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Abstract 1 

Classical mathematical models of tumor growth have shaped our understanding of cancer and have 2 

broad practical implications for treatment scheduling and dosage. However, even the simplest text-3 

book models have been barely validated in real world-data of human patients. In this study, we fitted 4 

a range of differential equation models to tumor volume measurements of patients undergoing chem-5 

otherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with 6 

three or more measurements per target lesion, of which 652 patients had six or more data points. We 7 

show that the early treatment response shows only moderate correlation with the final treatment re-8 

sponse, demonstrating the need for nuanced models. We then perform a head-to-head comparison 9 

of six classical models which are widely used in the field: the Exponential, Logistic, Classic 10 

Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models 11 

provide a good fit to tumor volume measurements, with the Gompertz model providing the best bal-12 

ance between goodness of fit and number of parameters. Similarly, when fitting to early treatment 13 

data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecast-14 

ed data, indicating that these models could potentially be effective at predicting treatment outcome. 15 

In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art 16 

models of human tumor growth. We publicly release an anonymized version of our original data, 17 

providing the first benchmark set of human tumor growth data for evaluation of mathematical models. 18 

  19 
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Author Summary 

Mathematical oncology uses quantitative models for prediction of tumor growth and treatment re-

sponse. The theoretical foundation of mathematical oncology is provided by six classical mathemati-

cal models: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and 

General Gompertz model. These models have been introduced decades ago, have been used in 

thousands of scientific articles and are part of textbooks and curricula in mathematical oncology. 

However, these models have not been systematically tested in clinical data from actual patients. In 

this study, we have collected quantitative tumor volume measurements from thousands of patients in 

five large clinical trials of cancer immunotherapy. We use this dataset to systematically investigate 

how accurately mathematical models can describe tumor growth, showing that there are pronounced 

differences between models. In addition, we show that two of these models can predict tumor re-

sponse to immunotherapy and chemotherapy at later time points when trained on early tumor growth 

dynamics. Thus, our article closes a conceptual gap in the literature and at the same time provides a 

simple tool to predict response to chemotherapy and immunotherapy on the level of individual pa-

tients.  
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Introduction 20 

The growth of solid tumors and their response to therapy is hard to predict on the level of individual 21 

patients. Similar to other complex systems such as the climate [1,2] or stock markets [3], quantitative 22 

mathematical models can be used to describe and forecast the behavior of cancer: this is one of the 23 

main objectives of “mathematical oncology” [4,5]. Mathematical models of tumor growth kinetics have 24 

improved the understanding of underlying biological mechanisms. [6–8] In addition, they have result-25 

ed in a number of modeling approaches for cancer treatments including chemotherapy [9,10] and 26 

immunotherapy [11,12], improved drug dosage [13,14] and have yielded candidate biomarkers for 27 

treatment response [15]. The roots of tumor growth models go back to 1825, when Gompertz pub-28 

lished a mathematical model to analyze the population growth [16]. He argued that the number of 29 

people alive as a function of their age ���� declines faster than exponential functions which means 30 

that the death rate should be increasing with age. 135 years later, von Bertalanffy addressed the 31 

question of “why does an organism grow at all and why after a certain time, does its growth come to 32 

stop?” [17] By replacing its concept of an “organism” with a malignant tumor, the answer to this ques-33 

tion resulted in a mathematical model for tumor growth. Tumor modeling provides information about 34 

the net tumor growth rate, facilitates their comparison among different tumor types [18] and makes it 35 

possible to predict the future growth of tumors [19].  36 

A number of “textbook” models have been used in the past to approximate tumor growth with math-37 

ematical equations. In addition to the above-mentioned models by Gompertz and von Bertalanffy 38 

(each in a “classical” and a more general form), exponential and logistic models are standard ap-39 

proaches to describe tumor growth (Table 1) [20]. Exponential models are able to predict either ex-40 

ponential growth or decay depending on the absolute values of birth and death rates, and the result-41 

ing sign of (birth rate - death rate). Logistic models can simulate the fact that tumor growth is limited 42 

by nutritional, immunological or spatial constraints by including a carrying capacity into the model at 43 

which the tumor volume plateaus. This carrying capacity is included in the per capita growth rate, in 44 

line with the observation that tumor growth slows down when the tumor volume becomes large. [21] 45 

