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Summary

High-fidelity sensory neural implants must be calibrated to precisely activate specific cells via extracellular
stimulation. However, collecting and analyzing the required electrical stimulation data may be difficult in the
clinic. A potential solution is to infer stimulation sensitivity from intrinsic electrical properties. Here, this
inference was tested using large-scale high-density stimulation and recording from macaque retinal ganglion
cells ex vivo. Electrodes recording larger spikes exhibited lower activation thresholds, with distinct trends for
somas and axons, and consistent trends across cells and retinas. Thresholds for somatic electrodes increased
with distance from the axon initial segment. Responses were inversely related to thresholds, and exhibited a
steeper dependence on injected current for axonal than somatic electrodes. Dendritic electrodes were largely
ineffective for eliciting spikes. Biophysical simulations qualitatively reproduced these findings. Inference of
stimulation sensitivity was employed in simulated visual reconstruction, revealing that the approach could
improve the function of future high-fidelity retinal implants.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.22.465478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465478


2
Introduction

Sensory neural interfaces of the future, such as visual, auditory and somatosensory implants, may operate at
cellular resolution, permitting the selective activation of individual cells and cell types to produce high-fidelity
artificial sensation. While recording and stimulation hardware continues to advance toward this goal, calibration
remains a significant obstacle. Specifically, for any given collection of electrodes and neurons, an implant that
recreates the neural code at cellular resolution must rely on knowledge of which electrodes activate which
cells, and to what degree. Obtaining this information, in turn, requires measurements of responses to electrical
stimulation in large collections of neurons that are in contact with a large-scale neural implant. This calibration
raises many problems in the clinic: it is time-consuming, requires complex analysis to distinguish electrical
responses from electrical artifacts, may produce uncomfortable and startling artificial sensations, and may
need to be performed repeatedly to accommodate tissue rearrangement or device movement. Thus, any
intrinsic biophysical properties of neurons that could be readily measured to reveal features of their electrical
sensitivity could significantly speed and enhance the calibration of neural interfaces, and therefore could have
a large impact on translational neuroengineering.

One potential solution to the calibration problem would be to harness information from recorded spontaneous
electrical activity in order to infer how cells will respond to electrical stimulation. Spontaneous activity can be
recorded rapidly in parallel on many electrodes and is not subject to electrical artifacts, and therefore can be
analyzed relatively easily. An example of this inference comes from the observation that electrodes closer to a
particular cell tend to record larger spikes and also typically require less stimulation current to elicit activity.
Thus, spike amplitudes recorded during spontaneous activity could potentially be used to infer electrical
stimulation thresholds for every electrode and cell. The possibility of this kind of inference has been suggested
in theoretical and modeling studies, and experimental work in tissue culture (Boinagrov et al., 2010; Esler et
al., 2018a; Fohlmeister et al., 1990; Loizos et al., 2014; Radivojevic et al., 2016; Tsai et al., 2012). However,
these approaches have not been tested with real neurons functioning within complete neural circuits, and the
modeling work relies on simplified assumptions about the electrical properties of neural tissue and on detailed
knowledge of neuronal geometry, which generally cannot be determined in a living patient. Thus, it remains
unclear whether and how the electrical sensitivity of neurons in intact tissue can be reliably inferred from their
recorded spontaneous activity.

In this paper we propose an approach for electrical sensitivity inference in the context of a future
high-resolution retinal implant to treat incurable blindness. A sufficiently precise implant could, in principle,
reproduce the neural code of the retina for high-quality artificial vision, but calibrating such a device is a
daunting task. We leverage high-density multi-electrode recording and stimulation from hundreds of retinal
ganglion cells (RGCs) in the primate retina as a laboratory prototype for such a device, to probe the
relationship between recorded spikes and sensitivity to electrical stimulation. The sensitivity of RGCs to
extracellular stimulation at various locations depended, in a surprisingly consistent manner across hundreds of
electrodes and dozens of retinal preparations, on recorded features of spiking activity across space. This
dependence exhibited systematically different properties based on the proximity of each electrode to the soma,
axon, and dendrites of the cell, the characteristics of which were in accordance with predictions from
biophysical models. These trends were useful in using recorded intrinsic spiking activity to predict the
responses of individual RGCs to electrical stimulation. Exploiting these relationships to infer optimal electrical
stimulation sequences proved to be effective for enhancing high-fidelity image reconstruction, and thus could
be useful for a future high-fidelity retinal implant.
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Results

The efficacy of closed-loop epiretinal implants, and of electrical neural implants in other regions of the nervous
system, could be markedly improved by the ability to infer the responsivity of nearby neurons to extracellular
stimulation using only features of recorded spontaneous spikes, which are much faster to obtain and easier to
analyze. To perform this inference would require establishing a consistent relationship between recording and
stimulation, by comparing spatial signatures of cells obtained by electrical recording alone with their responses
to extracellular electrical stimulation, at distinct spatial locations. Below, we explore this relationship for
macaque retinal ganglion cells (RGCs).

An array of 512 electrodes (10 μm diameter, 60 μm pitch [18]) was used to electrically record and stimulate
RGCs in ex vivo isolated macaque retina preparations. Responses of recorded RGCs to white noise visual
stimulation were used to identify ON and OFF parasol cells, two of the numerically dominant RGC types in the
macaque retina (Dacey, 2004; Field and Chichilnisky, 2007). These cells were then probed with electrical
stimulation, eliciting individual, precisely-timed, directly-evoked spikes (Jepson et al., 2013; Sekirnjak et al.,
2008). To avoid activation of RGCs off the array, stimulating current amplitudes at each electrode were limited
to values lower than the threshold for stimulation of axon bundles (Grosberg et al., 2017; Tandon et al., 2021).
Spikes evoked by electrical stimulation were identified separately from the electrical stimulation artifact using
an automated approach (Mena et al., 2017). This procedure enabled the collection of paired recording and
stimulation data on multiple electrodes for 172 RGCs of the ON and OFF parasol types.

