thermo Fisher) overnight at
30°C.

RCP production was quickly verified prior to full barcode read-out by hybridizing a AF750-conjugated oligonucleotide
probe (IDT) to the anchor sequence present in all the RCPs. Sections were incubated for 15 minutes at room temperature
in a hybridization mix containing 10 nM of the dye probe, 2xSSC, 20% EC and H:O. They were then washed twice with
2xSSC. The SSC was then removed from the sections and the coverslips were mounted onto SuperFrost plus (VWR)
glass slides using 10 uL SuperFrost gold antifade mountant (Life Technologies). Images of the region of interest (visual
cortex) were then acquired to visualize the RCPs.

Imaging of the in situ barcodes (read-out)

All seven rounds of imaging occurred in a custom flow cell, using automated fluidics to wash appropriate bridge and
dye probes prior to each round. The flow cell frame was designed using Blender and printed, using an Ultimaker S5 3D
printer, in polylactic acid filament (PLA) with polyvinyl alcohol (PVA) support structures. The PVA support was re-
moved after printing by placing the flow cells in water on a rocker overnight. To make the flow cell air-tight, two 22x55
mm glass coverslips (one with RCP containing sections and one bare) and two approx. 40 cm long EFTE tubes (Tubing
Tefzel Nat 1/16 OD x .020 ID) were securely mounted using UV curing cement (Norland Optical Adhesive 81) and UV
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curing LED system with driver unit and handheld 365nm light source (ThorLabs, C520K2). The coverslip with the sec-
tions was mounted so that the side with the sections faces the inside of the flow cell.

The Imaging setup consisted of a Nikon Eclipse Ti2 microscope with a NIR-LDI laser panel and a zyla sCMOS 4.2
camera (Andor). The fluidics setup consisted of a Minipuls 3 pump (Gilson) and two linked MVP multivalves (Hamil-
ton), each with 8 ports. Nikon NIS elements software was used to acquire the images and communicate with a second
computer controlling the fluidic pump and multivalves. The opening of the valves and the speed and the duration of
the pump’s activity was managed by an edited version of Kilroy software (https://github.com/Zhuangl.ab/storm-con-
trol; edits available at https://github.com/acyclig/storm-control). The imaging and sequencing chemistry were coordi-
nated by NIS elements software (ND sequence acquisition module), which communicates with the computer running
Kilroy by sending TTL pulses through a National Instruments NI-USB 6008 board.

Before sequencing, 15 mL falcon tubes containing bridge probe mixtures for each of the seven imaging rounds, as well
as one each for dye probe mixture, anchor probe mixture, imaging buffer, distilled water, 2xSSC, and 100% formamide
were attached to the multivalves via EFTE tubing and flangeless fittings (1/16 inch Red Delrin, IDEx Health and Science
LLC). The mixtures for bridge, dye, and anchor probes contained the appropriate oligonucleotides diluted to 10nM each
in 2xS5C, 20%EC, and H20. The bridge probe mix for the final anchor round contained the Cy7-conjugated anchor probe
as well as the Gad1 bridge probe (10nM) that binds to the AF532 dye probe (Gadl_r6 - 10nM) and DAPI to stain the cell
nuclei. A fresh formamide (54117 Millipore) aliquot was used for every experiment (stored at 4 °C). The flow cell was
then mounted onto the multi-slide stage and connected to the pump and multivalves via EFTE tubing. The speed of the
pump was adjusted to approximately 0.4 mL/sec. To fill the flow cell, each solution was flushed through the fluidics
system for 4 minutes (the flow cell volume is approximately 1 mL).

In total, eight rounds of imaging were done for each imaging experiment: 7 rounds to decode the barcodes and one final
anchor round to detect the position of every RCP that was used for later image alignment. In each round, sections were
first incubated in 100% formamide for 15min to strip the RCPs from any previous labelling. The formamide was then
flushed from the flow cell with water for 4 minutes and then with 2xSSC for 4 minutes. The sections were next incubated
in that round’s bridge probe mix for 15 minutes and washed with 2xSSC. After this, the sections were incubated in the
dye probe mix for 15 minutes, and again washed with 2xSSC. The flow cell was filled up with an imaging buffer con-
sisting of glucose oxidase and catalase containing oxygen scavenging system'® to protect the fluorophores from photo-
bleaching during imaging.

After each round of sequencing chemistry, 16-bit images were acquired using wide-field epifluorescence excitation, and
a 40X magnification air-objective (CFI Plan Apochromat Lambda 40XC - NA 0.95). Images consisted of Z-stacks (z-step:
0.5um) in 7 different colour channels corresponding to the 7 fluorophores (Fluorophore — excitation wavelength, emis-
sion filters: Dy405 - ex405, 460/50m; AF488 - ex470, 525/36m; Dy485x1 - ex470, 632/60m; AF532 - ex520, 560/40m; AF594
- ex555, 632/60m; AF647 - ex640, 700/75m; AF750 - ex730, 811/80m). Each tile was 2048x2048 pixels (pixel size: 0.1625
micron). The imaging parameters were adjusted to cover only the region of interest (V1) and usually consisted of 10-15
tiles with 10% overlap. The Nikon perfect focus system was used to make sure that the focus stayed relatively constant
across imaging rounds. Image files were saved in Nikon's native ND2 format.

In situ data analysis

The in situ data was analysed with a suite of custom software for image processing, gene calling, and cell calling. All
code was written in MATLAB, and is freely available at https://github.com/jduffield65/iss. This software was developed
from that described in Ref.*, but has been greatly modified, so is described in full here.

The in situ data consist of 8 rounds of multispectral imaging (7 combinatorial rounds, and one reference round in which
all RCPs are labelled via the anchor sequence, together with an additional stain for Gadl RCPs and a DAPI stain).
Because the tissue sample is too large for a single camera image, imaging occurs in overlapping tiles. In each tile, a focus
stack of widefield images were taken for each colour, and flattened into 2D using an extended depth of focus algo-
rithm'®. The data therefore consists of a set of images

Ipcr (x)
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Here I gives the pixel intensity for sequencing round R, colour channel C, tile T, and pixel coordinates x within this tile.
The processing pipeline to identify detected genes comprises several steps: initial registration; RCP spot detection and
fine registration; crosstalk compensation; and gene calling. These analyses proceed without ever “stitching” all the tiles
into a single large image; this approach allows processing of very large datasets on computers with limited memory,
and also easily allows non-rigid alignments. Prior to the pipeline, all RCP images are linearly filtered by convolving
with a difference of Hannings: a Hanning of radius 0.5 um minus a Hanning of radius of 1 pm, both normalized to have
sum 1. The DAPI background images are filtered with a disk-shaped top-hat filter with radius of 8 um.

Initial registration

The initial registration step finds offsets between all image tiles using the anchor images taken on round 8 (which we
refer to as “reference images”). We use this to define a global coordinate system for the entire tissue sample.

Because we use a square tiling strategy, each tile may have up to four “neighbours”: other tiles with which it has a
region of substantial overlap. We denote the set of neighbouring tile pairs as 9t.