To be precise, the carrying capacity can be interpreted to comprise a number of biological constraints 46 

to tumor cell proliferation. These constraints include the availability of nutrients and oxygen and thus, 47 

the concept of tumor angiogenesis is implicit in the carrying capacity. In addition, the pressure of im-48 

mune cells attacking tumor cells limits the niche the tumor cells can fill and thus, the concept of anti-49 

tumor immune response is implicit in the carrying capacity. The Gompertz model is another model 50 

which illustrates the experimentally observed decrease in the growth speed of tumors. Similarly to the 51 

logistic model it has a sigmoid shape, hence representing limited tumor growth. Its main assumption 52 

is the exponential decay of the growth rate [18]. Since this model has been applied in many fields to 53 

various problems a few equivalent Gompertz models exist, differing in the chosen re-parametrization. 54 

Gompertz and von Bertalanffy growth models are two basic but important models which are common-55 
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ly used to model tumor volume growth since they have outperformed exponential models in many 56 

cases in the past [22].  57 

Unlike in other domains in which mathematical models and practice are strongly linked, the field of 58 

mathematical oncology is, by and large, somewhat disconnected from clinical practice of oncology. 59 

While in recent years, large quantitative data collections have deepened the genetic [23] and immu-60 

nological [24–26] understanding of solid tumors, even well-established textbook models in mathemat-61 

ical oncology have not been linked with or validated in large amounts of quantitative real-world data. 62 

As a result, growth models that form a conceptual backbone of mathematical oncology have never 63 

been formally validated in large patient-derived datasets. In 2014, Benzekry et al. have systematically 64 

validated a range of textbook mathematical models on quantitative data obtained from two mouse 65 

models [20]. More recently, Vaghi et al. have extended that study and have validated classical growth 66 

models in 833 measurements in 94 animals [27]. These systematic large-scale approaches are highly 67 

important to link mathematical oncology to real-world data, but bear one major drawback: since al-68 

most all drugs that result in tumor control in mice fail in human experiments [28], mouse-based mod-69 

els are not suitable for human tumor growth estimations [29]. In addition, little validation of textbook 70 

models has been performed for tumors undergoing treatment, prompting caution whether unvalidated 71 

mathematical models have predictive power for clinical oncology.[30] While modeling of unabated 72 

tumor growth has academic relevance, fortunately untreated tumor growth for extended periods of 73 

time is rare in clinical practice [30]. Almost all patients with metastatic cancer undergo some type of 74 

systemic pharmacotherapy which slows down tumor progression [31].  75 

In this study, we retrospectively collected quantitative measurements of tumor diameter changes over 76 

time from Non-Small Cell Lung Cancer (NSCLC) and bladder cancer patients from five large clinical 77 

trials. We systematically used this data with each of the standard mathematical models to address 78 

two questions: Firstly, how well can existing tumor growth models fit real-world data of patients un-79 

dergoing treatment? (experiment #1) Secondly, how well can these models predict tumor growth at 80 

later disease stages when fitted to early-stage data? (experiment #2)   81 
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Methods 82 

Ethics statement and data sharing 83 

All experiments were conducted in accordance with the Declaration of Helsinki and the International 84 

Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council for International 85 

Organizations of Medical Sciences (CIOMS). This study complies with the “Transparent reporting of a 86 

multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) statement [32]. All 87 

data were obtained in an anonymized way through a proposal to F. Hoffmann-La Roche Ltd. through 88 

the platform “Clinical Study Data Request” (CSDR, www.ClinicalStudyDataRequest.com), which is 89 

now inactive and has been replaced by the Vivli platform (https://vivli.org, April 2021). Qualified re-90 

searchers may request access to individual patient level data through the clinical study data request 91 

platform (https://vivli.org/). Further details on Roche's criteria for eligible studies are available here 92 

(https://vivli.org/members/ourmembers/). For further details on Roche's Global Policy on the Sharing 93 

of Clinical Information and how to request access to related clinical study documents, see 94 

(https://www.roche.com/research_and_development/ 95 

who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm). The original pro-96 

posal submitted to the CSDR platform is available in Annex 1. In order to enable reproduction of our 97 

experiments, we publicly release a fully anonymized subset of the data containing only the tumor 98 

volume measurements for the target lesion and the respective study and treatment arm (Suppl. Ta-99 

ble 1). 100 

Data acquisition and preprocessing 101 

We used data sets from five different clinical trials (Table 1 and Table 2). The purpose of the original 102 

studies was the evaluation of the efficacy and safety of Atezolizumab (previously known as 103 

MPDL3280A), an immune checkpoint inhibitor directed against the Programmed Death Ligand 1 (PD-104 

L1). In two out of the five trials (GO28753, GO28915), the performance of Atezolizumab was com-105 

pared to Docetaxel, a chemotherapy drug. In the other three trials, all the participants received 106 