To obtain a spatial signature of spontaneous spikes produced by each recorded cell, the electrical image (EI)
was computed. The EI is the average spatiotemporal pattern of activity associated with a spike in a single cell
(Fig. 1A). The EI can be obtained from recordings of spontaneous or visually-evoked activity (see Methods).
For a given EI, the characteristic shape of the spike waveform at each recording electrode reflects the
underlying cellular compartment that contributes most to the signal at that electrode: dendrite, soma, or axon
(Litke et al., 2004). An automated method was developed to distinguish these compartments, based on the
amplitudes of one or more positive and negative peaks in the recorded spike waveforms (see Methods). The
three cellular compartments were spatially distributed in the plane of the retina as expected, based on the
known geometry of RGCs (see Methods; Fig. 1), with the identified axons extending toward the optic disc.
Additionally, for each EI, the putative location of the axon initial segment (AIS), a region on the cell considered
to be the most sensitive to electrical stimulation (Boiko et al., 2003; Esler et al., 2018b; Fried et al., 2009;
Werginz et al., 2020), was assumed to be 13 μm from the soma center in the direction of the nearest axonal
electrode, based on previous empirical measurements in the same experimental conditions (Sekirnjak et al.,
2008).

To determine the extracellular activation characteristics for each cell at various spatial locations, responses
evoked by electrical stimulation at each electrode were characterized to construct an electrical receptive field
(ERF). First, responses to current pulses over a range of amplitudes were recorded, and spike waveforms in
these recordings were identified and separated from electrical artifacts. These waveforms were then matched
to the waveforms of light-evoked spikes (from the EI, see above) in order to identify which cell(s) produced a
spike in response to the electrical stimulus (see Methods). For each electrode, the relationship between current
amplitude and spiking probability was summarized by a sigmoidal activation curve (Fig. 1, bottom row), and the
current amplitude that evoked spikes in 50% of trials was defined as the activation threshold. Finally, the ERF
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for each cell was defined as a spatial map of sensitivity to electrical stimulation, given by the inverse of the
activation threshold at each electrode location (Fig. 1).

Features of electrical images correspond to the electrical receptive fields of ON and OFF parasol cells

Features of the EI, a relatively simple measurement, provided substantial information about the ERF (Fig. 1),
which summarizes electrical excitability over space but is far more difficult to obtain. Several observations
about data from a single cell reveal trends that are discussed in detail subsequently. First, only electrodes that
recorded large spike waveforms from a given cell (Fig. 1, hollow circles) were able to evoke spiking in that cell
(Fig. 1, filled circles) within the amplitude range tested (5-200 pC injected charge), although many did not
activate the cell at current levels below bundle threshold (Fig. 1, light-blue hollow circles; see Methods).
Second, for the electrodes that did evoke a spike below bundle threshold (Fig. 1; see Methods), the EI
amplitude at each electrode was related to the strength of the ERF: electrodes recording higher EI amplitudes
(Fig. 1, circle size) also excited the cell more effectively--i.e. with lower thresholds (Fig. 1, circle color). The
similarity between EIs and ERFs presumably reflects the fact that both spike amplitude and sensitivity to
electrical stimulation are inversely related to the distance between the electrode and various compartments of
the cell (Rattay, 1987; Rattay et al., 2012; Sekirnjak et al., 2008). Third, somatic electrodes closer to the axon
(Fig. 1B, electrode at circle 2) required less current to activate RGCs than somatic electrodes further from the
axon (Fig. 1B, electrode at circle 1), even if the electrodes recorded spikes of similar amplitude (Fig. 1B, radii
of circles 1 & 2). Fourth, electrical stimulation using dendritic electrodes typically did not elicit spiking within the
tested stimulation amplitude range (Fig. 1A, top & bottom right). Finally, axonal electrodes exhibited steeper
increases of firing probability in response to increasing stimulation amplitude (Fig. 1 bottom, red vs. blue
sigmoids, slopes), and recorded spike waveforms with smaller amplitudes (Fig. 1 top, red vs. blue waveforms,
negative peak amplitudes), despite exhibiting activation thresholds in a range similar to those of somatic
electrodes (0.2-2 μA). The latter suggested that the relationship between EIs and activation curves differs for
somatic and axonal electrodes. In the following, these trends in the relationship between the EI and ERF are
explored across many cells and retinas.

Figure 1. Recording and stimulation in single cells. A) ON Parasol Electrical Image (EI) superimposed on the Electrical Receptive Field
(ERF); circle area is proportional to recorded signal strength, and electrode color corresponds to stimulation threshold. Electrodes that
recorded spike amplitudes less than the electrical noise threshold (30 μV) are not plotted, and those that didn’t elicit spikes are black
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and hollow. Electrodes where the signal could not be analyzed due to axon bundle activity are light blue and hollow. Flanking the EI
plots are examples of recorded dendritic (black), somatic (blue), and axonal (red) spike waveforms (top; see Methods), and examples of
sigmoidal electrical activation curves characterizing measured spiking responses (circles) to current stimulation at each cellular
compartment (bottom). B) EI superimposed over the ERF for an OFF Parasol cell from the same retina, with example waveforms
recorded from the soma at two different locations (electrodes labeled ‘1’ and ‘2’) and at the axon (top), and corresponding activation
curves (bottom).

