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Abstract

Despite recent advances in inferring cellular dynamics using single-cell RNA-seq data, existing tra-
jectory inference (TI) methods face difficulty in accurately reconstructing cell-state manifold and
inferring trajectory and cell fate plasticity for complex topologies. We present MARGARET, a
novel TI method that utilizes a deep unsupervised metric learning-based approach for inferring
the cellular embeddings and employs a novel measure of connectivity between cell clusters and a
graph-partitioning approach to reconstruct complex trajectory topologies. MARGARET utilizes
the inferred trajectory for determining terminal states and inferring cell-fate plasticity using a
scalable absorbing Markov Chain model. On a diverse simulated benchmark, MARGARET out-
performed state-of-the-art methods in recovering global topology and cell pseudotime ordering.
When applied to experimental datasets from hematopoiesis, embryogenesis, and colon differenti-
ation, MARGARET reconstructed major lineages and associated gene expression trends, better
characterized key branching events and transitional cell types, and identified novel cell types, and
branching events that were previously uncharacterized.
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1 Introduction

Dynamic cellular processes such as differentiation involve cell-state transitions that are character-

ized by cascades of epigenetic and transcriptional changes (1; 2). High-throughput single-cell RNA

sequencing (scRNA-seq) datasets allow us to identify cellular identities at a single-cell resolution

(3; 4) and thus can be utilized for elucidating the cellular heterogeneity of a dynamic cellular process

and tracking cell fate decisions in normal as well as pathological development (5). Despite recent

advances (6; 7) in inferring cellular dynamics from the underlying developmental process, existing

computational trajectory inference (TI) methods (8; 9; 7; 10; 11) face several critical challenges.

First, most TI methods have largely overlooked the importance of dimensionality reduction by

focusing more on trajectory modelling and relying on generalized dimension reduction techniques

such as UMAP (12), local linear embedding (11), or diffusion maps (9) which may obscure the

identification of some intermediate cell states. Second, most TI methods impose strong assump-

tions on the topology of the trajectory and cannot generalize to disconnected or hybrid topologies

without imposing further restrictions (13). Third, while Palantir introduced a Markov chain model

to quantify the plasticity of cell fates along a trajectory, it predominantly assumes a connected tra-

jectory and cannot generalize to disconnected trajectories. Lastly, accurate detection of terminal

cell states remain difficult as only a few methods (e.g., Slingshot (10), Palantir (9), Monocle3 (7))

can automatically identify cell fates (Supplementary Table 1).

To overcome these challenges, we developed MARGARET (Metric leARned Graph pARtitionEd

Trajectory), a graph-based TI method that employs an unsupervised metric learning-based ap-

proach for inferring the cell-state manifold where the distinct cell states are represented by compact

cell clusters. To capture complex trajectory topologies, MARGARET employs the inferred cellular

embeddings and the cell clusters to construct a cluster connectivity graph by using a novel measure

of connectivity between cell clusters. The cluster connectivity graph is used in conjunction with the

cell-nearest-neighbor graph to compute a pseudotime ordering of cells. To identify terminal states

in the trajectory, MARGARET introduces a shortest-path betweenness-based measure. Using a

novel algorithm that computes the probability for a cell to differentiate into each terminal state,

MARGARET also quantifies the cell fate plasticity on the inferred trajectory by adopting and

refining the absorbing Markov chain model of Palantir.
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We validate the performance of MARGARET in trajectory inference and cell-fate prediction

across a variety of synthetic and experimental scRNA-seq datasets. For simulated datasets (13)

consisting of diverse topologies, MARGARET outperformed state-of-the-art TI methods both in

terms of capturing the global topology and recovering the underlying pseudotime ordering. When

applied to real biological datasets (9; 14; 15) representing human hematopoiesis, embryogenesis and

colon differentiation, MARGARET accurately identified all major lineages along a pseudotemporal

order that epitomized the expression trends of canonical cell-type markers in these processes. In

hematopoiesis, MARGARET helped identify transitional progenitors associated with key branching

events, which were also characterized by a drastic shift in MARGARET inferred cell-fate plastic-

ity. For embryoid body differentiation, MARGARET helped identify and functionally characterize

novel precursor populations. For colon differentiation, MARGARET characterized the lineage for

BEST4/OTOP2 cells and the heterogeneity in goblet cell lineage in normal colon and inflamed

ulcerative colitis.