Atezolizumab as a treatment and the participants were further categorized into treatment arms or 107 

clinical subgroups as defined in the study protocols. One-dimensional longest diameter and shortest 108 

diameter of target and non-target lesions as manually measured on CT scans were available from the 109 

study database and were reported for each patient at different time intervals (Figure 1A). Because 110 

the shortest diameter was only available for a subset of patients, we used only the longest diameter 111 

(LD) and converted it to tumor volume (V) by � �  ���  	  0.5 as described before [33]. Using the 112 

maximum value of V in the whole data set, the volumes were normalized to be in the range of 0 and 1 113 

for the whole dataset. Most patients in the data sets had multiple tumor lesions (primary tumor and/or 114 

metastases). For simplicity, we refer to these lesions as “tumors”. In the data set, one of these tumors 115 
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for each patient was labeled as a “first target lesion” (‘INV-T001’), i.e. an easily measurable lesion for 116 

which the diameter was closely monitored over time. In addition, patients usually had one or more 117 

“non-target lesions”. In this study, we only used the target lesion which was labeled as for all the pa-118 

tients, as this was usually the tumor with the highest number of data points. Each patient has a differ-119 

ent number of data points for this selected target lesion. While the intervals between data points were 120 

relatively similar (they were on average 50.62 days, with a standard deviation of 6.2 days), the abso-121 

lute number varied (there were on average 3.63 data points for the selected target lesion per patient 122 

with a standard deviation of 3.22). Patients with few data points likely dropped out of the study early 123 

due to death or other reasons. To enable robust fitting of mathematical models to the data, we limited 124 

our data set to two sets of patients with three or more (or six or more, respectively) data points for the 125 

target lesion. Cumulatively, the original data sets had 2693 patients, of which 1472 had three or more 126 

data points and 652 had six or more data points available (Figure 1B).  127 

Patient categorization according to RECIST and trajectory type 128 

For each patient, the ultimate response was encoded according to the response evaluation criteria in 129 

solid tumors (RECIST) system [34]. Based on the latest modification of this criteria (RECIST 1.1) [35], 130 

four tumor responses to treatments can be defined: Complete Response (CR, disappearance of all 131 

target lesions), Partial Response (PR, at least 30% decrease in sum of the longest diameters of tar-132 

get lesions in comparison to the baseline value), Progressive Disease (PD, at least an increase of 133 

20% in the sum of the longest diameters of target lesions in comparison to baseline value) and Sta-134 

ble Disease (SD, when none of the above criteria fits to the tumor response). Because the RECIST 135 

system only assesses best response at discrete time points but does not categorize the full tumor 136 

volume trajectories, we additionally categorized the patients into three treatment response groups: 137 

“up”, “down” and “fluctuate” (Figure 1C). For this purpose, we calculated a vector containing the dif-138 

ference of each LD measurement at time point t+1 to its previous measurement at time point t for 139 

each patient. If the LD at � � 1 was bigger than at �, the difference would be positive and vice versa. 140 

Patients for whom only the shortest distance measurement was available were excluded from the 141 

analysis. The “up” category includes patients whose difference vector values are always positive and 142 

patients with a positive difference after the first measurement if the ratio between the sum of all posi-143 

tive values to the sum of all negative values is >2. The “down” category includes patients whose dif-144 

ference vector values are always negative or a negative difference after the first measurement if the 145 

overall ratio between the sum of all negative values to the sum of all positive values is >2. The “fluc-146 

tuate” category contains all patients that correspond to neither up nor down categories. In all five 147 

studies, the pattern “up”, “down” and “fluctuate” was present (Figure 1D). 148 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

8 

Models and experimental design 149 

We predefined six classical mathematical models to be fitted to the data (Table 3). Theoretically, 150 

there are two ways to integrate the effect of pharmacotherapy into models: either, explicit treatment-151 

related arguments can be added to model equations, or, the effects of treatment can be implicit in the 152 

model. Here, we choose the implicit interpretation of treatment effects by assuming that therapies 153 

change either the growth or death rate of tumor cells or the carrying capacity of the tumor niche. For 154 

all models, the dependent variable is the volume of the tumor as a function of time. We subsequently 155 

performed to experiments: Experiment #1 was aimed at fitting models to the entire time series for 156 

each patient. The statistical endpoint for experiment #1 was the mean absolute error (MAE, also L1-157 