Spots first are detected in each tile’s reference images, as local maxima of the filtered image exceeding a fixed detection
threshold. To align the reference images, we loop over all pairs of neighbouring tiles, and compute an offset to register
the overlapping regions of the filtered reference images of these two tiles. The offset between two tiles T; and T, is found
by exhaustive search over all 2d shifts in a range around to the shift expected from the microscope’s position sensor.
For each shift, we find for each spot s on T; the pixel distance D to the nearest spot on T, after the shift has been applied.

-Ds%/8

A score is computed as Yz e , and the final shift vector Ay, r, is taken as the one maximizing this score i.e. the one

with the most near neighbours.

We define a single global coordinate system by finding the coordinate origin X for each tile T. Note however that this
problem is overdetermined as there are more neighbour pairs than there are tiles. We therefore compute the offsets by
minimizing the loss function
2
L= Z | XT1 - XTz - AT1:T2|
(Ty.T2)ER

Differentiating this loss function with respect to X yields a set of simultaneous linear equations, whose solution yields
the origins of each tile on the reference round. The results of this step suffice to define a global coordinate system, but
do not provide pixel-level alignment of images from multiple colour channels on multiple rounds, due to the occurrence
of chromatic aberration and small rotational or non-rigid shifts. The latter will be dealt with in the next step, through
point-cloud registration.

Spot detection and fine registration

The second processing step detects spots in all images of the 7 sequencing rounds, performs fine alignment of colour
channels and sequencing rounds, and computes for each spot a position in global coordinates and an intensity vector
summarizing that spot’s detected fluorescence in each round and channel.

The most intricate part of this step is fine image registration. Even though the same tile layout is used for all sequencing
rounds, the precise positions of the tiles may differ due to slight shifts in the placement and rotation of the sample.
Thus, a single spot might be found on different tiles in different sequencing rounds. Furthermore, due to chromatic
aberration a spot may be in slightly different positions (although not different tiles) in different colour channels. Because
most spots are only a few pixels in size, even a one-pixel registration error can compromise accurate RNA reads.

A global coordinate is defined for each of the spots detected in the reference images using the initial registration de-
scribed above. In regions where tiles overlap, duplicate spots are rejected by keeping only spots which are closer in
global coordinates to the centre of their original tile than to any other.

Next, spot positions are detected in images from all sequencing rounds and colour channels. These are used to align
each round and colour channel to the corresponding tile’s reference image, using point-cloud registration. Specifically,
we fit an affine transformation from each reference image to the images of the corresponding tile for all rounds and
colour channels, using the iterative-closest point (ICP) algorithm with matches further than 3 pixels away excluded.

18


https://doi.org/10.1101/2021.10.24.465600

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.24.465600; this version posted October 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

These affine transformations can include shifts, scalings, rotations and shears, but we did not find it necessary to intro-
duce nonlinear warping transformations within tiles (nonlinear transformations can still occur globally by variation of
the affine transformation across tiles). As the ICP algorithm is highly sensitive to local maxima, it is initialized from a
shift transformation computed by the same method used to find the overlap between reference images, i.e. the shift that
maximizes the number of near neighbours as measured by Y., ePs*/8 When spots are located on neighbouring tiles on
different rounds, the corresponding images are again registered with ICP.

Finally, a 7-dimensional intensity vector v;, is computed for each spot s in each round r, by reading the intensity from
the aligned coordinate of each filtered image.

Crosstalk compensation
The last step associating spots to genes consists of transforming the intensity vectors to gene identities.

An important consideration in this stage is that crosstalk can occur between colour channels. Some crosstalk may occur
due to optical bleedthrough; additional crosstalk can occur due to chemical cross-reactivity of probes. With the current
hybridization chemistry (unlike previous sequencing-by-ligation chemistry), the degree of crosstalk tends to be constant
within a round, so we learn a single 7x7 crosstalk matrix and apply it to all rounds.

To estimate the crosstalk present, we first collect a set of seven 7-dimensional vectors v, containing the intensity in
each colour channel of all well-isolated spots s in all rounds r. Only well-isolated spots are used to ensure that crosstalk
estimation is not affected by spatial overlap of spots corresponding to different genes; a spot is defined as well-isolated
if the reference image intensity averaged over an annular region (4-14 pixel radius) around the spot is less than a thresh-
old value. Crosstalk is then estimated by running a scaled k-means algorithm '’ on these vectors, which finds a set of
seven vectors ¢, (d refers to one of the seven dyes), such that the error function:

Z dmiln |Vs,r - As,rcds_r|2

sTsr
ST

is minimized; in other words, it finds the seven intensity vectors X, such that each well isolated spot on round r is close
to a scaled version of one of them.

The crosstalk matrix is used to predict the colour profile expected for an RCP of each gene g, for each colour channel
and round. If gene g is assigned the dye d, in round r, the predicted 49-dimensional intensity vector is obtained by
concatenating the corresponding crosstalk vectors

Gene calling

Improvements in tissue processing and in situ chemistry mean that our current methods produce substantially more
RCPs than the previous in situ sequencing method*. Consequently, the fluorescence of neighbouring RCPs often over-
laps, which would render the previous detection method unable to find them. To allow resolution of overlapping spots,
we therefore developed a new gene calling algorithm, based on orthogonal matching pursuit (OMP)'?. This algorithm
also allows for subtraction of background autofluorescence. Essentially, OMP repeatedly tests whether the 49-dimen-
sional fluorescence vector of a pixel overlaps with the predicted fluorescence vector of each gene; if so, a gene is detected
at that location, its code is projected out from the fluorescence vector, and the process repeats.

The OMP algorithm fits a 49-dimensional image (one dimension for each combination of round and colour channel) as
a sum of 49-dimensional code vectors. There is one code vector a, for each gene, and one “background” code aZ for
each colour channel, which has equal intensity for all rounds in one colour channel only. These background codes ac-
count for tissue autofluorescence, which will affect all imaging rounds equally.

The gene codes a, are derived from the using knowledge of the Reed-Solomon assigned dyes d , for each gene in each
round and the crosstalk matrix columns c,. These codes take into account the fact that different genes can have consist-
ently different intensities in different rounds, which may arise from non-uniformity in the synthesized concentrations
of the bridge probes. To account for this non-uniformity, we learn a scale factor ¢,,, and predict the 49-dimensional
gene code for gene g as a concatenation:
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ag = [Eg.lcdg_l; gg.chg,z; Eg,3cdg‘3; gg,4cdgl4; 5g15 Cdg,s; Eg,6cd\g'6; Eg‘7cdg'7:|
We will describe the general algorithm before specifying how ¢ . is chosen.