Results

Overview of MARGARET

The overall framework of MARGARET consists of learning a lower-dimensional cell-state manifold

from preprocessed scRNA-seq data (N cells) and inferring the underlying developmental trajectory

by learning a cluster connectivity graph over the reduced-space cell-state embedding.

MARGARET uses an unsupervised metric learning-based approach (Fig. 1a, Methods) for

learning a cell-state manifold where compact cell clusters represent the distinct cell states. Since

the cluster assignment for the cells are unknown apriori, we compute an initial clustering of the

data using an initial embedding (e.g., PCA). The initial embedding is episodically refined by a

non-linear mapping network and minimizing the Triplet-Margin loss (Methods) for all the cells.

The episodic training algorithm ultimately infers the lower-dimensional cell-state embedding (Mf )

where cells are also partitioned into clusters. Given a refined partition of cells y∗, MARGARET

employs a novel measure of connectivity (Methods) between cell clusters to construct an undirected

graph U over y∗ (Fig. 1b) to model the connected and disconnected regions in the manifold. Using

Mf , we first compute the k-nearest-neighbor (kNN) graph G , which is then used to estimate
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the connectivity between clusters given the partition y∗. The spurious edges in G resulting from

dropouts and artifacts in scRNA-seq data are pruned by using U as a reference model (Fig. 1c,

Methods). Given user-defined start cell(s), the pruned nearest-neighbor graph G ∗ is then used to

compute a robust estimate of pseudotime for each cell by computing the shortest path of each cell

from the start cell(s). The final trajectory (T ) is then obtained by orienting the edges from the

clusters with smaller average pseudotime to the ones with higher average pseudotime.

MARGARET then uses the refined cell embeddings, refined cell clusters and the cluster con-

nectivity graph for downstream analysis including the prediction of terminal states, computation

of cell branch probabilities, and differentiation potential (Supplementary Fig. 1, Methods). MAR-

GARET employs a shortest-path betweenness-based measure (Methods) for identifying nodes in T

as terminal states (Supplementary Fig. 1a, Methods). Finally, MARGARET also encompasses a

novel algorithm for calculating the cellular differentiation potential (DP) that adopts the absorbing

Markov chain model of cellular differentiation from Palantir (9) and generalizes it for disconnected

trajectories.

MARGARET outperforms other TI methods on a diverse simulated benchmark

We benchmarked MARGARET’s performance on a variety of synthetic datasets (Methods) consist-

ing of multifurcating and disconnected trajectories (with multifurcating components)(Supplementary

Table 3) against state-of-the-art TI methods Partition-Based Graph Abstraction (PAGA) (16),

Palantir (9), and Monocle3 (7).

A qualitative comparison (Fig. 2a-b) of the trajectories inferred by the algorithms showed that

for the disconnected dataset, Palantir failed to capture the disconnected components (Fig. 2b),

PAGA and Monocle3 captured the disconnected topology but underestimated the number of clus-

ters in each disconnected component. For the multifurcating dataset, PAGA and Palantir failed

to capture the correct branching topology, whereas Monocle3 failed to recover the global topology

as it inferred the overall trajectory as two separate components (Fig. 2b). In contrast, MAR-

GARET outperformed other methods on these datasets by accurately recovering the underlying

global topology without over/under clustering in the embedding space.

For quantitative benchmarking, first we assessed a TI method’s ability in recovering the under-

lying global topology of cells by evaluating the Ipsen-Mikhailov (IM) distance (Methods) between
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the ground truth and the inferred trajectory graph. Two trajectories (represented as graphs) were

compared using the ‘network of milestones’ representation framework (13). Since among the state-

of-the-art methods, only PAGA-inferred trajectories can be represented using this framework, we

compared the accuracy of global topology inference only against PAGA. On this task, MARGARET

outperformed PAGA on all the disconnected-trajectory datasets and most of the multifurcating-

trajectory benchmarks (Fig. 2c). Overall, MARGARET exhibited superior performance on the

global topology prediction task compared to PAGA across a range of clustering methods and reso-

lutions (Supplementary Fig. 2a-b).

Next, we evaluated the TI methods’ accuracy in recovering the pseudotime ordering of cells by

computing the Kendall’s Tau (KT) and the Spearman Rank (SR) correlation (Methods) between

the ground truth and the inferred ordering. On the multifurcating benchmark, PAGA and Monocle3

failed to capture the underlying ordering of cells, with Monocle3 consistently showing negative KT

correlation across most of the datasets (Fig. 2d). Palantir performed better than PAGA and

Monocle3 on the multifurcating benchmark. However, Palantir and PAGA performed much worse

on the disconnected-trajectory benchmark, with Monocle3 performing comparably better. Across

both the benchmarks, MARGARET outperformed other methods on most of the datasets across

both Louvain and Leiden clustering (Fig. 2d; Supplementary Fig. 3; Supplementary Table 2).