norm, the lower the better, ��� �  ∑ |�� ���� |�
���

�
,�	observed versus �
�predicted values), the Akaike In-158 

formation Criterion (AIC � �, lower is better , ��� �  2� �  2���� �, ! is the number of parameters 159 

and �  is the maximum value of the likelihood function for the model), root mean square error (RMSE , 160 

the lower the better, "�#� �  $�

�
∑ ��	  � �
�& ���

	
�  and R-squared fit (highest value is 1, higher is bet-161 

ter, "�  �  1 � ∑  ���� ���� �
�

∑   ���� ������
�

). Experiment #1 was run on both patient sets separately: The set with all 162 

patients with three or more data points and the set with patients with six or more data points. Experi-163 

ment #2 was aimed at fitting models to the early measurements for each patient, excluding the last 164 

three data points and subsequently estimating the predictive accuracy for the excluded data points. 165 

The statistical endpoint for experiment #2 was the MAE. Experiment #2 was only run on the set of 166 

patients with six or more data points.  167 

 168 

Fitting and implementation 169 

All model fitting procedures were implemented in Python 3.7. In particular, we used differential evolu-170 

tion to generate the initial data points for the differential equations. Differential evolution is a stochas-171 

tic population based method which is used for global optimization problems [36]. Based on these ini-172 

tial guessed parameter values, the “Curve_fit” function (from the python package “scipy”) is used to fit 173 

the model parameters to the experimental data. This function uses the Trust Region Reflective (trf) 174 

algorithm with the non-linear least squares loss function to find an optimal fit of the model parameters 175 

to the data points. The inputs to this function are the sorted time and its corresponding tumor volume 176 

measurements, the respective mathematical function to fit the data and the maximum number of iter-177 

ations (we used 1000 iterations in this study). The output of the “Curve_fit” function is the calculated 178 

optimum parameters for the selected mathematical function. Having these parameters, it is possible 179 

to predict the volume values for each time point and then evaluate the goodness of the fit. The 180 

source codes are publicly available at https://github.com/KatherLab/ImmunotherapyModels.git  181 
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Results 182 

Early RECIST status does not correspond well with ultimate treatment response 183 

In clinical routine and clinical trials, RECIST response at early time points during treatment is often 184 

used to determine whether a given treatment should be continued [34]. If these initial RECIST results 185 

perfectly matched the ultimate RECIST, there would not be a need for more mathematical prediction 186 

models. Therefore, we systematically compared the RECIST status at the first, second, third and 187 

fourth tumor size evaluation for each patient with the “final” RECIST status as defined in the study 188 

protocol. In all treatment arms, we found an imperfect overlap between early and final measure-189 

ments. Overall, the median concordance between first, second, third and fourth data point and final 190 

RECIST was 53.5, 64.0, 63.5 and 78.0, respectively. The same pattern was seen for the concord-191 

ance between early and final RECIST calculated for only one target lesion (Figure 1E). Hence, the 192 

RECIST classification can be a useful tool to assess therapy response status, but it might be insuffi-193 

cient for therapy response estimation at an early therapy stage. These findings provide a rationale for 194 

the use of mathematical models to improve response prediction. In addition, we compared statistical-195 

ly the correlation between the RECIST standard classification categories (CR/PR, SD and PD) with 196 

the developed grouping methods (up, down and fluctuate). As the results are summarized in Suppl. 197 

Figure 1 both grouping systems are partially correlated (PD is mostly overlapping with “up”, PR/CR 198 

with “down” and SD with “fluctuate”). However, the correlation was not perfect and particularly in the 199 

OAK study, 37 patients from 95 down category patients are classified as PD and 87 patients out of 200 

133 patients in fluctuate category are classified as PD . This comparison shows that while RECIST is 201 

the standard classification system in clinical routine, our grouping method does provide an additional 202 

perspective on tumor response categories.  203 

The Gompertz model outperforms other models when fitting clinical data points 204 

We tested how well classical differential equation models (Table 3) can fit tumor volume trajectories 205 

under immunotherapy and chemotherapy. To compare these models, we first fitted them to all avail-206 

able data points for all patients with at least six measurements (experiment #1). This set the stage for 207 

experiment #2 (Figure 2A), in which models were fit to all points except the three last points and the 208 

predictive power was assessed for each model. In experiment #1, we found that all models provided 209 

a good fit to most data points, but the number of poorly fitted points differed between the models. 210 