The OMP algorithm expresses the 49-dimensional fluorescence vectors v, for each pixel p as a weighted sum of code
vectors: ¥, = Z?z”l g, ,ag + Yl_-1B.aB. Each step of the algorithm can add a code to the set of code vectors
{9ipti =1..n,} used to approximate pixel v,; the 7 background codes are always included. The gene set is initialized
to be empty, and to choose which gene code, if any, should be added on each step the algorithm computes how much

the residual |v, — 6p|2 would decrease for each possible addition to the set, and picks the gene giving maximum de-
crease, provided this decrease is above a threshold of 0.0612 multiplied by the second largest absolute value of v,, (clamped
by a minimum threshold of 0.01 and a maximum threshold of 3.0), up to a total of 6 genes per pixel. After this iterative process
has terminated for all pixels, an image is made for each gene, containing the gene's weight for each pixel or zero if that
gene is not in the pixel’s gene set. RNA detections are found as local maxima of this image, subject to a thresholding
criterion; the criterion takes into account several factors and is best understood by examining the source code
(https://github.com/jduffield65/iss).

To choose the scale factors ¢, a single iteration of the OMP algorithm is run with all ¢;,. = 1. Local maxima detected
as just described, but with a more stringent threshold (see source code for details) to ensure only unambiguous gene
detections are used. We then compute a 7-dimensional mean intensity vector V. of all detected spots for each gene in
each round. We then find the scale factors ¢, for each round and gene as the least-squares solutions of

Vgr = €9,rCay,
Cell calling

The DAPI image was used to segment the cells. This was performed by detection of the local maxima in each cell fol-
lowed by watershed segmentation. The segmentation of matched cells and their close neighbours was manually cu-
rated.

To assign cells to transcriptomic Subclasses, we used the pciSeq algorithm of Ref.*’, a Bayesian method which assigns
each in situ cell a posterior probability of belonging to each of a set of cell classes defined by prior scRNA-seq. The
cortical Subclasses and their mean gene expression were obtained from Ref.* using only V1 data. The read counts of this
scRNA-seq data were divided by 100 to predict the expected in situ RNA count; a further gene-dependent efficiency
factor was estimated by the algorithm. The pciSeq algorithm produces a probability for each cell to belong to each class,
which we converted to a “hard” classification by assigning each cell to the Subclass of maximum a posteriori probability;
cells for which this maximal probability was less than 0.5 were not analysed further (~1% of matched cells).

Registration of the in vivo and ex vivo cells

We used inhibitory cells, labelled in vivo by mCherry (Gad2-mCherry mice), as landmarks to perform the registration
between the in vivo Gad-mCherry volume and the ex vivo brain sections (Extended Data Fig. 2). This alignment made
use of two high-resolution reference Z-stacks taken for each subject following each imaging session. The “GCaMP Z-
stack” was taken using the same wavelength as functional imaging (920 or 980nm), covering the same volume but at
higher resolution. The “mCherry Z-stack” was acquired in the same volume with 1040nm excitation wavelength to
detect inhibitory neurons in Gad2-mCherry mice, but also provided some GCaMP signal in the green channel (although
this signal was much lower than for the GCaMP Z-stack taken at 920nm). The different excitation wavelength of these
two Z-stacks led to a small chromatic aberration, which was only significant in depth. To correct this aberration, we
used the green channel found in both imaged volumes, registering planes of the GCaMP Z-stack to the mCherry Z-stack
using FFT convolution. This was achieved by finding the best matching plane from the later Z-stack for each GCaMP
Z-stack planes as the Z position which gave the highest FFT cross-correlation. Additionally, a “global Z-stack” was
made following the final functional imaging session, covering the entire region under the craniotomy, used for coarse
initial registration of the in situ slices.

Aligning Calcium ROlIs to the mCherry Z-Stack
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To align the imaging planes of one functional 2p session to the GCaMP Z-stack, we first obtained their theoretical posi-
tion using the measured position of the objective for each line scanned (for both the functional imaging planes and the
GCaMP Z-Stack). We then estimated the Z-drift during the recording session: the position of the calcium imaging planes
over time in comparison to this GCaMP Z-Stack. To do so, a mean image of each functional imaging plane was obtained
for 1 minute every 7 minutes of the recording. These mean images were then aligned to the Z-stack using FFT (Fast
Fourier Transform) convolution. We then took the median of this Z-drift over time and used it to correct the theoretical
imaging plane position. We then performed FFT based registration to correct for a small shift in X and Y between the
actual mean image and the reconstructed image. We thus found the position of the imaging planes (and therefore of
each functional ROI) in the GCaMP Z-Stack. These were then aligned to the mCherry Z-Stack using the transformation
described above (chromatic aberration in depth).

Aligning brain slices to the mCherry Z-Stack

To register the positions of the in situ detected inhibitory neurons to the 3D mCherry Z-stack, we used a custom point
cloud registration method, using inhibitory neurons as landmark points. MATLAB code and an example pipeline script
can be found at https://github.com/ha-ha-ha-han/NeuromicsCellDetection/.

During slicing, the latero-medial order of the sagittal brain sections was carefully recorded. To find the sections corre-
sponding to the imaged region, we first screened them by generating RCPs for every 20th section, and staining with the
Gad1 bridge probe and its corresponding dye probe to label inhibitory neurons. The position of the fluorescent bead
injection was usually visible on one of the sections, allowing us to infer the approximate position of every slice (based
on the known order and thickness of slicing).

Fine registration of screened sections to the in vivo reference Z-stack started with cell detection in vivo and ex vivo. To
detect cells in the in vivo mCherry Z-stack, each plane was contrast normalized to correct for the loss of brightness with
depth using the following MATLAB GUI https://github.com/nadavyayon/Intensify3D/blob/master/User_GUI_Inten-
sify3D.m, which performs background and signal estimation based on user defined thresholds), and the Z-stack was
then filtered using a 3D median filter of radius 2 pm to reduce background noise. The mCherry positive cells were
automatically detected on these images using a 3D difference-of-Gaussians filter followed by watershed segmentation.
Manual curation was performed to correct for missed or false positive detections. To detect inhibitory cells in the ex
vivo slices, we used the in situ expression of Gadl in the reference round, since native mCherry fluorescence was not
preserved in the fresh-frozen sections. Gadl detections formed clusters on GABAergic cells (Extended Data Fig. 2),
which were detected by Gaussian smoothing of the Gadl RCP images and applying a difference of gaussian filters and
watershed segmentation to detect individual clusters. Finally, we manually curated these detections using the full in
situ 72 gene expression to determine putative interneurons based on the main inhibitory cell markers such as Vip, Sst,
Pvalb etc.

The slices were first coarsely registered using brain structures (hippocampus, brain surface etc.) visualized using the
anchor and nuclear staining. Next, they were finely registered using an algorithm to register a 2D point cloud corre-
sponding to inhibitory neurons in the ex vivo slice into a 3D point cloud corresponding to inhibitory neurons in the in
vivo volume. To align these clouds, we used rigid registration with 6 degrees of freedom (a, 8,v,x,y,z), where a, £, y
are the rotation angles, and x,y, z are translational shifts. (Non-rigid point cloud registration is possible, but we found
it to be unnecessary.) The registration algorithm searched for the parameters (@nqaxs Bmaxs Ymax» Xmax» Ymaxr Zmax) that
maximize the match of the 2D slice to the corresponding section of the 3D volume.