Electrical activation threshold is inversely related to recorded spike amplitude

The relationship between EI amplitude and ERF strength observed on axonal electrodes (Fig. 1, marker size
and color) was consistent across cells. Recording and stimulation was examined on 61 electrodes overlying
the axons of 53 ON and OFF parasol cells. Axonal thresholds exhibited a clear inverse relationship to EI
amplitudes (Fig. 2 A&B, red markers). To determine whether this relationship holds across preparations,
recording and stimulation features from 152 axonal electrodes overlying 102 cells from 23 retinas were
compared (Fig. 2C). Surprisingly, across multiple recordings, a consistent inverse relationship was observed
for electrodes overlying axons of both ON and OFF parasol cells (Fig. 2C, circle and square markers
respectively), similar to the trend observed in a single retina (Fig. 2 A&B, red points vs. points in C). The
relationship between axonal EI amplitudes and activation thresholds was fitted by an inverse function chosen
based on studies indicating that electrode distance is linearly related to activation threshold for electrodes less
than 50 μm away (Rattay and Wenger, 2010): , with maximum likelihood fit𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑎

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒−𝑐 + 𝑏

parameters a = 6.5, b = 0.4 μA, and c = 35 (Fig 2C, dashed line, see Methods).

Similarly to axonal activation thresholds, somatic thresholds exhibited an inverse dependency on EI amplitude,
as observed in 55 somatic electrodes overlying 53 ON and OFF parasol cells in two different retinal
preparations (Fig. 2 A&B, blue markers). However, pooling the recording and stimulation features, and
inspecting the locations of 94 somatic electrodes overlying 102 cells across 23 retinas revealed that somatic
thresholds depended on the distance of the stimulating electrode from the putative location of the AIS (Fig. 2D,
marker colors; see Methods). Specifically, for a given RGC, somatic electrodes near the AIS (Fig. 2D, blue
markers below dashed line) required less current to cause activation than electrodes farther away (Fig. 2D, red
markers above dashed line), despite recording spikes with similar peak amplitudes. Quantitative
characterization of this trend revealed that the fractional difference between measured somatic activation
thresholds and estimates based solely on EI amplitude increased roughly linearly as a function of electrode
distance from the AIS (r2 = 0.78). Taken together, these findings suggested the following equation for
estimating somatic activation thresholds from recorded somatic spikes:

, where after fitting, a = 22, b = 0.4 μA, c = 96𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑠𝑜𝑚𝑎

 =  ( 𝑎
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒−𝑐 + 𝑏) * (1 + 𝑑 * 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎𝑖𝑠
+ 𝑒)

μV, d = 0.0146, and e = -0.428. Note that axonal electrodes did not exhibit any discernible dependence on
distance to the AIS (Fig. 2C, marker colors) or to the midline of the axon (see Methods).

Across many cells, electrodes near dendrites did not reliably elicit spikes (Fig 1A bottom, black trace). On
average, only 9% of identified electrodes recording significant spikes (see Methods) from each cell were
identified as recording from dendrites (3577 cells, 34 retinas). Of these electrodes, none were able to elicit
spikes with probability greater than 0.5 over the range of amplitudes tested, compared to 56% for all axonal
electrodes and 72% for all somatic electrodes. Thus, the dendritic data were insufficient to explore the EI
amplitude-activation threshold relationship and were not further analyzed.
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Figure 2. Relationship between activation thresholds and EI amplitudes. In all plots, points corresponding to ON Parasol cells are
denoted by circular markers, and OFF Parasol cells by square markers. A&B) Electrical activation threshold vs. recorded spike
amplitude for axonal (red markers) and somatic (blue markers) electrodes in two different retinal preparations; marker color
corresponds to the ratio of the positive peaks of the recorded waveform on each electrode. Respectively colored dashed lines
correspond to maximum log-likelihood, first-order inverse curve fits to the aggregated data for somas (blue, fit to data in C) and axons
(red, fit to data in D). Aggregated thresholds vs. EI amplitudes for axonal (C) and somatic (D) electrodes, collected from 23 different
retinas; dashed lines correspond to maximum log-likelihood, first-order inverse curve fits to the data. Marker color corresponds to
distance from the axon initial segment (AIS) location.

Activation curve slope is inversely related to activation threshold

A complete characterization of RGC responses to electrical stimulation entails determining not only the 50%
activation threshold, but also the spiking probability over a range of stimulus amplitudes--i.e. a full activation
curve (Fig. 3A). A simple possibility is that, for each cellular compartment, the activation curve has a
stereotyped form across cells, because of the similarities in morphology and membrane dynamics between
cells, and that this form scales with the injected current according to the electrical impedance between the
electrode and the site of activation. In this case, normalizing measured activation curves by their associated
threshold should result in a constant form. Indeed, this normalization revealed that activation curves are
strikingly similar across retinal preparations for all somatic electrodes, and for all axonal electrodes, but very
different between the two compartments (Fig 3C, blue vs. red curves). Axonal activation curves featured a
relatively steep, “all-or-none” relationship, while somatic activation curves were shallower.

The similarity of normalized activation curves within each cellular compartment indicates that the slope is
inversely related to the threshold. To characterize this relationship further, activation curve slopes were
examined as a function of activation threshold, separately for 94 somatic and 152 axonal electrodes (Fig. 3
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B&D). This relationship was fitted by an inverse function: . Maximum likelihood fits to𝑠𝑙𝑜𝑝𝑒 =  𝑎

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑−𝑐) + 𝑏

the data resulted in a = 3.94 for somas and 4.91 for axons, b = 2.25 for somas and 8.72 for axons, and c =
0.19 for somas and 0.6 for axons (Fig. 3 B&D, dashed lines). For each compartment, ON and OFF parasol
cells exhibited a similar relationship between activation curve slope and threshold (Fig. 3 B&D, circular and
square markers, respectively). The high fidelity of these relations (r2 = 0.82 for somas and 0.74 for axons)
suggests that characterizing the ERF of a cell (which only reflects threshold at each electrode) is sufficient to
reconstruct the full set of activation curves for the cell at each electrode.