Overall, the General Bertalanffy, the Gompertz and the General Gompertz model had the lowest 211 

number of poorly fitted data points (Figure 2C). We quantified this by calculating multiple metrics for 212 

the goodness of fit for each model, for each study arm, further stratifying patients in each study arm 213 

by the ultimate RECIST response. Again, we found that the General Bertalanffy, the Gompertz and 214 

the General Gompertz model consistently outperformed more simple models. (Figure 3A and B) The 215 
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exponential model yielded the worst fit for 13 out of 19 patient groups in this analysis (Figure 3A). To 216 

rule out a selection bias, we repeated experiment #1 with all patients with at least three measure-217 

ments, yielding comparable results (Suppl. Figure 2A and B). Due to their higher degree of freedom, 218 

complex models always yield a better fit than simple models to any data set. To account for this, we 219 

assessed the Akaike Information Criterion (AIC) which incentivises goodness of fit but penalizes 220 

model complexity. We found that according to the AIC, the General Bertalanffy model consistently 221 

yielded the poorest performance compared to the other models (Figure 3C and D). This observation 222 

also held when all patients with three or more measurements were considered (Suppl. Figure 2C 223 

and D). However, the Gompertz model had a low (good) AIC for most study arms, showing that this 224 

model give a good balance between goodness of fit and model complexity. To rule out that these 225 

effects were obtained by sub-stratifying patients according to their final RECIST status, we repeated 226 

experiment #1 with patients sub-stratified as “up”, “down” and “fluctuate”, thereby considering the 227 

shape of the whole timeline for each patient. Again, we found that the General Bertalanffy, the 228 

Gompertz and the General Gompertz model consistently outperformed the exponential model, the 229 

logistic model and the Classic Bertalanffy model in terms of Mean Absolute Error (Suppl. Figure 3A 230 

and B), the Root Mean Square Error (Suppl. Figure 3C and D) and the R-squared Error (Suppl. 231 

Figure 3E and F). In particular, this was the case for “fluctuating” patients which for the most clinical-232 

ly interesting group of patients (Suppl. Figure 4). For the “up” and “down” patient groups, the fitted 233 

model parameters were generally in a close range. For the “fluctuating” patient group, the fitted mod-234 

el parameters showed a higher variability between the patients, indicating the difficulty of to fit these 235 

trajectories (Suppl. Table 2). When penalizing for model complexity by using the Akaike Information 236 

Criterion, again the Gompertz model provided the best balance between goodness of fit and model 237 

complexity (Suppl. Figure 3 G and H). In summary, the Gompertz model adequately fitted the re-238 

sponse to immunotherapy and chemotherapy across a range of clinically relevant populations, while 239 

having only two free parameters (Table 3). 240 

Differential equation models can predict tumor response from early time points 241 

While it is important to assess a model’s ability to fit a tumor volume timeline a posteriori, a more clin-242 

ically relevant problem is to predict final treatment response based on early tumor behavior under 243 

therapy. Therefore, we investigated if these models can predict the last data points when only fitted to 244 

early treatment response. To investigate this, we held out the three last data points on any given pa-245 

tient, fit the model to all remaining (early) data points and evaluated the mean absolute error from 246 

extrapolation to the holdout test measurements (experiment #2). Interestingly, we found that in most 247 

patient groups in most treatment arms the holdout data points could be very well predicted with this 248 

approach. A remarkable exception was the Classic Bertalanffy Model, which yielded the worst fit on 249 

the last three points as assessed by the Mean Absolute Error (Suppl. Figure 5A and B). Overall, the  250 

best models for predicting holdout measurements were the General Bertalanffy and the Gompertz 251 
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model (Suppl. Figure 5A and B). When analyzing the predictions of the exponential model (Figure 252 

4A) and the General Bertalanffy model (Figure 4B) in more detail, we found that for the “up” and 253 

“down” patients, the exponential and the General Bertalanffy model visually recapitulated the trajecto-254 

ry of the tumor volume. A notable exception are U-shaped curves present in some of the “fluctuating” 255 

patients (Figure 4A and B).  256 

Discussion 257 

Cancer immunotherapy with immune checkpoint inhibitors is now an established part of the therapeu-258 

tic arsenal for solid tumors [37]. Patterns of response to this class of drugs are more complex than for 259 

classical chemotherapy [38]. Previous studies have at length discussed new response trajectories 260 

such as hyperprogression, pseudoprogression [38,39] or delayed response [40] in immune check-261 

point inhibitors. Accordingly, simple assessment systems for treatment response such as RECIST 262 

are not ideally suited to predict future treatment response for a given patient. Although mathematical 263 

models of tumor growth have been used for decades to understand mechanisms of tumor progres-264 

sion and treatment response, they have not been systematically validated in human real-world data. 265 