Because this registration problem has a large number of local maxima, we performed an exhaustive grid-search over
these 6 parameters. Because Fourier convolution of 3d arrays is fast, but rotation of them is not, we used a hybrid
point/Fourier method. An outer loop searches over all combinations of rotation angles («, 8, y), with an initial step size
of 1°, refined to 0.5° for finer alignment, and rotates the 3d point cloud accordingly. A 3d volumetric image is then
synthesized from these rotated points by adding a Gaussian peak at the location of each point. Each plane z of this
image is Fourier convolved with a fixed 2d array synthesized similarly for the 2d cloud, and the resulting 3d correlation
map is stored, to accumulate a correlation score function c(a, 8,v, x,y, z). The top local maxima of this 6d array are
found and ranked using both the intensity of the cross-correlogram peaks and the percentage of cells matched within a
tolerance of 15 microns (to account for small non-rigid deformations). Finally, the match validity for each section was
assessed manually by looking at the overlay between the interpolated cut from the reference Z-Stack and the Gad1 RCP
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image. The rotation and translation parameters were manually adjusted to provide the best overlay between the two
datasets. Typical rotation angles were found between -10 and 10 degrees of the coarse manual registration, enabling us
to save computation time by searching only this range.

Aligning individual neurons

Finally, a custom MATLAB GUI was used to curate the match between inhibitory cells in the in vivo recordings and the
ex vivo sections. The GUI allowed us to visualize the in vivo mCherry image of each cell (obtained from the reference Z-
Stack), the position of the ROIs on the reference Z-Stack and the overlap between the reference Z-Stack cross-sections
and the in situ gene expression for the different genes. For each slice, we displayed all mCherry positive ROIs which
were less than 20 um away from the found position of the slice in the reference Z-Stack. Each assignment of in vivo and
ex-vivo Gad positive cells was curated manually based on this data. At this stage the boundaries initially found using
automatic segmentation of the DAPI image were also manually adjusted for the matched cells and their neighbours, to
correct for errors in DAPI segmentation that could impact the gene and cell type assignment. This correction was based
both on the DAPI image and on the in situ gene expression, which provided information that could indicate under-
splitting in the DAPI segmentation of adjacent cells.

Class and Cell selection

We recorded a total of 3469 (204+42 per session) inhibitory cells and together with 6684 (393+173 per session) excitatory
cells. Of these inhibitory cells, we managed to match with good confidence and assign a subclass to 1515 (89+30 per
session) cells (see Extended Data Table 1). Some ex-vivo identified cells were recorded in multiple imaging sessions. In
all figures a unique session was picked for each matched cell (except Fig. 2 where we show all cells in a single session).
The session assigned was chosen based on the percentage of time the mouse spent running during this session, to max-
imize variability of behaviour while the cell was recorded. After removing these duplicates, we obtained 1028 unique
cells. Finally, 8 cells which were assigned to Subclasses with less than 3 cells total were discarded. The final population
of 1020 cells belonged to 35 transcriptomic Subclasses.

The 35 Subclasses were grouped into 11 major Classes for hierarchical analysis. This grouping was based on a combi-
nation of transcriptomic factors, and ability to putatively identify the groups with anatomical/physiological cell types
based on the previous literature. For Pvalb neurons, the grouping was unambiguous: the Pvalb-Vipr2 Subclass is ge-
netically very different to all other Pvalb Subclasses, and several studies have identified molecular markers of this Sub-
class with chandelier cells*®#1%, For Sst cells, UMAP analysis (Extended Data Fig. 3) suggests that the two Sst-Tacl
Subclasses bridge a continuum between the two Sst-Calb2 Subclasses (identified as superficial-layer Martinotti cells®%)
and the Pvalb-Tpbg Subclass (identified as superficial-layer Pvalb basket cells®). Patch-seq analysis confirms that Sst-
Tacl cells have less axon in L1 and faster-spiking phenotypes than classical Martinotti cells®. We therefore identify the
two Sst-Tacl Subclasses as non-Martinotti Sst cells, acknowledging that these two Sst Classes likely tile a continuum,
rather than truly being discrete cell types. For Lamp5 cells, we grouped Subclasses based on the results of Ref.'° (see
also Ref.'!). The three Subclasses comprising the Lamp5-Npy group were identified as neurogliaform cells based on
their strong expression of Npy. The Lamp5-Fam19al-Tmem182 Subclass was identified as Canopy cells due to expres-
sion of Ndnf but not Npy; the two remaining classes were identified as a7 cells due to their strong expression of Chrna?
and weak expression of Ndnf and Npy. For Vip cells, we divided subclasses by transcriptomic methods: UMAP analysis
suggested a clear discrete distinction between two Vip Subclasses characterized by expression of Reln as well as weaker
expression of Vip itself. We are not aware of any specific study on these Vip-Reln cells, however based on their weak
Vip expression, the fact that Reln is a usually L1 marker, we provisionally identify this Class with the layer 1 VIP cells
described by Ref.’ (see also Ref.'!). Serpinfl Subclasses were included with the Vip category as we do not see strong
evidence for this as a discrete Family. Finally, Sncg Subclasses were divided into two classes according to Vip expres-
sion, with Sncg-Vip and Sncg-Pdzrn3 identified as small and large Cck cells, respectively*****3,

Data analysis
Modulation Indexes

When comparing activity in two conditions (e.g. visual stimulus vs. blank; large vs. small grating; running vs. Stationary
synchronized), we used a modulation index computed as
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R-B

Mod Index = ——,
od Index = p——

where R the mean activity during the response time window and B the mean activity during the baseline time window:
Cell depth comparison to Patch-Seq study

For the analysis validating coppaFISH Subclass calling using cell depth (Fig. 1k), we used cells of all layers, not just the
in vivo imaged cells of L1-3. We used 14 sections for which gene expression was obtained from layer 1 to layer 6 (all
taken from the same animal). DAPI segmentation was manually curated (see above) in all layers, and cell calling was
performed on these sections using the standard method. This provided the cortical depth for about 47000 cells among
which 2130 were assigned to a GABAergic Subclass. We normalized the measured cortical depth by the maximum
cortical depth in these sections (750 microns) and computed the median cortical depth for each Subclass with at least 4
cells (46 such subclasses were found). We then did the same thing for the Patch-seq data of Gouwens et al.?, which gave
42 subclasses with more than 4 cells. We then compared the cortical depth of the Subclasses with at least 4 cells in both
datasets (33 Subclasses in total; Fig. 1k).

