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ABSTRACT 

Objective: Electrodermal activity (EDA) reflects sympathetic nervous system activity through sweating-related 

changes in skin conductance. To enable EDA data to be used robustly in clinical settings, we need to develop 

artifact detection and removal frameworks that can handle the types of interference experienced in clinical 

settings.  

Methods: We collected EDA data from 69 subjects while they were undergoing surgery in the operating room. 

We then built an artifact removal framework using unsupervised learning methods and informed features to 

remove the heavy artifact that resulted from the use of surgical electrocautery during the surgery and 

compared it to other existing methods for artifact removal from EDA data.  

Results: Our framework was able to remove the vast majority of artifact from the EDA data across all subjects 

with high sensitivity (94%) and specificity (90%). In contrast, existing methods used for comparison struggled to 

be sufficiently sensitive and specific, and none effectively removed artifact even if it was identifiable. In 

addition, the use of unsupervised learning methods in our framework removes the need for manually labeled 

datasets for training.  

Conclusion: Our framework allows for robust removal of heavy artifact from EDA data in clinical settings such 

as surgery. Since this framework only relies on a small set of informed features, it can be expanded to other 

modalities such as ECG and EEG.  

Significance: Robust artifact removal from EDA data is the first step to enable clinical integration of EDA as part 

of standard monitoring in settings such as the operating room. 

 

INTRODUCTION 

Artifact detection and removal is required for any physiological data collection, especially in uncontrolled and 

‘messy’ situations like in the hospital or at home. As sensors become more ubiquitous and optimized for comfort 

and convenience over signal quality, ensuring data quality is increasingly the responsibility of analysis algorithms 

that can quickly detect and correct artifact. Specifically, robust artifact removal is required for any physiological 

modality to become clinical standard, since artifact removal must be integrated into hardware systems to ensure 

high quality data for clinicians. Most of this artifact is clearly identifiable by eye and attributable to obvious 

sources such as patient movement, accidental removal or repositioning of sensors, or interference from other 

equipment [1]. However, automating what can be seen by eye can prove to be challenging. Common methods 
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for artifact removal in simpler situations, such as thresholding, may not be sufficient for complex clinical 

environments. In addition, artifact rejection strategies must be optimized for minimal collateral damage in terms 

of removal of true data, especially in cases where temporal dependencies exist. Temporal dependencies may 

also warrant special considerations in methods development, for example favoring removal of multiple smaller 

chunks of data rather than a single continuous chunk.  

Electrodermal activity (EDA) is one such physiological measure that is inexpensive and convenient to collect, but 

is not yet clinical standard because there are not rigorous tools to process and analyze it. EDA tracks the changing 

electrical conductance of the skin due to the activity of sweat glands, which are part of the body’s sympathetic 

‘fight or flight’ reflex [2]. It has immense potential as a physiological marker to track sympathetic activation in 

situations such as pain or stress. Developing frameworks and methodologies to process it, including artifact 

detection and removal specific to clinical situations, would bring it one step closer to being used in the clinic.  

Supervised learning tools have been used successfully in a number of clinical applications, including radiology 

and pathology [3]. However, in the case of artifact detection, creating a labeled training set is a non-trivial task 

that is not part of the clinical workflow. It would require significant manual labor to label each small increment 

of time as artifact or true data. Previous studies using advanced supervised machine learning methods, including 

deep learning, have relied on such expert labeled datasets [4-8]. The timescale of artifact is often a fraction of a 

second, so to minimize the amount of excess data labeled as artifact, the increments of time must be very small, 

increasing the manual labor of labeling. Different types of artifact may also require specific labeled training sets. 

Instead, unsupervised learning methods do not require labeled training sets, since they assign data to groups 

based on detecting patterns in the data. Given that artifactual data is easily identifiable by eye, it is reasonable 

to hypothesize that artifact is innately different from true data. Therefore, unsupervised methods should be able 

to differentiate between them given the appropriate features. In addition, they can detect more complex 

patterns that cannot be explicitly codified [9]. 