To our knowledge, the only large systematic evaluation of these models have been performed on 266 

mouse tumors [20,27], which function merely as a proxy for human tumors. Moreover, although im-267 

munotherapy is a cornerstone of cancer treatment and classical mathematical models are in principle 268 

useful to model cancer growth under therapy, they have never been systematically applied to immu-269 

notherapy patients. In this study, we present a systematic application of mathematical tumor growth 270 

models on a large human dataset of patients undergoing immunotherapy and chemotherapy. We 271 

restricted our analysis to six consensus mathematical models selected from [41]. We show that in 272 

particular the Gompertz model and the General Bertalanffy can successfully fit the tumor growth tra-273 

jectory and provide an accurate prediction of ultimate treatment response on the basis of early treat-274 

ment data. However, we also show that the fit for “fluctuating” patients is lower in all models, and fully 275 

U-shaped tumor growth trajectories could not be fitted at all. Comparison of the results between ex-276 

periment #1 and #2 shows that models perform better if all the data points are used. However, from 277 

the clinical point of view, it is very useful if a model can predict the final response points from the ear-278 

ly treatment response. This highlights the usefulness of stratifying patients into different categories 279 

and, in the future, of using more sophisticated models which can overcome this limitation. Our find-280 

ings mirror a previous study by Benzekry et al. who demonstrated that the Gompertz model provides 281 

a good approximation of tumor growth in mice. [20] Therefore, our study provides a potential bridge 282 

between textbook models of mathematical oncology and oncology practice today, providing evidence 283 

that simple mathematical functions can be used to predict immunotherapy response in most patient 284 

subsets.  285 
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A structural limitation to our study lies in the circumstance that the simple modelling of tumor growth 286 

or decay might not be the best predictor for the overall therapy outcome. Although the assessment of 287 

tumor growth might be useful to evaluate the drug or therapy regime response, it does not provide 288 

overall survival prediction for individual patients. Tumors might show a positive therapy response, but 289 

at the same time patients might die from adverse therapy events, infections or other therapy-related 290 

problems. Consequently, mathematical models which are solely based on tumor growth data should 291 

only be used together with other prognostic and predictive factors in clinical routine. Another limitation 292 

is the fact that by setting a threshold of at least six measurements at six points of time per patient, we 293 

had to exclude a part of patients from our final analysis. We mitigated this problem by repeating the 294 

analysis for patients with at least three data points, but this could still represent a selection bias by 295 

neglecting early study drop-outs and early cancer-related deaths. Other data-related limitations are 296 

that for some patients, only very few points can be present during the initial dynamics which might 297 

create problems. In the future, the availability of more complex datasets could allow researchers to 298 

build more complex models, thereby capturing more nuanced details of tumor growth. In practice, this 299 

is limited by the availability of structured data in oncology. In addition, in line with previous studies 300 

performed on mouse data, we used very simple mathematical models in this study [20,27]. Such 301 

models are a strong simplification of the reality of solid tumors, which are multicellular structures with 302 

a distinct spatial architecture. More complex models have been proposed for modeling tumor growth 303 

under immunotherapy which could improve the fit to the data, for example the Kuznetsov model [12] 304 

and game theoretical models [42–44]. As a starting point for the analysis of more complex models of 305 

computational oncology in real-life human datasets of various cancer types, we provide our raw data 306 

for re-use by other groups. In addition to non-spatial models like the ordinary differential equation 307 

(ODE) models in this study, other studies have explored the use of spatial models in the context of 308 

cancer immunotherapy. [45,46] However, in these studies we found that it is very hard to fit the pa-309 

rameters of spatial models to clinical routine data. Even simple spatial models have >25 free parame-310 

ters, which means that for every patient at least 25 measurements are needed (ideally much more). 311 

In comparison, the ordinary differential equation (ODE) models in our study are much simpler and 312 

they only have two or three free parameters. This simplicity enables fitting the model parameters to 313 

routine clinical data such as the databases used in our study. Ultimately, complex spatial models and 314 

simplistic ODE models are both very valuable tools which could be implemented in the clinic in differ-315 

ent situations. Our present study provides the first large-scale evidence for the usefulness of ODE 316 

models. Future studies should investigate more complex models in similar experimental approaches. 317 

Ultimately, after refinement and prospective validation, such models could conceivably be used in the 318 

clinic to provide guidance on treatment recommendations for cancer patients. Unlike molecular biolo-319 

gy-based biomarkers in the field of oncology, mathematical models could potentially improve re-320 

sponse prediction for individual cancer patients based on ubiquitously available routine data.  321 

  322 
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Tables and Figures 323 

Study ID Cancer 
Type 

Phase No. 
Pats. 