Figure 3. Relationship between activation curve slopes and activation thresholds. A) Four example somatic (blue) and axonal (red)
measured sigmoidal activation curves. Measured spiking data is shown for one axonal and somatic electrode each (red & blue circles).
C) Activation curves shown in (A) along with 10 additional examples for each compartment, after current values were normalized by
each curve’s activation threshold. Activation curve slopes vs. thresholds for somatic (B) and axonal (D) electrodes, with first-order
inverse curve fits (black, dashed line). Fitted activation curves with spuriously high slopes resulting from poorly estimated spiking
probabilities were excluded from the figure (see Methods).

Activation curves can be accurately inferred from electrical images

The systematic relationship between EI amplitude and activation probability probed above could be used to
infer the parameters of ON and OFF parasol cell activation curves over space, using only recorded spikes,
potentially conferring an advantage over naively averaging previously measured activation data. To test this
possibility, the previously fitted inverse relations were used to estimate thresholds, which were then compared
to measured thresholds, for the somas and axons of 102 cells (Fig. 4 A, example ON Parasol cell), across 246
electrodes from 23 different preparations (Fig. 4 B,C,E,F). The accuracy of inferred thresholds was compared
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to that of a single, naive estimate of the activation threshold obtained by averaging measured activation curve
parameters over axonal and somatic electrodes across 53 retinal preparations (Fig. 4 B,C,E,F horizontal
dashed lines, average threshold 1.2 μA, average slope 12.1 1/μA). Inferred ERFs were qualitatively similar to
measured ERFs for individual cells (Fig. 4A left vs. right, circle colors). Across axonal electrodes, 56% of
activation thresholds were estimated within 25% of the measured value, compared to 33% obtained by
averaging (Fig. 4E). Across somatic electrodes, 48% of inferred thresholds were within 25% of the measured
value, compared to 28% obtained by averaging (Fig. 4B). Activation slopes were inferred from these estimated
activation thresholds, and were within 25% of the measured slope value for 58% of axonal electrodes,
compared to 14% using the average slope (Fig. 4F), and 67% of somatic electrodes, compared to 22% using
the average slope (Fig. 4C).

Complete activation curves inferred using features of the EI can then be used to estimate activation
probabilities over the range of applied stimulus current levels, more effectively than the naive estimate derived
by averaging. This was determined by pooling data across 246 electrodes and comparing measured curves to
the corresponding inferred curves (using the fitted inverse relations for threshold and slope inference,
respectively), or to a single, naively estimated sigmoidal activation curve derived from average parameters
(same as above). The difference between each measured and estimated sigmoidal activation curve was
estimated by computing the absolute difference of the integrated area between the curves. The separation
between fitted and inferred activation curves was significantly smaller than the separation between fitted and
fixed curves for somas and axons (Fig 4. D&G, Wilcoxon signed rank test between green and purple
histograms: p=0.002 for somas, p=0.02 for axons). The mean separation for inferred somatic activation curves
was 22% closer to zero than for the fixed curve, and 30% closer for axons (Fig. 4 D&G, vertical dashed lines).
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Figure 4. Comparison of inferred and measured activation properties. A) Measured vs. inferred ERFs for a single ON Parasol. Circle
size corresponds to spike amplitude recorded at each EI electrode; circle shade corresponds to measured or inferred thresholds at
each electrode. Inferred vs. measured somatic (B) and axonal (E) thresholds, and slopes (C & F), pooled across many electrodes. ON
and OFF parasols are indicated by circular and square markers. Dashed line corresponds to x=y. D) Outlined histograms of the
absolute differences of integrals between fitted and inferred (green), or fixed (purple), somatic activation curves, with respective mean
values indicated by vertical dashed lines. G) Absolute differences of integrals for axonal activation curves.

Biophysical simulations corroborate experimentally observed extracellular activation trends

Simulated extracellular stimulation of a mammalian RGC (Fohlmeister and Miller, 1997) reproduced the main
empirically observed trends in electrical activation properties. Simulations were conducted as follows (see
Methods). The NEURON software package (Carnevale and Hines, 2006) was used to implement a previously
published five-channel electrical circuit model of a rat RGC, with slightly simpler axonal geometry based on
morphological measurements from macaque RGCs. The model cell was simulated in a uniform medium with
isotropic resistivity. To simulate nondeterministic activation, spontaneous membrane voltage fluctuations
(arising from sources such as channel noise and synaptic inputs) were modeled as Gaussian noise with a
standard deviation of 2 mV in each model segment (see Methods; F. Rieke, personal communication).
Stimulating electrodes were modeled as a row of point current sources with 60 μm spacing along the cell and
axon, at a retinal depth 20 μm from that of the axon (Fig. 5A, black, blue, and red row of bars spanning the
top). Tissue impedances were fixed in the simulation, except at two locations corresponding to the soma and
distal axon (Fig. 5A, blue and red bars) where impedance was varied ±75%. Voltages at each simulated
electrode were obtained by summing the voltage fluctuations resulting from action potentials in the various
model segments.