In this paper, we develop a pipeline for removing artifact from EDA using three unsupervised learning methods: 

isolation forest, K-nearest neighbor distance, and 1-class support vector machine (SVM). Specifically, we use EDA 

collected during surgery in the operating room, where there is maximal artifact due to interference from surgical 

cautery equipment. This is one of the most intense clinical situations, so by showing that we can robustly remove 

artifact in this scenario, we can demonstrate that our method is adaptable for any clinical situation, which moves 

EDA one step closer to being clinical standard. To feed into the unsupervised methods, we defined 12 features 

in half-second windows based on our own experimentation and guidance from existing literature.  

EDA data were collected continuously during lower abdominal surgery in 69 human subjects. The source of most 

artifact was surgical cautery, which causes large visible deflections in the data every time it is turned on and off, 

which can be over 150 times in an average surgery at short, irregular intervals. Each time the cautery is turned 

on, it typically only remains on for a few seconds. While the cautery-induced deflections are clearly visible, to 

complicate matters, there are periods of intact by shifted (down typically) EDA between the deflections. Finally, 

the magnitude, sharpness, and direction of artifactual deflections vary across subjects. Fig. 1 shows a few 

example datasets with which include large artifacts. 

Existing unsupervised methods for artifact removal are specific to the datasets for which they were built, which 

were typically in mostly controlled experimental settings with occasional but minimal artifact [10-14]. None had 

the degree of artifact that surgical cautery interference produces. None were clinical EDA datasets. 

Unsurprisingly, neither variational mode decomposition nor wavelet decomposition, was able to successfully 

identify and remove the cautery-related artifact from clinical EDA data. In contrast, the artifact detection and 

removal pipeline we developed was able to successfully remove even heavy cautery artifact from all subjects’ 

data. In addition, our computational process was able to do so while preserving as much of the remaining true 
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data as possible, including small snippets of real data in between sections of artifact. An earlier prototype of this 

methodology was published in [15]. 

In the remainder of this paper, we detail the development and validation of this pipeline. In Methods, we discuss 

the details of the data collection, subject cohort, the features used, and how the unsupervised learning 

algorithms were implemented to select artifact. In Results, we show each subject’s data before and after artifact 

removal and detail the specific parameters used and fraction of data labeled artifact. We also show a side-by-

side comparison with existing artifact removal methods for a subset of the data. Finally, in Discussion, we address 

the implications of this work and our future directions.  

Fig. 1 Examples of raw EDA data from three representative subjects 

 

METHODS 

Data. In this study, we use EDA data recorded from 70 subjects (38 female, ages 29-77), collected under protocol 

approved by the Massachusetts General Hospital (MGH) Human Research Committee. All subjects were 

undergoing laparoscopic urologic or gynecologic surgery at MGH. The EDA data were recorded from two digits 

of each subject’s left hand at 256 Hz using the Thought Technology Neurofeedback System [16], starting from 

before induction of anesthesia to just after extubation. Fig. 1 shows an example of the raw data from three 

subjects. The main sources of artifact were movement at the beginning and end, including positioning, and use 

of surgical cautery. Each instance of turning cautery on or off caused a visible deflection in the data. Due to 

logistical concerns, EDA data collection from one subject (Subject 31) was ended before the onset of cautery, 

and therefore that subject was excluded from this analysis. EDA data from the remaining 69 subjects were 

analyzed using Matlab 2020b.   

Features and Unsupervised Learning Methods. The 12 features we used are listed in Table 1. These features are 

a combination of those used by other existing methods as well as additional ones that we discovered were useful 

based on experimentation. We computed these features for each 0.5 second window (128 samples) for each 
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dataset to match with the timescale of most artifacts. These feature vectors were then fed as inputs into three 

unsupervised learning methods.  

 

 Feature Description 

1 Standard deviation of signal 

2 Difference between max and min of signal 

3 Mean of first derivative 

4 Median of first derivative 

5 Standard deviation of first derivative 

6 Min of first derivative 

7 Max of first derivative 

8 Mean of level 4 Haar wavelet coefficients 

9 Median of level 4 Haar wavelet coefficients 

10 Standard deviation of level 4 Haar wavelet coefficients 

11 Min of level 4 Haar wavelet coefficients 

12 Max of level 4 Haar wavelet coefficients 

Table 1 The 12 features for each 0.5 second window used as inputs for our unsupervised methods 