Even across different clustering resolutions, MARGARET consistently exhibited high KT and SR

scores on the simulated benchmark (Supplementary Fig. 2c-d).

MARGARET was also able to capture the global cyclic topology for a synthetic cyclic trajec-

tory (Supplementary Note 1, Supplementary Fig. 4). Finally, the DP inference by MARGARET

was superior to that of Palantir for disconnected trajectories indicating the applicability of MAR-

GARET’s DP inference to a wider variety of trajectories (Supplementary Note 1, Supplementary

Fig. 5).

MARGARET learns modular clusters and refines other single-cell embeddings

For two scRNA-seq human hematopoiesis datasets (9), MARGARET consistently learned cluster

representations whose modularity score improved in each episode across Louvain and Leiden clus-

tering backends (Supplementary Note 2, Supplementary Fig. 6). By applying MARGARET on

four biological datasets with available ground-truth clustering annotations (Methods), we found
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that MARGARET was able to improve the clustering quality (as measured by adjusted rand index

(ARI) and normalized mutual information (NMI) metrics) of the single-cell embeddings learned by

PCA and scVI (17) (Supplementary Note 2, Supplementary Fig. 7).

MARGARET correctly predicts human hematopoietic differentiation trajectory

and associated gene expression changes

Due to the availability of established lineage-specific markers, hematopoiesis (18) has been used

as a model biological system by several trajectory inference methods (19; 20; 9). Using MAR-

GARET, we first explored early human hematopoiesis where hematopoietic stem cells (HSCs),

through a hierarchy of progenitors and bifurcation events, give rise to different mature cell types

(18). We applied MARGARET to two human bone marrow scRNA-seq datasets (10X Chromium)

(9) (replicates 1 and 2 consisting of 5780 and 6501 cells respectively). For both datasets, MAR-

GARET correctly identified all major hematopoietic cell types, including hematopoietic stem cells

(HSCs), common lymphoid and myeloid progenitors (CLPs and CMPs respectively), as well as

cells committed towards erythroid (erythrocytes and megakaryocytes), monocytic and dendritic

cell (classical and plasmacytoid dendritic cells (cDCs and pDCs)) lineages (Fig. 3a, Supplementary

Fig. 8a). The cell type clusters inferred by MARGARET were characterized by the expression of

key marker genes, obtained by manually curating a set of marker genes for major hematopoietic

cell types through prior literature review (9; 21; 22; 23) (Fig. 3d, Supplementary Fig. 8f, 9). The

expression of the marker genes corresponding to major hematopoietic cell types correlated well

with the topology of the MARGARET inferred trajectory (Supplementary Fig. 10). We utilized

the starting cell information provided by (9) for pseudotime inference (Fig. 3b, Supplementary Fig.

8c). For both replicates, MARGARET inferred pseudotime follows expected progression, where the

pseudotime increases as cells progress towards more specialized cell types from CD34 enriched stem

cells. Moreover, the probability of cells branching to different lineages diminishes as cells commit

towards specific lineages (Supplementary Figs. 11-13). Consequently, as expected, MARGARET

inferred DP (Fig. 3c, Supplementary Fig. 8b) decreases as we move towards terminal states in the

trajectory since commitment towards a specific lineage is accompanied by a gradual reduction in

cell plasticity. Fig. 3e and Supplementary Fig. 8d represent the annotated hematopoietic trajectory

inferred by MARGARET for the two replicates, where the arrows represent transition between cell
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types.

To validate MARGARET inferred trajectories, we computed expression trends for essential

marker genes for all major hematopoietic lineages (Fig. 3f). As expected, expression of CD34 de-

creases with increasing pseudotime as cells commit to particular lineages (18). In contrast, CD79B

is selectively upregulated in the lymphoid lineage (24) while MPO and IRF8 are upregulated

in the monocyte (25) and dendritic cell (DC) (26) lineages, respectively. ITGA2B and GATA1

are selectively upregulated in the megakaryocytic (27) and erythroid (28) lineages, respectively.

Similar expression trends were observed for replicate 2 demonstrating MARGARET’s robustness

(Supplementary Fig. 8e).