Analysis of these simulations corroborated several of the key trends described above in the recorded data.
First, electrodes located over the soma recorded spikes with 3-5 times the amplitude of electrodes overlying
axons, but activated the cell with similar current thresholds (Fig. 5C different circle sizes with similar colors).
Second, electrodes recording somatic spike waveforms closer to the AIS had lower activation thresholds than
electrodes farther from the AIS (Fig. 5C, leftmost circle colors). Third, stimulation and recording with somatic
and axonal electrodes over a range of assumed tissue impedance values resulted in an inverse relationship
between spike amplitude and activation threshold for both soma and axon electrodes, with the somatic curve
displaced toward larger spike amplitudes (Fig. 5B, blue vs. red dots, and dotted vs. dashed curves). Finally,
stimulation with increasing current produced steeper activation curves at axonal electrodes than at somatic
electrodes (Fig. 5D, blue and red sigmoid curves). Taken together, these results suggest that well-understood,
biophysical mechanisms underlie the experimentally observed relationships between electrical recording and
activation of parasol cells presented above.
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Figure 5. Extracellular activation properties of simulated RGCs. A) Finite-element model schematic showing soma, axon hillock, and
distal axon segments, and overlying simulated electrode positions. B) Activation thresholds vs. recorded spike amplitudes for simulated
(dots) and experimentally collected (dashed lines) data, for somatic (blue) and axonal (red) electrodes. C) Simulated ERF with
electrode locations corresponding to each electrode x-position in (A). Circle sizes correspond to peak recorded spike amplitudes, colors
indicate activation thresholds. D) Simulated somatic (blue) and axonal (red) response probability vs. stimulating current data fit by
sigmoidal curves.

Inferred activation curves can be used to inform stimulation choices in a retinal implant

The information inferred about electrical activation over space was useful when tested in an electrical
stimulation procedure (N. P. Shah et al., 2019) that could be potentially deployed in a high-resolution epiretinal
implant. This was demonstrated by estimating the cumulative visual perception (or image reconstruction,
(Brackbill et al., 2020; Warland et al., 1997)) resulting from a collection of current pulses delivered by
electrodes across the array (see Methods), separately in three different retinal preparations. In each
preparation, activation of each ON or OFF parasol cell was assumed to contribute a particular image
component (or phosphene) to visual perception, corresponding to the optimal linear reconstruction filter
obtained by estimating that cell’s response to white-noise visual stimuli (see Methods), scaled by the spiking
probability at the stimulating current level. Spiking probabilities were computed using either measured
responses to electrical stimulation, inferred responses based purely on electrical recordings, or a fixed
activation curve representing the average across 246 electrodes and 102 cells in 53 preparations (as in Fig. 4).
Each image was translated into a spatial pattern of stimulation, using 40 individual electrodes and current
amplitudes selected to minimize the normalized, pixel-wise mean-squared-error (NMSE, see Methods)
between the reconstructed and true image.

Qualitative comparison between reconstructed images revealed that choosing electrodes based on inferred
activation curves resulted in substantially more accurate reconstruction than could be obtained by using the
fixed curve, and approached the best achievable reconstruction obtained using measured activation curves
(Fig. 6A, example reconstructions of two target images in a single preparation). Comparing the accuracies of
45 reconstructed targets across 3 retinal preparations revealed that choosing stimuli using inferred activation
curves provided a 54% improvement in NMSE over using fixed curves (see Methods, Fig. 6B, dashed red,
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green, and black dashed line slopes). These results suggested that inference of activation curves from EIs has
a significant potential to produce more accurate visual perception with a future, closed-loop epiretinal implant.

Figure 6. Simulated image reconstruction using inferred, measured, and fixed activation curves. A) Reconstructed images in one retinal
preparation for two targets (top and bottom rows respectively, left), using inferred (middle-left), measured (middle), and fixed control
(middle-right), activation curves. B) Normalized mean-squared-error (NMSE) for fixed vs. inferred (green markers) and measured (black
markers) across 15 targets and 3 retinal preparations, corresponding to the three clusters of scattered points. Red dashed line
corresponds to x=y, green dashed line represents linear fit to inferred scatter points, black dashed line represents linear fit to measured
scatter points.

Discussion

The present results demonstrated that the effectiveness of electrical stimulation at a given electrode positioned
near a RGC is inversely related to the recorded spike amplitude at that electrode, in a manner that is distinct
for each cellular compartment, and consistent across many cells within and across retinas. These trends were
qualitatively replicated in simulations with a biophysical model, suggesting that they arise from well-understood
properties of neurons. The observed relationships can be harnessed to accurately infer the extracellular
activation properties of cells over space based solely on recording natural activity, and thus may be useful in
guiding electrical stimulation choices relevant to prosthetic vision.

Several key features of electrical activation properties presented here are supported by previous studies. First,
the inverse relationship between spike amplitude and activation threshold agrees with theoretical predictions of
the distance-threshold relationship for extracellular stimulation. These predictions are based on the assumption
that extracellular activation depends on the second spatial derivative of the voltage deflection along the
membrane of the axon (Rattay, 1987; Rattay and Wenger, 2010), and suggest that at electrode distances less
than ~50 μm, the distance-threshold relationship should be linear. The linear relationship in turn supports the
observed inverse relationship between recorded spike amplitude and threshold. In addition, reports from
previous experimental and theoretical studies indicate that the AIS, which is positioned between the soma and
distal axon of RGCs, is highly excitable (Boiko et al., 2003; Esler et al., 2018b; Fried et al., 2009; Radivojevic et
al., 2016; Rattay and Wenger, 2010; Werginz et al., 2020), consistent with the observed increase in activation
threshold with increasing distance from the AIS for electrodes near the soma. On the other hand, it is important
to note that applying the inference relations presented in this work to other devices may necessitate the
collection of at least some electrical stimulation data in the target retina, because stimulation thresholds (but
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not recorded spike amplitudes) may vary based on electrode geometry (Cao et al., 2015; Lempka et al., 2011;
Viswam et al., 2019).