Isolation forest is like random forest; however, each vector of features is scored based on the average length of 

the path to isolate it down to a leaf in an ensemble of decision trees [17]. Data that is artifact is thought to have 

a shorter path length than true data, since it is fundamentally different in nature from true data. In this case, 

each isolation forest consisted of 100 decisions trees, and the isolation scores were computed as the median of 

10 such forests. K-nearest neighbor (KNN) distance computes the mean distance between each vector of 

features and the K nearest analogous vectors in the dataset [18]. In this case, KNN distance was computed using 

Euclidean distance and 𝐾 = 50. Artifactual data is thought to be further in distance from true data. 1-class SVM 

is not unlike regular SVM, except that it is trained on only true data (only one class) and then tested on its ability 

to detect data that is not sufficiently similar to true data, in this case, artifact [19]. These artifacts are assumed 

to be rare in occurrence compared to true data. In this case, 1-class SVM was trained on 90% of the data, based 

on the 90% with the lowest KNN distance as a conservative estimate of true data and excluding the 10% of data 

points with the greatest KNN distance.  

All three unsupervised learning methods yielded a score for each window of data quantifying the degree of 

abnormality. The higher the score, the more likely that segment of data was artifact. The isolation forest scores 

were made negative to match the directionality of the other two. The last step of the process was to determine 

the appropriate threshold to determine artifact for each method for each subject. The process used to select 

these thresholds relied on specific insight about how all of the unsupervised methods label artifact. For each 

dataset, as the threshold on any of the unsupervised method scores is decreased, the portions of data that are 

labeled artifact increase in discrete jumps with more subtle changes in between. The most ‘correct’ labeling of 

artifact is likely to occur at one of these discrete jumps, since each jump represents the additional labeling of 

one similar ‘cluster’ of data as artifact whereas gradual changes represent a continuous spectrum of subtle 

differences within similar ‘clusters’. True artifact is highly similar to each other and distinctly different form true 

data; therefore, there should be no need to rely on subtle differences. To identify the discrete jump that 

represents the most ‘correct’ labeling of artifact, we took advantage of the fact that each discrete jump 

dramatically changes the inter-artifact interval distribution by introducing long gaps between subsequent 

artifact labels. Therefore, the skewness and kurtosis (3rd and 4th moments) of the inter-artifact interval 

distribution were computed across thresholds for each unsupervised method [20]. Since discrete jumps in 

labeled artifact skew the inter-artifact interval distribution, the jumps can be identified by local maxima in 
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skewness and kurtosis. The thresholds at which local maxima in skewness and kurtosis occurred for each 

unsupervised method were tested by visually inspecting the labeled artifact. By using a binary search method to 

streamline which local maxima were tested, only 5-6 thresholds were visually inspected for each dataset. The 

best of these thresholds for each unsupervised method was selected by visual inspection. For each unsupervised 

learning method, once the ideal threshold was chosen, the total proportion of data labeled artifact was 

computed, as was the longest single continuous artifact.  

After identifying and removing the artifact while preserving as much of the true data as possible, any ‘islands’ of 

true data that were shifted upward or downward due to artifactual deflection were translated back based on 

computing the linearly interpolated mean of the data at that time. The islands were typically clear in visual 

inspection, but quantitatively identifiable based on their minimum duration and minimum distance shifted up 

or down from the neighboring EDA data. The minimum duration and average distance were hyperparameters 

that were adjusted by subject to ensure no islands were excluded. After translating the ‘islands’ back, the gaps 

created by removed artifact were filled using linear interpolation once more to create continuous data. This is 

why the duration of the longest continuous artifact was relevant. Using linear interpolation to fill in a few 

seconds of data at a time will likely not affect downstream analysis; however, interpolating a few minutes at a 

time could.  

Finally, we compared our method to other existing methods using both qualitative and quantitative methods. 

Using simple visual inspection, we compared our method to four other existing methods: variational mode 

decomposition [12-13], wavelet decomposition [10-11], thresholding at zero, and thresholding the derivative in 

terms of artifact removal. We also compared our method to two of those methods, wavelet decomposition and 

thresholding the derivative, in terms of precision of artifact detection. To do this, we randomly selected 21 

subjects, and identified a 10-minute segment of data from each one. Twenty of the 10-minute segments were 

specifically selected to represent the regions of highest artifact for each respective subject, while the last 

segment was intentionally chosen to contain no artifact. Solely for the purposes of quantifying the performance 

of each method post-hoc, each 10-minute segment was divided into 0.5 second windows and manually labeled. 