Determining behavioural states

To distinguish the 3 main behavioural states during spontaneous behaviour, we used the running speed of the animal
as well as the strength of cortical oscillations. Running speed was measured by optical sensors facing the air-suspended
ball'*%, and was smoothed with a 2 s moving average filter. We considered the mouse stationary if this smoothed speed
was less than 0.3 cm/s, and running otherwise. To distinguish between the synchronized and desynchronized stationary
states, we first computed the first principal component of excitatory cells’ activity using PCA, which revealed cells more
active in passive or alert states, as previously described®. The activity of the 10% of cells with highest weight on this PC
was averaged, which provided a clear summary of the oscillation that appeared in some stationary periods (Fig. 2a).
Periods of synchronized activity were segmented manually based on the periods where this average was clearly oscil-
lating. To measure the oscillatory coupling of each inhibitory neuron, we then computed the correlation between each
cell’s z-scored activity and the average of this excitatory subpopulation during the synchronized periods.

Comparison to transgenic mouse line data

To validate our cell type assignment, we compared results obtained with post-hoc transcriptomic with recordings per-
formed using transgenic mouse lines (Extended Data Fig. 5). We analysed recordings from 18 transgenic mice (5 for
Pvalb, 8 for Sst, and 5 for Vip; 14 mice were reanalysed from Ref. '* and 4 new mice were added) and 23 sessions (6 for
Pvalb, 9 for Sst, and 8 for Vip) for a total of 2,589 identified cells (1023 Pvalb, 572 Sst and 994 Vip cells).

For this analysis (Extended Data Fig. 5), we first deconvolved the calcium traces to inferred firing rates f;(t) for each
neuron i at time t3. We considered two measures of neural activity for each cell i and trial n: the average neural activity
1;(n) = (fi(t))te[t, t,,+ar) during stimulus presentation from the trial onset time ¢, to time t,, + AT, and the average neural
response d;(n) = r;(n) — b;(n), obtained after subtracting the pre-stimulus baseline activity b;(n) = (f;(t))¢te[,-ar.t,]-
The time window parameter AT took the value 1 s for the data from Ref." and 0.5 s for the new transgenic data and the
post-hoc transcriptomic data, corresponding to the whole duration of the stimulus. We then computed the average
activity and response for a given stimulus s and locomotion condition v (v = 0: stationary, v = 1: running): (s, v) =
(1:(O))negswy and d;(s,v) = (d;())nesv).- We estimated the responsiveness of each neuron i to visual stimuli by compu-
ting the p-value p; of a paired t-test comparing r;(n) with b;(n) for all trials n (pooling all different stimulus types to
obtain one p-value per cell). For all subsequent analysis we selected only cells with p-values < 0.05. We plotted the
average modulation of visual responses by running (computed as in Ref.”) vs. the Pearson correlation coefficient of
spontaneous activity and running speed p; (Extended Fig. 5a). Prior to computing the Pearson correlation coefficient,
we smoothed the activity fl.(t) and running speed v(t) with a time average of 5 s. For this analysis, we selected only
cells whose cortical depth was > —300 um.

For estimating size tuning curves (Extended Data Fig. 5b), we z-scored the activity of each neuron as follows z;(s,v) =
[7:(s,v) = (Fi(s,v))s] /05 (Fi(s, 1)) prior to averaging over cells of a given type.

To evaluate consistency between the physiological features identified with transgenic and transcriptomic cell type iden-
tification, we trained a classifier to predict cell type from physiological features of each cell in the transgenic lines, and
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asked if it generalized to the transcriptomic data (Extended Data Fig. 5c). We trained the classifier using 1,230 training
cells (410 examples per cell type for the three cell types). The prediction was based on 14 features, which included
normalized values of neural activity during different stimulus size and running condition Z; (s, v) (features #1-8); skew-
ness of the calcium trace computed across the whole recording session (feature #9); the correlation of spontaneous ac-
tivity with running speed p; (feature #10); the ROI diameter (feature #11); the cortical depth (feature #12); two different

measures of the difference in modulation by running Mi(;):wo - Mf?:s between large and small stimuli, where
1 — = - 2 2 2
ML.(_S) = [fi(s,v = 1) = 7i(s,v = 0)] /05, (Fi(s,v)) and Més)zﬁoo — Ml.(ys)zso, where Mi(‘s) =

[di(s,v = 1) — di(s,v = 0)] /(7i(5,v))s,, (features #13 and #14). We normalized features #9-14 by z-scoring them using
the mean and standard deviation for each neuron of the transgenic mice, while features #1-8 were already normalized
as in Extended Data Fig. 5b. We used cell types: y = {PV,SOM, VIP} as training labels. Using the 10 different randomized
splits of training and test transgenic data, we applied three different linear classifiers: Linear Discriminant Analysis,
Logistic Regression (regularization parameter C = 10) and Linear Support Vector Classification (regularization param-
eters C = 0.1). The regularization parameters were chosen after a 4-fold cross-validation over the different randomized
training sets scanning over C = {1073,107%,---,10%}. Applying the classifier to transcriptomic data gave equivalent per-
formance to test-set transgenic data, indicating that the two methods are consistent.

Response to drifting gratings

Responsive cells (either Activated or Suppressed) were defined using a repeated measures ANOVA model (fitrm in
Matlab) with the stimulus direction (12 levels) and size (3 levels) as between subjects factors, and the presence of stim-
ulus as a within subject factor. A cell was defined as responsive if there was a significant effect of stimulus presence
after performing a repeated measures analysis of variance (ranova in Matlab). Significant cells were classified as Acti-
vated if mean activity in the response window was above baseline, or Suppressed otherwise.

Orientation selectivity Index (OSI) was computed using a cross-validation method. Each cell's preferred orientation was
computed from even trials, selectivity was computed as:

_ (Rpref - Rortho)

0SI =
(Rpref + Rortho)

Where Rpret is the mean response on the odd trials to the preferred orientation and Rortho is the mean response on the odd
trials to the orthogonal orientation (Rpret + 90°). This cross-validation was used because non-cross-validated selectivity
indices can show large values for sparse neural activity, even if the cells are untuned. The cross-validated measure can
take negative values, which indicate inconsistent responses, and will have an expected value of 0 for untuned cells.

Direction selectivity Index (DSI) was obtained similarly. Each cell's preferred direction was computed from even trials,
selectivity was computed as:

DSI = (Rpref - Ranti)
(Rp‘ref + Ranti)

Where Rpret is the mean response on the odd trials to the preferred direction and Rand is the mean response on the odd
trials to the direction opposite to the preferred (Rpret + 180°).

Size tuning curves and their state modulation (Fig. 3e) were computed using the methods of Ref.’®. Analysis was re-
stricted to cells whose receptive field locations were close to the centre of the grating stimuli (<20°). Size tuning curves
were obtained for running and stationary states by averaging the z-scored activity of all centred cells of that class (z-
scoring was computed relative to the entire recording session). Baseline activity (shown as response to size 0 stimuli)
was estimated as the average of the z-scored activity during the interstimulus intervals. For both the stimulus response
and the baseline, we determined if the mouse was running or stationary by taking the average running speed during
the stimulus presentation. If this speed exceeded 1cm/s we considered the mouse as running, and stationary otherwise.