In a notable previous study, inference of activation thresholds from the recorded features of electrically evoked
spikes was performed in 14 cultured cortical neurons (Radivojevic et al., 2016). Inference was performed using
multivariate regression on eight features of recorded spikes, revealing that the two critical features for
inference were spike amplitude and time of spike onset. These two features roughly correspond to those used
for threshold inference in the present work: spike onset times often identify the cellular compartment, due to
the stereotyped time course of action potential propagation.

Several limitations of the present work bear mentioning. First, certain cell-electrode pairs could not be analyzed
reliably. Specifically, electrodes recording spike amplitudes smaller than twice the standard deviation (~15-20
μV) of the recording noise were not analyzed, due to the difficulty of accurately identifying low-amplitude spike
waveforms in the post-stimulation voltage traces. This led to the exclusion of parasol cells with small spikes, as
well as midget cells, the numerically dominant RGC class with greatest relevance to high-acuity vision.

Second, the results were obtained from healthy primate retinas; degenerate retinas would be more relevant for
application to epiretinal implants. Experimental and computational studies of electrical stimulation using rat
models of retinal degeneration indicate that recorded spike waveforms and stimulation thresholds do not
significantly change with degeneration (Loizos et al., 2018; Sekirnjak et al., 2009). However, other studies
employing stimulation using long pulses and large electrodes in mouse models suggest that thresholds
increase (Jensen and Rizzo, 2008; O’Hearn et al., 2006; Suzuki et al., 2004). It remains to be seen whether
the relationship between recorded spikes and activation thresholds is the same in diseased and healthy
primate retina. Additionally, the present work was also performed entirely in the peripheral retina, whereas a
clinical implant would likely be placed in the central retina.

Finally, the biophysical model (Fohlmeister et al., 2010; Fohlmeister and Miller, 1997) captured general trends
in the data, but did not quantitatively reproduce the experimental results. This discrepancy may reflect several
factors. The properties of the model cell are derived from rat ON-alpha RGCs, which may differ from primate
parasol RGCs in crucial features such as cell size and channel density, and were obtained at room
temperature (22°C), which produces slower channel kinetics than would be observed at physiological
temperatures. The model also does not distinguish between the various subtypes of sodium channels in
distinct cellular compartments (Boiko et al., 2003; Van Wart and Matthews, 2006). Additionally, the resistivities
of the retinal layers in primates is unknown, with reported measurements varying significantly (Abramian et al.,
2015; Kasi et al., 2019; Wang and Weiland, 2015). Lastly, modeling the non-deterministic nature of
extracellular activation, which presumably results from membrane voltage fluctuations caused by ion channels
and synaptic inputs, relies on patch clamp data that can be obtained reliably from RGC somas but not from
axons. For these reasons, the model was used only to confirm general trends observed in the empirical data.

Despite these limitations, inference of RGC activation properties purely from spontaneous activity has the
potential to improve the function of a future retinal implant, by wholly or partially eliminating the need to perform
calibration of a large-scale retinal interface. This is important because electrical stimulus calibration generally
requires sequential testing of each individual electrode, which is time-consuming, and more importantly is
greatly complicated by electrical artifacts, which make it difficult to identify spikes evoked by electrical
stimulation. These requirements could pose substantial technical challenges in the clinical setting, and
highlight the value of the inference approach described. A hybrid approach could entail performing full
electrical calibration only for cells with small recorded spikes, to supplement the more reliable inferred electrical
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activation curves of cells with large recorded spikes. Alternatively, initial estimates of electrical thresholds
obtained from recording alone, or using inferred sensitivity as priors in Bayesian estimation (N. Shah et al.,
2019), could be used to more quickly identify thresholds during full electrical stimulus calibration. Inference
also allows for rapid re-calibration of electrical stimulation over time, potentially compensating for small
movements of the implanted device. Furthermore, the similarity between the electrical impedance and
neuronal activation characteristics of the retina and other neural circuits (Branner et al., 2001; Hillman et al.,
2003; Rattay, 1987; Royeck et al., 2008) suggests that the ability to infer electrical activation properties from
extracellular recordings could have widespread application for implanted devices in the brain.
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Methods

Experimental setup

A custom 512-electrode system (Grosberg et al., 2017; Hottowy et al., 2012, 2008) was used to stimulate and
record from retinal ganglion cells (RGCs) in isolated rhesus macaque monkey (Macaca mulatta) retinas.
Retinas were obtained from terminally anesthetized animals euthanized during the course of research
performed by other laboratories, in accordance with institutional and national guidelines and regulations.
Ocular hemisection was performed in ambient indoor lighting following enucleation, the vitreous was removed,
and the posterior portion of the eye was stored in warm, oxygenated, bicarbonate buffered Ames’ solution
(Sigma-Aldrich) in darkness. Patches of retina ~3 mm on a side were isolated under infrared light, placed RGC
side down on the multielectrode array, and superfused with Ames solution at 35°C. Electrodes were 8-15 μm in
diameter and were electroplated with platinum. The multi-electrode array (MEA) consisted of 512 electrodes
arranged in a 16 × 32 isosceles triangular lattice with 60 μm spacing (Litke et al., 2004). Voltage recordings
were band-pass filtered between 43 and 5,000 Hz and sampled at 20 kHz. Spikes in the voltage recordings
from individual RGCs evoked by light stimulation (which produced no electrical artifacts) were identified and
sorted using previously described spike sorting techniques (Litke et al., 2004).