These manual labels were used as ground truth to assess the classification performance of three methods that 

each have a distinct artifact detection step before an artifact removal step. For more details, see Supplementary 

Material Section S1. Variational mode decomposition does not have a separate artifact detection step and 

therefore could not be compared. 
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Fig. 2 Schematic of methodology. (A) Starting from the raw EDA data, (B) each of the three unsupervised 

methods yields a score for each 0.5 second window of data, where a higher score is more likely artifact. (C) 

Screening across thresholds for artifact for all three scores, the labeled artifact at each threshold can be 

described by an associated inter-artifact interval distribution. The skewness and kurtosis of that distribution can 

be computed and plotted by threshold. (D) By visually inspecting the corrected EDA at the local maxima of the 

skewness vs. threshold and kurtosis vs. threshold curves, the best threshold for each of the three unsupervised 

methods can be selected. Then, the best method is the one which has the smallest proportion of labeled artifact. 
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Fig. 3 Comparing the artifact correction at multiple different local maxima of skewness and kurtosis for the same 

subject. The best threshold can be chosen by visually inspecting the corrected EDA at each of these thresholds 

and choosing the first threshold at which no artifacts are left behind without removing unnecessary excess 

signal. 
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Fig. 4 The results of artifact correction using each of the three unsupervised methods for three representative 

subjects. For some subjects, the different methods can all achieve similar performance (Subject 30), while for 

others, there are noticeable differences between the different methods (Subjects 1, 16). 

RESULTS 

Table S1 summarizes the results from all three unsupervised methods for all 69 subjects, including the final 

threshold chosen for each subject for each method. The proportion of data labeled artifact and the longest single 

continuous artifact are given (also summarized in Fig. 7). The best method, by smallest proportion of artifact 

removed (removing the least excess signal) and shortest maximum continuous artifact, is in bold for each 

subject. According to the proportion labeled artifact, isolation forest was the best method for 50 of the 69 

subjects, KNN distance for 14 subjects, and 1-class SVM for 4 subjects, and both 1-class SVM and isolation forest 

were identical for one subject. Across all of the subjects, using isolation forest, the proportions of artifact ranged 

from 0.7% to just under 18% as shown in Fig. 7 and the longest contiguous artifact from 6 seconds to 194 

seconds. For 52 of the 69 subjects (~75%), the proportion labeled artifact was 10% or less and the longest 

continuous artifact was 30 seconds or shorter (Fig. 7). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465489
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 5 Comparison of artifact removal using unsupervised methods vs existing methods for 4 representative 

subjects 
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Fig. 6 Comparison of artifact removal using unsupervised methods vs existing methods for 4 more representative 

subjects 
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Fig. 7 Distribution of total proportion of labeled artifact and longest continuous artifact across all 69 subjects 

 