Treatment Subgroup No. Pats. 
per group 

NCT01846416 
(GO28625) 

FIR [47] 

Non-Small 
Cell Lung 
Cancer 

2 138 Atezolizumab* MPDL3280A-1 31 

MPDL3280A-2 94 

MPDL3280A-3 13 

NCT01903993 
(GO28753) 

POPLAR [48] 

Non-Small 
Cell Lung 
Cancer 

2 287 Atezolizumab - 144 

Docetaxel 143 

NCT02031458 
(GO28754) 
BIRCH [49] 

Non-Small 
Cell Lung 
Cancer 

2 657 Atezolizumab** MPDL3280A-1a 31 

MPDL3280A-2a 79 

MPDL3280A-3a 70 

MPDL3280A-1b 104 

MPDL3280A-2b 189 

MPDL3280A-3b 184 

NCT02008227 
(GO28915) 
OAK [50] 

Non-Small 
Cell Lung 
Cancer 

3 1182 Atezolizumab - 609 

Docetaxel 578 

NCT02951767 
(GO29293) 

IMvigor 210 [51] 

 

Bladder 
Cancer 

2 429 Atezolizumab - 429 

 324 

Table 1 - Data Description. Five data sets were used in this study. The original number of patients 325 

in each data set and the treatment arm / subgroups are reported in this table. Two of the data sets 326 

have more than one treatment arm (Atezolizumab and Docetacxel) and the others have only one arm 327 

with a number of subgroups defined by clinical features. No. = Number, Pats. = Patients. 328 

  329 
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 330 

Study Design 

NCT01846416 

GO28625 

FIR[47] 

- Atezolizumab in PD-L1 + in NSCLC (n=138), Phase 2 
- 1) patient with no first treatment 
- 2) patients progress following platinum chemo 
- 3) patients 2L + treated brain metastases 
- ORR = 32 % /21% / 23%  

NCT01903993 

GO28753 

POPLAR[48] 

- After platinum failure: Atezolizumab or Docetaxel in NSCLC n=287; 
Phase 2 

- 1) 144 in Atezolizumab group 
- 2) 143 in docetaxel group 
- OS 12.6 months / 9.7 months 
- improvement in OS with higher PD-L1 expression 
- Atezolizumab improved survival, correlated with expression PD-L1 

NCT02031458 

GO28754 

BIRCH[49] 

- Atezolizumab in PD-L1 positive advanced or metastatic NSCLC 
n=667; Phase 2 

- 1) 1L Atezolizumab 
- 2) 2L Atezolizumab 
- 3) 3L Atezolizumab 
- ORR: 22% /19% / 18% 

NCT02008227 

GO28915 

OAK[50] 

- Atezolizumab vs Docetaxel advanced or metastatic NSCLC (2L) n = 
1225, Phase 3 

- OS better in Atezolizumab 
- confirmed results of POPLAR study 

NCT02951767 

GO29293 

IMvigor 

- Atezolizumab in locally advanced or metastatic Bladder Cancer 
Phase 2 

- 1) 1L atezolizumab 
- 2) 2L atezolizumab after platinum based chemo 
- study still ongoing (2020) 

Table 2 - Detailed summary of included studies. Data from five studies were used in this work. All 331 

studies can be identified either by their clinical trial registry number (“NCT…”) or by their Roche ID 332 

(“GO…”).   333 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

15 

 334 

Model name Solution of the differential 
equation 

Differential equation 
(with initial condition ��0� � ��) 

Parameter description Ref. 

 
Exponential 
 ���� � ��������� 

 	�
	�  �  �� �  
� � 

 

 
' ������1�: birth rate* 
( ������1�: death rate* 

 
[41] 

 
Logistic 
(Verhulst) 
 

���� � ����
�

� � ���1 � �
�� 
	�
	�  �  �� �1 � ��� 

 
) ������1�: max. net growth rate � �����:carrying capacity 

 
[41] 

 
Gompertz 
 

���� � 

�����
� � ������ � �

����
�� 

 	�
	�  �  ��� �  ����� 

 

)  ���3�1 �����1�: max. net 
growth rate 
* ������1�:constant 

 
[19,41,
52] 

 
General 
Gompertz 

  	�
	�  �  �
 �� �  ����� 

) ���3�1 �����1�: max. net 
growth rate � ��������:constant 

+ �constant 

 
[41] 