Visual stimulation and cell type classification
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To identify the type of each recorded cell, as well as the location and shape of the visual receptive field (RF),
the retina was visually stimulated with a dynamic, binary white noise stimulus, and the spike-triggered average
(STA) stimulus was computed for each RGC (Chichilnisky, 2001; Chichilnisky and Kalmar, 2002). The STA
summarizes the spatial, temporal, and chromatic structure of the light response. The spatial RFs and time
courses obtained from the STA were used to identify the distinct cell types, as described previously
(Chichilnisky and Kalmar, 2002; Field et al., 2007; Rhoades et al., 2019). Analyses in this study were limited to
ON and OFF parasol RGCs, because spikes recorded from those cell types had high amplitudes that allowed
for relatively fast, reliable electrical spike sorting (see below).

Electrical image (EI) computation

An electrical signature for each neuron on the array was obtained by computing the electrical image (or EI)
(Litke et al., 2004). The EI of each cell (e.g. Fig. 1A) represents the average spatiotemporal pattern of voltage
deflections produced on each electrode of the array during a spike from a given cell. A minority (~3%) of spike
clusters identified during spike sorting erroneously merged two different cells, and were excluded from analysis
based on visual inspection. The remaining cells were used for subsequent analyses if their EIs featured spike
amplitudes greater than twice the standard deviation of the recorded voltage trace (i.e. the electrical recording
noise) at a minimum of three recording electrodes.

Identifying cellular compartments and landmarks

As observed previously (Litke et al., 2004; Müller et al., 2015), the biophysical properties of somas, axons, and
dendrites cause the spike waveforms recorded on MEA electrodes overlying each subcellular compartment to
have distinct shapes (Fig. 1A, top row). Compartments were identified at each EI electrode in two steps. First,
waveforms with a larger positive phase than negative phase were labeled as dendrites. Second, the
waveforms at remaining electrodes were identified as somatic, mixed, or axonal, based on the ratio of the first
positive peak to the second positive peak. Thresholds for each respective compartment were determined by
two empirically observed inflection points (0.06 and 1.32 respectively) in the cumulative distribution of  ratios--
across tens of thousands of spike waveforms obtained from thousands of recorded parasol cells.

The identification of the cellular compartment at each electrode allowed for the estimation of two morphological
landmarks for each RGC used in several analyses. The location of each RGC soma was estimated by taking
the centroid of all identified somatic electrodes, weighted by the negative peak amplitude recorded on each
electrode. The orientation of the axon was determined by computing a vector from the soma centroid to the
nearest axonal electrode more than 180 μm away. The axonal-initial-segment (AIS) location was assumed to
be 13 μm along this vector from the soma centroid (Sekirnjak et al., 2008). The axon midline was estimated by
conducting amplitude-weighted fitting of a 3rd degree polynomial spline to all identified axonal electrodes.

Electrical stimulation and spike sorting

Electrical stimuli consisted of triphasic current waveforms consisting of a cathodal phase flanked by two anodal
charge-balancing pulses, with relative amplitudes 2:-3:1. Each phase was 50 μs in duration. The shape of the
triphasic pulse was chosen to minimize the recorded electrical stimulation artifact (Hottowy et al., 2012). At
each of the 512 electrodes on the MEA, triphasic pulses with thirty-nine stimulating-phase amplitudes
increasing from 0.1 to 4.1 μA in 10% increments were delivered 25 to 50 times each. Spikes were elicited with
sub-millisecond temporal precision (Jepson et al., 2013) by directly depolarizing the cell, as shown by synaptic
transmission blockade (Sekirnjak et al., 2006). A semi-automated method was used to subtract electrical
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artifacts from the raw post-stimulation data and assign spikes to cells using waveform templates derived from
their EIs, as described previously (Jepson et al., 2013; Mena et al., 2017). To enable accurate spike
assignment, at each electrode, only cells with recorded spike amplitudes of at least 50 µV were analyzed,
because spikes with lower amplitudes were difficult to distinguish from background electrode noise. Stimulation
amplitudes above axon bundle activation thresholds, which were estimated at each electrode using a
previously described method (Tandon et al., 2021), were not analyzed in order to avoid potential off-array RGC
activation. For each stimulus amplitude, the evoked spike probability was computed across repeats. The
dependence of spike probability on stimulation current amplitude was modeled by a sigmoidal relationship:

where a is the current amplitude, p(a) is the spike probability, and k and b are free parameters. Fitted sigmoidal
curves were used to compute the activation threshold (b), defined as the current amplitude that elicits a spike
with 50% probability, and activation slope (k). All fitted curves were manually inspected for goodness of fit, and
a small minority (~5%) were discarded due to either overfitting on spuriously identified spikes, or mistaken
assignment of spikes to neighboring cells.

Retinal preparation, cell, and activation curve selection

Of 53 total preparations from 50 different macaque retinas, 23 were included. In these preparations, the
excised segment of retina covered more than 80% of the electrodes on the array, and the population RGC
firing rate exhibited variance less than 20% of the mean. Only somatic and axonal cell-electrode pairs
recording spikes greater than 50 µV, with activation curve thresholds less than both the bundle threshold on
that electrode, which accounted for  ~80% of electrodes unable to be analyzed, and the upper current limit of
the stimulation range (4 µV) were considered for analysis. Based on these criteria, 246 cell-electrode pairs
from 59 ON and 43 OFF parasol cells were analyzed.