 Segment Prop. 
artifact 

Unsupervised learning 
+ Informed features 

Wavelet 
decomposition 

Threshold derivative 

Sens Spec Sens Spec Sens Spec 

1 S16, 130-140 min 0.0242 1 0.9752 1 0.4355 0.3793 1 

2 S65, 80-90 min 0.2175 1 0.9712 1 0.1597 0.4559 0.9989 

3 S10, 155-165 min 0.0358 1 0.9870 1 0.9844 0.3488 1 

4 S45, 105-115 min 0.0742 1 0.8506 1 0.3240 0.5730 0.9946 

5 S7, 181-191 min 0.1283 1 0.8824 1 0.7964 0.3442 1 

6 S58, 10-20 min 0.0058 0.7143 0.9665 1 0.8927 0.4286 1 

7 S39, 70-80 min 0.0725 1 0.8616 1 0.2956 0.4828 0.9856 

8 S68, 124-134 min 0.0225 1 0.8142 1 0.5132 0.5185 0.9906 

9 S12, 105-115 min 0.0383 1 0.9679 1 0.3752 0.5435 1 

10 S35, 50-60 min 0.0567 1 0.9170 1 0.5150 0.4559 0.9956 

11 S57, 173-183 min 0.0325 1 0.9854 1 0.3798 0.3333 0.9991 

12 S11, 165-175 min 0.0583 1 0.9805 1 0.2451 0.4571 1 

13 S30, 60-70 min 0.1300 0.5449 0.5766 0.9295 0.2510 0.2244 0.8688 

14 S66, 24-34 min 0.0800 1 0.8904 1 0.4158 0.7396 0.9774 

15 S47, 160-170 min 0.0100 1 0.9167 1 0.7795 0.6667 0.9975 

16 S3, 10-20 min 0.0367 1 0.9965 1 0.5320 0.2727 1 

17 S61, 40-50 min 0.0383 0.6304 0.6863 0.5217 0.3873 0.0870 0.9757 

18 S67, 15-25 min 0.0675 1 0.9455 1 0.7712 0.7407 0.9821 

19 S49, 30-40 min 0.0825 1 0.8265 1 0.2116 0.4545 0.9973 

20 S15, 110-120 min 0.0333 1 0.8741 1 0.7931 0.7000 0.9948 

21 S70, 165-175 min 0 -- 1 -- 0.1900 -- 1 

 AVERAGE  0.9445 0.8987 0.9726 0.4880 0.4603 0.9885 

Table 2 Performance of different methods on 10-minute segments of data from 21 randomly selected subjects 

Prop. artifact = proportion artifact, Sens – sensitivity, Spec = specificity 
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Table S2 contains the hyperparameter values for identification of islands for each subject for all three 

unsupervised methods. Fig. 2 is a schematic summarizing our methodology for artifact removal using 

unsupervised learning. Fig. 3 shows an example of visually inspecting different thresholds for the same subject. 

All of the thresholds tested in Fig. 3 were chosen because they were local maxima of the skewness vs. threshold 

and kurtosis vs. threshold curves, as shown. The optimal threshold is determined by assessing degree of removal 

of artifact without unnecessary removal of signal. Fig. 4 shows the results after optimizing all three methods for 

artifact removal in three subjects. For one of the subjects (Subject 30), all three methods are able to similarly 

remove the artifact. For the other two subjects shown (Subjects 1 and 16), one or more of the methods are 

clearly superior to the others in removing the artifact without removing excess EDA signal. The uncorrected and 

final corrected EDA data using isolation forest, which was most often the best method, for all subjects are in 

shown in Figs S1 – S18 in the Supplementary Material. The degree of artifact varied across subjects, but we were 

able to remove the artifact in all cases. Figs. 5 and 6 show a comparison between our method and several existing 

methods for eight representative subjects in total. Both variational mode decomposition and wavelet 

decomposition were ineffective at artifact removal, and thresholding the EDA signal at 0 or thresholding the 

derivative of the EDA signal were partially effective though they still did not fully remove artifact. Only our 

method was effective to remove the majority of artifact. Table 2 exemplifies this further by showing the 

sensitivity and specificity of artifact detection using our method compared to wavelet decomposition and 

thresholding the derivative of the EDA signal on 10-minute segments of data from 21 randomly selected subjects. 

Overall, our method achieved 94% sensitivity and 90% specificity across all segments, whereas the other 

methods achieved either high sensitivity or high specificity, but not both. Our method was the only one that 

maintained above 50% sensitivity and specificity for all tested segments. In fact, for all but three segments of 

data, our method achieved 100% sensitivity and above 80% specificity. In contrast, wavelet decomposition 

results in many false positives, having overall low specificity (49%) while achieving high sensitivity (97%). In fact, 

in the segment of data with no artifact, wavelet decomposition still identifies over 80% artifact. In Figs. 5 and 6, 

while it appears that wavelet decomposition does not remove any artifact, this is due to ineffective artifact 

removal rather than artifact detection. On the other side, thresholding the derivative of the signal is not sensitive 

enough, achieving low overall sensitivity (46%) with high specificity (99%). 