 
Classic 
von 
Bertalanffy 
 

����  � ��

 � ��

�

�
� � �


� �������
�

 

 

 	�
	� � ���

�  �  
� 

 � ��������: birth rate 


  ��������:death rate 

 
[41] 

 
General 
von 
Bertalanffy 

���� � 

,'
( � ,�0

1�� � �

- ����1����-

1

1��
 

 
 

 	�
	�  �  ��
  �  
� 

 �  ��������:birth rate 


  ��������:death rate 

� �constant 

 
[41] 

 335 

Table 3 - Model Description and interpretation of the parameters. For all differential equation 336 

models in the current study, the model name, equations and variables are listed. *birth rate and 337 

growth rate can be combined to one parameter, the effective growth rate.   338 
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339 

Figure 1 - Data Description. (A) Longest tumor diameter over time for all lesions in representative340 

patients in each data set. (B) Number of patients in each dataset. (C) Tumors can be categorized in341 

three trajectory types based on their response to the treatment: Up, Down, Fluctuate. (D) Proportions342 

of trajectory type in each dataset. (E) Initial RECIST status does not predict final RECIST status.  343 

 344 
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345 

Figure 2 - Experimental design and model fit. - (A) In experiment #1, models were fitted to a346 

available data points for each patient (only for patients with at least 3 or 6 data points, respectively)347 

In experiment #2, models were fitted to all but the last 3 data points for all patients with at least 6 data348 

points. Then, the predictions for the last 3 data points were compared with the actual values. (B) Fi349 

and prediction for three representative patients. (C) Plot of real data points and fitted data points fo350 

all models for all studies. A larger deviation from the diagonal indicates a worse fit. Models with a351 

“raincloud” appearance systematically underestimate true tumor volume. 352 
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Figure 3 - Head-to-head comparison of all models. (A) Model fit for all treatment arms in all trials354 

stratified by final RECIST, for all models. The loss function is the Mean Absolute Error (MAE, L1355 

Loss), after row-wise normalization. (B) Corresponding plot without row-wise normalization, showing356 

the raw MAE. The worst MAE in each figure is indicated with “#” and best one is indicated with “*”357 

(C) Corresponding plot showing the Akaike Information Criterion (AIC) which penalizes models with a358 

large number of free parameters, row-wise normalized. (D) Corresponding plot without row-wise359 

normalization. 360 
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362 

Figure 4 - Fit of the exponential model and the General Bertalanffy model to unseen data. (A363 

Fit (blue) of the exponential model to the full timeline of representative patients with “up”, “down” and364 

“fluctuate” trajectories. For the same patients, the prediction (yellow) is shown which was fitted to al365 

points except the last three data points. (B) Corresponding plot for the General Bertalanffy model366 

The y axis is the relative tumor volume with respect to the largest tumor in the whole dataset, shown367 

as 10 -̂3.  368 
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Legend of supporting information 524 

Suppl. Figure 1: Statistical comparison between the “up”/”down”/”fluctuate” and the standard 525 

RECIST-based grouping “CR/PR”/”CR”/”PD”. 526 

 527 

Suppl. Figure 2: Model fit to all patients with three or more measurements. (A) Model fit for all 528 

treatment arms in all trials, stratified by final RECIST, for all models. The loss function is the Mean 529 

Absolute Error (MAE, L1-Loss), after row-wise normalization. (B) Corresponding plot without row-530 

wise normalization, showing the raw MAE. The worst MAE in each figure is indicated with “#” and 531 

best one is indicated with “*”. (C) Corresponding plot showing the Akaike Information Criterion (AIC) 532 

which penalizes models with a large number of free parameters, row-wise normalized. (D) Corre-533 

sponding plot without row-wise normalization. 534 

 535 

Suppl. Figure 3: Model fit to all patients grouped by trajectory type and additional loss func-536 

tions. 537 

 538 

Suppl. Figure 4: Goodness of fit for all models, all trial arms, all patient groups.  539 
 540 

Suppl. Figure 5: Goodness of fit for unseen data points for each model. Results of experiment 541 
#2.  542 
 543 

Annex 1: Original data sharing request 544 
 545 
Suppl. Table 1: fully anonymized subset of the data containing the tumor volume measure-546 

ments for the target lesion and the respective study and treatment arm. 547 

 548 

Suppl. Table 2: Distribution of the parameters for different types of trajectories in all the 5 da-549 

tasets calculated by the examined 6 mathematical models. Table 3 is a reference to the used 550 

parameters for each function. 551 
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