Cross-validated direction tuning curves (Fig. 3b) were computed for all cells using the average across all sizes. A cell’s
preferred direction was estimated as the direction providing the largest response on even trials. Direction tuning curves
were computed by averaging the z-scored activity of each cell on odd trials, for each direction relative to this preferred
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direction. The curve was normalized by dividing by the mean response to the preferred direction (on the even trials).
These normalized curves were then averaged over all cells in a Subclass (Fig. 3b).

Pairwise correlations between Classes

To compute spontaneous correlations between the mean activity of Class (Fig. 4d), we first normalized each cell’s de-
convolved activity by dividing it by its maximum. For each experiment, we then averaged the normalized activity of
each cell within a Class during blank-screen periods, smoothed with a 1s boxcar window, and decimated the sampling
rate to 1 Hz. We computed the Pearson correlation between each Class’s mean activity and averaged over experiments.
For the intra-Class correlations, we randomly split the cells of each Class in two halves and applied the same method,
to avoid trivially obtaining a correlation of 1. When the number of cells in a Class was less than 4, the correlation was
not computed for that experiment.

Response to Natural Images

We summarized a cell’s response to natural image stimuli with two numbers (Fig. 3d). Responsiveness was defined as
amodulation index between activity during the stimulus presentation period and the activity just before stimulus onset.
Signal correlation was defined by correlating the responses to the first repeat of the 1050 images with the responses to

the second repeat of these same images. This metric characterizes a cell’s selectivity to these image stimuli'*>.

Genetic PCA

To compute the first genetic principal component, we averaged the in situ gene expression of the 72 genes for each of
the 35 subclasses. We then performed PCA on this 72 by 35 matrix, and took the score of the first component to get gPC1
for each subclass. To obtain gPC1 values for individual cells, the cell’s expression vector was projected onto the same
weight vector. To obtain gPC1 values for cells in Patch-seq (Extended Data Fig. 9), the same weight vector was used
and read counts were transformed by log(1+x).

UMAP on Tasic et al sScRNA-seq data

We performed a UMAP analysis on the Tasic et al scRNA-seq dataset?, separately for CGE (Vip, Sncg and Lamp5) and
MGE (Pvalb and Sst) derived inhibitory Families from V1 only (Extended Data Fig. 3).

To do so, we employed methods previously described for CA1*. First, a set of 150 genes was found using the ProMMT
clustering algorithm. 150-dimensional expression vectors were made for each cell, applying a log(2+x) transform to the
scRNA-seq expression levels of these genes. UMAP analysis was performed using Meehan et al’s Matlab toolbox*'¢,
initialized by placing the classes around a unit circle in order of similarity.

The genes automatically selected to perform the UMAP analysis were: Vip, Tac2, Sst, Pdyn, Lamp5, Tacl, Crh, Calbl,
Penk, Calb2, Th, Cxcl14, Ndnf, Sppl, Htr3a, Cplx3, Pvalb, Crhbp, Npy, Npy2r, Chodl, Crispld2, Prss23, Nov, Cbln2,
Cartpt, Akrlcl8, Atp6apll, Cadps2, Ppapdcla, Sncg, Tnfaip8l3, Uncl3c, Pdlim3, Scgn, Pcp4, Tcap, Lgalsl, Serpine2,
Moxd1, Pthlh, Cd34, Cck, Sostdcl, Sponl, LOC105243425, Mia, Slc5a7, Pdela, Adarb2, Mybpcl, Car4, Cbln4, Gabrgl,
Fmol, Slc18a3, Grpr, Lypd6, Pdella, Rxfpl, Tnntl, Nxph2, Lpl, Cryab, Cp, Npylr, 1d3, Myll, Id2, Kit, Serpinfl, Bcar3,
Aqp5, Scrgl, Gpdl, Rxfp3, Prox1, Col25al, Chat, Vwc2l, Amigo2, Myh8, Synpr, GrmS8, Igtbp5, Gpx3, Rgs12, Lypdl,
Cd24a, Reln, Haplnl, SIn, Chrm?2, Ostn, Igfbp7, LOC102632463, Atf3, Lectl, Gpc3, Ptprk, Teddm3, ll1rapl2, Col6al,
Nek?7, Crispld1l, Wifl, Wnt5a, Bmp3, Thrsp, Syt2, Pcdh20, Sfrp2, Myh13, Efempl, Rprm, Cacna2d1, Lypdéb, Meis2,
Lhx6, Angptl, Rspol, Sema3c, Itih5, Nfix, Sema3a, Stk32a, Ecell, Jam2, Igfbp6, Sox6, Nfib, Salll, Semabb, Shisa8, Tacr3,
Chst7, Frmd7, Gm31465, Rspo4, Chrna2, Lmol, Clqtnf7, Ndst4, Ccdc109b, Npasl, Egfr, S100a10, Gpré, Slit2, Lsp1.

Correlation with electrophysiological and morphological properties

We examined electrophysiological and morphological correlates of our results by relating them to a previously pub-
lished Patch-seq dataset®, which provided electrophysiological, morphological, and gene expression data from a set of
V1 inhibitory cells analysed in vitro. These cells had been genetically assigned to the same transcriptomic clusters we
used?, which allowed us to correlate electrophysiological and morphological properties to the state modulation meas-
ured in our own dataset. Valid electrophysiological recordings were available for 4391 cells and included long and short
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pulses of current injection as well as current ramps. We used the electrophysiological parameters calculated by the
original authors using the ipfx software, renaming “up/down ratio” (the absolute ratio of the slopes of the upward and
downward components of the action potential) as “spike shape index”. Adaptation index was the rate at which spiking
changed during a long depolarizing square stimulus. During a hyperpolarizing square current, the membrane time
constant tau is the rate of approach of steady state, and sag is the downward deflection before steady state is reached.
Capacitance was calculated as the ratio between measured tau and resistance.

We quantified the ratio of axon in each layer using morphological reconstructions obtained following Patch-seq. To
enable comparison to our 2-photon data, we only examined reconstructed cells with somas in layers 1-3 that belonged
to one of the 35 Subclasses we recorded from, for a total of 163 cells. Morphology was represented as an acyclic undi-
rected graph with a position and radius associated with each node. A pair of adjacent nodes (a segment) fell within a
layer if both nodes had cortical depths within the layer boundary. Segments which fell on a layer boundary (less than
4% of segments for each cell) were not classified into a layer, and segments entering the white matter or pia were ex-
cluded. The surface area of all within-layer segments was computed using the distance between nodes and their radii.
The within-layer surface area ratio is the sum of the surface area of segments within a layer divided by the total surface
area of all segments.

gPC1 was computed for each Patch-seq cell using the same 72 genes and weightings found from our coppaFISH data,
with gene expression transformed as log(1+x).

Processing of eye video (pupil detection)

Eye videos were processed using facemap (https://github.com/Mouseland/facemap). An ROI was drawn manually
around the pupil of the animal. The pupil area was defined as the area of a Gaussian fit on thresholded pupil frames,
where pixels outside the pupil were set to zero.

Statistical analysis

Statistical analysis of differences between cell types faces two potential confounds. First, different experiments will by
chance record different proportions of each cell type, and may also by chance show other experiment-to-experiment
differences such as overall alertness levels. Second, the large number of Subclasses presents a potential multiple com-
parisons problem.