Derivation and fitting of inference relations

The relationship between activation threshold and recorded spike amplitude, and the relationship between
activation curve slope and threshold, were both modeled as inverse functions of the form .𝑓(𝑥) =  𝑎

(𝑥−𝑐) + 𝑏

This functional form was chosen based on theoretical predictions from the literature (Rattay and Wenger,
2010), and the observation that normalizing sigmoidal activation curves by their thresholds resulted in curves
with similar slopes within each cellular compartment. Inverse functions for each activation curve parameter
were fitted by maximizing the log-likelihood of the evoked spike probability data.

Simulated image reconstruction

Simulation of perceived images resulting from application of stimulating current pulses, and selection of optimal
electrical stimuli, were based on previous work (Shah et al., 2019) and consisted of several steps.

First, the contribution of RGC activity to visual perception was estimated in each of three retinal preparations,
assuming that perception represents an optimal linear reconstruction of the stimulus from the RGC responses
(Brackbill et al., 2020; Warland et al., 1997). Optimal linear reconstruction was examined by simulating the
response of each cell to 10,000 12x6 random black and white noise training images, based on the
spatiotemporal STA (see above), and then computing reconstruction filters from the simulated responses for
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each cell as follows. The simulated nonnegative response to each training image was estimated by taking the
inner product of the STA and that image, and rectifying the result. Then, the reconstruction filter was obtained
by performing least squares regression of the simulated responses against the set of training stimuli.

Next, for each of 15 randomly generated 12x6 black and white images, 40 electrical stimuli were chosen to
(approximately) produce an appropriate neural response in each retinal preparation. Each stimulus consisted
of a particular current amplitude on a particular electrode and produced spikes with probabilities from 0 to 1 in
one or more RGCs, estimated using either measured, inferred, or fixed activation curves. The fixed curve was
assumed using parameters of 1.2 μA for threshold and 12.1 μA-1 for slope, obtained by averaging across all
measured responses to electrical stimulation in 53 preparations (see Fig. 4 B-G). For each type of activation
curve, stimuli were chosen so that the sum of their presumed contributions to perception, based on the linear
reconstruction filters weighted by the expected response, minimized the normalized mean squared error
(NMSE) between the stimulus and reconstructed image. Normalization was relative to the highest achievable
mean-squared error across images and retinas, for ease of interpretation. The number of electrical stimuli (40)
was empirically determined as the value beyond which, on average, reconstruction using inferred activation
curves no longer reduced the NMSE.

To quantify the effectiveness of using inferred over fixed activation curves for image reconstruction, NMSE
values of reconstructed images based on the three curve types were collected for each retinal preparation and
target image. Then, NMSEs for inferred and measured activation curves were compared to NMSEs for fixed
curves (see Fig. 6B). Across preparations and targets, systematic deviations from the x=y line, which
corresponds to using the fixed curve, were captured by slopes obtained from linear regression. Finally, the
overall value of performing reconstruction with inferred activation curves was given by |(sm - si)/(sm - 1)|, where
sm is the slope obtained with measured activation curves and si is the slope obtained with inference.

Biophysical simulations

RGC simulation was conducted using the NEURON software package (Hines and Carnevale, 2001) to create a
model cell featuring five ion channel types, along with an extracellular stimulation mechanism, with an
integration timestep of 0.001 ms. The properties of the model RGC were based on ion channel densities and
compartment sizes adapted from voltage-clamp and morphology measurements of rat ON-alpha RGCs
(Fohlmeister et al., 1990; Fohlmeister and Miller, 1997). Slight modifications to the original model geometry
were made to increase resemblance to macaque peripheral parasol RGCs, guided by previous measurements
(Grosberg et al., 2017; Jeng et al., 2011; Peterson and Dacey, 1998; Watanabe and Rodieck, 1989). These
included eliminating the axonal narrow segment, increasing the thickness of the axon, and introducing a bend
in the axon hillock (see Fig. 5A). The final model consisted of a spherical soma with a diameter of 20 μm, an
axon hillock with a diameter of 4.5 μm, and a distal axon with a diameter of 2 μm. For this simulation, the
dendritic compartment was excluded.

The extracellular environment was assumed to be an isotropic, uniform medium with a linear resistivity of 0.5
kOhm-cm (Kasi et al., 2019). Extracellular stimulation was conducted with a collection of simulated
point-electrodes located at a retinal depth of 20 μm relative to the axon, at 60 μm intervals along the length of
the soma and axon (see Fig. 5A). Post-stimulation voltages resulting from simulated action potential currents in
the model cell were measured at each electrode location. At one somatic and one axonal electrode, the
baseline resistivity of the extracellular medium was varied from 125 to 875 kOhm-cm (±75% of the baseline
resistivity of the medium) to simulate various effective distances from the cell. Stimulus waveforms consisted of
triphasic current pulses with shapes and amplitudes matching those used in ex vivo experiments (see above).
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The non-deterministic nature of extracellular stimulation putatively arises from stochastic membrane voltage
fluctuations, caused by a combination of rapid ion channel state changes and synaptic inputs. To approximate
these fluctuations, random voltages drawn from a Gaussian distribution with a mean of 0 mV and a standard
deviation of 2 mV, based on empirically observed electrical noise levels (F. Rieke, personal communication),
were added to the membrane voltage of each model segment, at intervals of 0.1 ms.

The robustness of qualitative trends resulting from simulation was confirmed by varying model parameters. Ion
channel densities and diameters were scaled ±75% across all segments without affecting the direction of the
trends. Varying the retinal depth of the electrodes from 10 μm (closer than which stimulation was not possible)
to 100 μm also preserved trends. .
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