 

DISCUSSION 

In this study, we collected EDA data in the operating room during surgery from 69 subjects and demonstrated 

that using unsupervised machine learning methods and a set of 12 literature and physiology-informed features, 

we were able to remove artifact due to surgical cautery and movement from the EDA. This overcomes a major 

barrier for EDA to be used clinically. We specifically focused on unsupervised methods to emphasize practicality 

at the implementation stage, since a manually labeled training set is not required. We tested three unsupervised 

learning methods: isolation forest, K-nearest neighbor (KNN) distance, and 1-class support vector machine. We 

also compared existing methods such as variational mode decomposition and wavelet decomposition, as well 

as intuitive heuristic-based rules such as thresholding at zero or thresholding the derivative of the signal, for a 

representative subsample of subjects. Across all 69 subjects, the three unsupervised methods were able to 

remove the vast majority of artifact. None of the existing methods were able to fully remove major artifact in 

the tested subsample of subjects. Of the three unsupervised learning methods tested, isolation forest was the 

most discerning and parsimonious in not mislabeling true EDA as artifact for the majority of subjects (51 out of 

69). Therefore, we used isolation forest for all subjects to arrive at the final artifact-removed EDA data.  
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Our methodology did not require any manual labeling of data for training, which would be extremely time-

intensive and impractical in clinical settings. Despite the absence of training data, our methodology successfully 

removed cautery artifact from the data even when true EDA data was interspersed between sections of heavy 

artifact. This is indicated by the fact that even when the cautery seems to be continuous to the eye, the total 

proportion of labeled artifact in most cases (52 out of 69 subjects) was 10% or lower. In the subset of subjects 

in which comparison methods are shown in Figs 5 and 6, thresholding-based methods did not fully remove 

artifact; this was due to inadequate artifact detection for some methods and inefficient removal for others. Table 

2 shows that the other methods were either not sensitive or specific enough; our method was the only one that 

maintained consistently high sensitivity and specificity across subjects. Even methods that could detect artifact 

were not necessarily able to remove it successfully (i.e. wavelet decomposition). Some of the comparison 

methods are decomposition-based, for example variational mode decomposition, which has the potential to 

affect the entire signal, including regions of true signal. In contrast, our method only modifies regions of the data 

that require modification and leaves non-artifact regions of data unchanged. In addition, most of the labeled 

artifact was in short segments of under 30 seconds. The longest continuous artifact only exceeded 60 seconds 

for 9 of the 69 subjects. This is important to consider in terms of downstream analysis, since relevant information 

about sympathetic activity is contained in the dynamic pulse-like phenomena in EDA [2,21]. Any method that 

modifies long, continuous chunks of data will likely affect the readout of dynamic activity in that timeframe. In 

contrast, short regions of missing data can be interpolated since they are only likely to contain a few pulses, and 

the missing data can be account for in estimation of uncertainty [22].  

While our methodology used some of the same features as existing methods, we allowed the unsupervised 

algorithms to ‘learn’ the difference between artifact and true signal for each dataset on their own rather than 

hardcoding rules. The selected features, including those that overlap with existing methods, simply highlighted 

relevant characteristics of the data, based on the physiology of EDA and observations about the nature of 

cautery-related artifact. A straightforward expansion of this approach for other types of “clearly visible” artifact 

in modalities such as ECG and EEG could be implemented using custom feature definition, again informed by the 

physiology and nature of artifact in those signals. While our methodology is not fully automated at this stage 

and requires some visual examination for selection of hyperparameters, future iterations of our methodology 

will automate these steps as well.  

 

CONCLUSION 

EDA data has great potential as a clinical marker of sympathetic activation; however, it is limited by the lack of 

hardware systems and software tools that have been built specifically for the clinical setting. This includes the 

crucial steps of artifact removal, specific to the degree and types of artifact that occur in clinical settings. Cautery 

interference during surgery is among the most intense of these, since there is an abundance of high-powered 

electrical equipment in use during surgery. Since most existing methods were built for purely experimental 

settings, none were effective in this scenario. However, we demonstrated that our paradigm is successfully able 

to recover viable EDA signal even in this situation, which allows EDA to be of clinical use as a marker of 

sympathetic activation even in the operating room. Future clinical EDA systems can integrate our methodology 

into their hardware to identify and remove artifacts as they occur. Our work is a critical advance to the eventual 

integration of EDA into clinical workflows as a biomarker of sympathetic activation, for example to track 

unconscious pain during surgery. 
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