To solve these problems, we used a hierarchical permutation test. First, an Omnibus test asks whether Family, Class,
and Subclass have a significant main effect on our quantity of interest y; there is no multiple-comparisons problem for
this Omnibus test, and all shuffling occurs within an experiment to avoid conflating experiment-to-experiment varia-
bility with differences between cell types. The Omnibus test is conducted at each of the 3 levels in a nested manner: the
first asks if there is a main effect of Family; the second if there is a main effect of Class beyond that predicted by Family;
and the third if there is a main effect Subclass beyond that predicted by Class. Following the Omnibus test, post-hoc
tests are used to ask if significant differences between Classes exist within each individual Family, and if significant
differences between Subclasses exist within each individual Class. Additional post-hoc tests are used to ask whether
the quantity is significantly different to zero for each Class and Subclass. All post-hoc tests are corrected for multiple
comparisons using the Benjamini-Hochberg procedure.

To test for a main effect of Family on a quantity y, the Omnibus test computes its mean value of y; for each family f,
and uses as test statistic the variance of ¥ across families. To obtain a p-value, this test statistic is compared to a null
ensemble obtained after 10,000 random shufflings of the Family label of each cell, separately within each experiment.
To test for a main effect of Class, we compute the mean ¥, of y for each Class c,and use as test static the variance of this
mean across Classes. A null distribution is obtained by 10,000 shufflings of Class labels separately within each experi-
ment and Family. To test for a main effect of Subclass, we use as test statistic the variance of ¥; over Subclasses s. A null
distribution is obtained by recomputing this statistic after shuffling Subclass labels 10,000 times, separately within each
Class and experiment.

To perform the post-hoc test for significant differences between the Classes within a specific Family (indicated by p
values on the far right of Fig. 2b and similar), or for significant differences between Subclasses within a specific Class
(indicated by stars second to right in Fig. 2b), we performed the same shuffle test inside individual Families and Classes.
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For example, to obtain the p-value for significant differences of Subclasses within the Pvalb-Tac1l Class, we used as test
statistic the variance of ¥; across the 5 Subclasses inside this Class, and compared it to 10,000 shufflings of the Subclass
labels inside this same Class. These post-hoc p-values were then corrected using the Benjamini-Hochberg procedure.
For post-hoc tests of whether a Class or Subclass is significantly different to zero, we used Benjamini-Hochberg cor-
rected t-tests.

For linear correlations (Fig. 1k, Fig. 2e, Fig. 4e-f Extended Data Fig. 6¢c, Extended Data Fig. 9a-b), we show the p-value
for the Pearson correlation coefficient. To exclude the possibility of conflating experiment-to-experiment variability with
differences between cell types, we used ANCOVA controlling for a discrete effect of recording session; (Fig. 2c-e, Fig.
4b-c, Extended Data Fig. 6¢,) quoting the significance of a main effect of the continuous variable. For Fig. 2¢c-d and Fig.
4b-c, we performed the ANCOVA after averaging the relevant values of all cells for a given recording session and
Subclass. ANCOVA was also used to test whether a continuous genetic variable assigned to each cell correlated signif-
icantly with state modulation even after controlling for Subclass and recording session (Fig. 2e, Extended Data Fig. 6f),
and if cortical depths of each Subclass measured by coppaFISH and Patch-seq were correlated even within a Family or
Class (Fig. 1k).

To test for the effect of gPC1 on pairwise correlations (Fig. 4d), we sorted Classes by gPC1 and computed their pairwise
correlation matrix as described above. We used a permutation test to ask if values close to the diagonal were larger than
values far from the diagonal. As test statistic we used the difference between the mean correlation values one or two
steps away from the diagonal, and the mean of all other class pairs (Extended Data Fig. 9d). We constructed a null
distribution by recomputing this statistic after permuting the order of the Classes 10,000 times.
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Extended Data Figures
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Extended Data Fig. 1 | Detection of 72 genes using coppaFISH. a, Sagittal 15 um brain sections are cut using a cryostat. Local mMRNAs
are retro-transcribed to cDNA, and the mRNAs digested to free the cDNAs for hybridization with padlock probes. Padlock probes have two
15-20 nucleotide (nt) arms complementary to the target site, a 20nt anchor sequence (identical for all probes) and a 20nt barcode sequence
(unique for each gene). After hybridization to the target site, a DNA ligase enzyme circularizes the padlock probe, but only when it matches
the target perfectly. Next, a DNA polymerase enzyme amplifies the circularized padlock probes, producing rolling circle products (RCPs),
which contain many repeats of the padlock sequence including the barcode. b, The genes are detected by 7 rounds of 7-colour fluorescence
imaging. On each round, RCPs are hybridized with custom designed bridge probes, which in turn hybridize to specific dye probes (conjugated
to one of 7 fluorophores). The sections are then imaged in 7 colour channels, then all DNA is removed with formamide treatment, and the
next round begins. Different sets of bridge probes on each round result in each barcode showing up in a different colour channel using a
Reed-Solomon code for minimum overlap. After the 7 combinatorial rounds, a final round images the anchor probe (used for image alignment)
and DAPI to visualize cell nuclei. ¢, Example raw data for one cell imaged with the 7 fluorophores and 7 rounds. Each fluorescent spot is an
RCP, and the sequence of colours across 7 rounds allows gene identity to be determined. Bottom: magnification of 2 RCPs (top right corner
of main images) which corresponded to Cplx2 barcode (6135024). Scale bars: 5 pm.
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Extended Data Figure 2 | Experimental pipeline. Neural activity was recorded in vivo over multiple sessions from each subject (Gad2-
mCherry mice with viral GCaMP expression in all neurons). At the end of each session, a high-resolution reference Z-Stack was acquired
and used to detect interneurons in the Z-stack volume using mCherry fluorescence, and cells recorded during calcium imaging were regis-
tered to this Z-Stack. After all imaging sessions, the brain was extracted from the skull without fixation and frozen in OCT. A block from under
the imaging window was sliced into 15 pm sagittal sections, which were thaw-mounted on gelatine-coated coverslips. Each section was then
processed using coppaFISH: RCPs were produced in situ for the selected genes, and their barcodes were read using 7 rounds of imaging
(+ 1 anchor round). The resulting images were then registered across rounds, colour channels, and image tiles and individual spots detected.
Gene identity for each RCP was decoded from the 49-dimensional images, and pciSeq*' was used to determine the Subclass identity for
each cell. To align the images, interneurons detected in vivo and ex vivo were used as fiducial markers for point cloud registration, which
finds the best alignment of the 2D ex vivo slice in the 3D volume. Finally, individual cell matches were manually curated, and a Subclass
assigned to the recorded cells.
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Extended Data Figure 3 | UMAP analysis of scRNA-seq data. Each dot represents a V1 inhibitory cell, from the Tasic et al.* data, with
glyph representing its assigned Subclass. UMAP analysis was performed separately for MGE and CGE derived interneuron Subclasses,
using 150 log-transformed genes selected by the ProMMT algorithm™. This analysis reveals both highly discrete Subclasses such as Pvalb-
Vipr2 (putative chandelier cells) and smoothly varying continua where boundaries between Subclasses appear arbitrary, such as Lamp5-
Ntn-Npy2r, Lamp5-Plch2-Dock5, and Lamp5-Lsp1 (putative neurogliaform Subclasses). Also note the smooth transition between Sst-Calb2
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Extended Data Figure 4 | Example Cells. a, Nine example cells which were recorded during the same session. Pie plots indicate the
posterior probability of each cell’'s Subclass assignment. Grey background images show DAPI-stained nuclei. Each gene detection is repre-
sented by coloured letters (key to the left). Scale bars: 2 um. b, Activity of these 9 cells during spontaneous behaviour, together with the
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Extended Data Figure 5 | Comparison to results in transgenic mice. a, Top row: modulation of visual responses by running vs. correlation
to running speed during spontaneous behaviour, for Pvalb, Sst, and Vip interneurons identified in transgenic mouse lines. Data re-analysed
from Ref.'® and including 4 new animals. Bottom row: same analysis using interneurons identified by post-hoc transcriptomic analysis (data
from this study; the Vip group included Vip-positive Sncg cells which are likely to be labelled in the Vip-Cre transgenic line). In both datasets,
running suppressed the spontaneous activity of Pvalb cells, but enhanced their visual response. In both datasets, Sst cells showed weakly
positive spontaneous correlation to running and stronger positive modulation of visual responses. In both datasets, Vip cells showed stronger
modulation by running during spontaneous behaviour than during visual stimulation. b, Size tuning curves of Vip, Pvalb and Sst cells for both
datasets. Top row: responses measured in transgenic mice for centred stimuli (0-10° offset from receptive field centre); second row: response
to off-centre stimuli (10-20° offset from receptive field) in transgenic mice; bottom two rows, same from post-hoc transcriptomics. Orange
curves: responses during running; blue curves, responses during stationary epochs. Note that in both cases, Vip cells responded more to
small than large stimuli; Sst cells showed little surround suppression by large stimuli and responded weakly to small stimuli; and Pvalb cells
showed an interaction of stimulus size and behaviour, with larger running modulation for larger stimuli. ¢, Classification of cell type from
physiological features was identical for the two cell typing methods Each cell was assigned to either Sst, Pvalb or Vip based on 14 physio-
logical features (such as correlation to running speed, size tuning curves, skewness), using one of 3 different linear classifiers trained on a
training set randomly selected from the transgenic recording sessions. Left: training-set classifier accuracy averaged over multiple random
selections of the training set. Centre: accuracy of the classifiers on the held-out transgenic sessions, averaged over randomized splits into
training and test sessions. Right: out-of-sample accuracy of the linear models on data with interneurons identified by post-hoc transcriptomics.
Note the similar performance on transgenic and transcriptomic test sets. Error bars: s.d. over divisions into training and test set.
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Extended Data Figure 6 | Further analyses of state modulation in spontaneous behaviour. a, Hierarchical analysis of modulation
between Running state and Stationary Desynchronized state, plotted as in Fig. 2b. b, Hierarchical analysis of modulation between Stationary
Desynchronized and Stationary Synchronized states, plotted as in Fig. 2b. ¢, State modulation vs. Subclass probability index for Sst-Calb2-
Necab1 and Sst-Calb2-Pdlim5 cells (p<0.01, Pearson correlation; p=0.013, ANCOVA accounting for effects of session and Subclass).
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Extended Data Figure 7 | Further analyses of visual responses. Each panel shows a hierarchical analysis for the visual variables analysed
in Fig. 3d, but showing all Subclasses. All panels plotted as in Fig. 2b.
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Extended Data Figure 8 | Analysis of pairwise correlations within states. a, b, ¢, Pairwise correlations between simultaneously recorded
Classes, plotted as in Fig. 4d, but separately for periods within each of the three states (Running, Stationary Desynchronized, and Stationary
Synchronized). The Classes are sorted by gPC1; Classes with similar gPC1 values have significantly higher correlations (permutation test,
p=0.018, p=0.037, p=0.0008 respectively). d, The test statistic for the permutation test was the difference between the average of correlation
coefficients close to the diagonal (left), and the average of all other off-diagonal coefficients; intra-class correlations were not used. This test
statistic was compared to a null ensemble obtained after shuffling gPC1 values 10,000 times.
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Extended Data Figure 9 | Additional analyses of Patch-seq data. a, Additional electrophysiological properties vs. State modulation plotted
as in Fig. 4e. V(est: 1=0.25, Sag: r=0.03, 1: r=0.24, F-I curve slope: r=0.28, V, for Sag: r=0.29, Latency: r=0.09, Avg. isi (inter-spike interval):
r=0.20, Resistance: r=0.34, Capacitance: r=0.01, log(Capacitance) : r=0.01, log(Sag) : r=0.03 and log(Latency): r=0. Stars show significance
assessed by Pearson correlation. Dashed lines are linear fits. b, Fraction of axonal arborization (measured by surface area) in layer 1 (left)
and layer 2-3 (right) vs. gPC1 computed for each Patch-seq neuron. Each symbol represents a cell. Pearson correlation was computed
individually within each Family, and p-values were adjusted with Benjamini-Hochberg correction (Layer 1 Lamp5: r=0.40; Layer 1 Sst: r=0.17;
Layer 2-3 Lamp5: r=0.34; Layer 2-3 Sst: r=0.19). Coloured lines show linear fit for each Family with significant Pearson correlation. *, p<0.05,
** p<0.01, ***, p<0.001.
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Extended Data Table 1. Percentage of interneurons assigned to a Subclass. Number of interneu-
rons recorded per session and per animal, and percentage of interneurons that were assigned to a
Subclass at the end of the experimental pipeline. In total, about 44% of recorded interneurons were
characterized transcriptomically

Extended Data Table 2. Padlock probes. Name and sequence of the 556 padlock probes (73 to 80nt)
targeting the cDNA sequences produced by reverse transcription. Each probe contains the same
20nt anchor sequence, a 20nt gene specific DNA barcode, and two arms complementary to the
cDNA sequence.

Extended Data Table 3. Primers. Name and sequence of the 556 primers used for reverse transcrip-
tion of the mRNAs.

Extended Data Table 4. Dye probes. Name and sequence of the 7 dye probes used for combinatorial
imaging. Each 20nt DNA oligo was conjugated to a given dye. All dyes were conjugated at the 5’
end only, except from dp0 and dp6 which were conjugated at both ends.

Extended Data Table 5. Bridge probes. Name and sequence of the 511 bridge probes used for
combinatorial imaging, 1 for each gene and imaging round.

Extended Data Table 6. Reed-Solomon code. Code for each gene. Each code consists of 7 numbers
(for the 7 rounds), going from 0 to 6 for the 7 different dye probes.
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