MARGARET characterized progenitor populations for monocytic and dendritic

cell lineages

Interestingly, we observed an initial upregulation in MPO expression in both the monocyte and DC

lineages (Fig. 3f). However, with pseudotime progression, MPO expression is upregulated in the

monocyte lineage but gets downregulated in the DC lineage. To explore the branching of monocyte

and DC lineages from CMPs in replicate 1, we investigated the transitions from cluster 10 to cluster

4 and cluster 10 to cluster 5 that are also associated with substantial changes in DP indicating that

these transitions accompany important molecular events corresponding to lineage commitment

(9). At the transition from CMPs to monocytes, we observed elevated expressions of monocyte

markers ((21)) including CEBPA, and CEBPE (Fig. 3d,h (top), Fig. 4a), which correlated with a

decrease in DP. The transcription factor (TF) CEBPA plays a crucial role in cell fate decisions in

granulocyte-monocyte progenitors (GMPs) (29; 30) to differentiate into granulocyte and monocyte

(21). Apart from elevated expression of CEBPE and monocyte markers MPO, LYZ, and MS4A6A

(22), the monocyte clusters also strongly expressed granule genes such as CTSG, PRTN3 and

ELANE (Fig. 3d), each of which were also highly correlated (> 0.92) with the MARGARET

inferred monocytic branch probabilities (Fig. 4c). Monocytes derived from granulocyte-monocyte

progenitors (GMPs) are known to express these granule proteases (31). Therefore, expression of

CEBPA, CEBPE, and granule proteases and reduced FLT3 expression in cluster 5 (Fig. 4a (left))

indicates the presence of GMPs in cluster 5 (31). We also observed similar trends for replicate 2

(Supplementary Fig. 14).
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In contrast, we observed elevated expressions of FLT3 in cluster 4 (Fig. 4a (right)) which also

correlated with a decrease in DP on the transition from cluster 10 (FLT3+ CMP) to cluster 4.

Moreover, this cluster showed elevated expression of CSF1R (CD115 ), dendritic cell marker ITGAX

(CD11c) (Fig. 4b), and MPO (Fig. 3d). Altogether, the FLT3+CD115hi signature of this cluster

suggests the presence of monocyte-dendritic dell progenitors (MDPs) in cluster 4 which gives rise

to both monocytes and dendritic cells (31). Therefore, MARGARET inferred branching structure

in the myeloid lineage characterized the differentiation of monocytes and dendritic cells from GMPs

and MDPs respectively and these important events were also marked by a decrease in MARGARET

inferred DP. These progenitor populations and their lineage branchings were not characterized in

the original study (9) that used Palantir.

We further characterized the heterogeneity in the DC lineage using MARGARET where it iden-

tified the cDCs and pDCs as the terminal states (Fig. 4d-g, Supplementary Note 3). Furthermore,

the cDC population was found to consist of mostly type 2 conventional dendritic cells (cDC2)

as marked by elevated expression of TFs NR4A3, SREBF2 and marker genes CLEC10A, CD1E,

CLEC12A, CX3CR1 (32). The DP change also characterized the branching point in the erythroid

lineage where we identified the presence of megakaryocyte-erythroid progenitors (MEPs) in cluster

15 (Supplementary Note 3, Supplementary Figs. 15-16).

MARGARET accurately uncovers the differentiation landscape in embryoid bod-

ies

To investigate MARGARET’s ability in extracting novel insights from a complex biological system,

we applied MARGARET to an scRNA-seq dataset generated from embryoid bodies (EB) (14),

which recapitulates the differentiation process in early embryogenesis where pluripotent embryonic

stem cells (ESCs) give rise to early lineage precursors. The dataset consisted of 16821 cells, sampled

at 3-d intervals over a 27-d differentiation time course (14). Even though the sampling time

information was not utilized to learn the cell-state manifold, MARGARET inferred embedding

consisting of 26 clusters (Fig. 5a) retained the time trend accurately (Fig. 5b), thus preserving the

global topology of the data. Based on expression of marker genes (14) (Fig. 5d, Supplementary

Fig. 17a) and gene ontology (GO) analysis (Methods, Supplementary Table 4), we identified

endoderm (EN), mesoderm (ME), neural crest (NC), neuroectoderm (NE), and neuronal subtypes

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465455doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465455
http://creativecommons.org/licenses/by-nc-nd/4.0/


(NS) (including neural progenitors (NP)) lineages along with ESCs in the data (Supplementary

Fig. 18). Moreover, MARGARET inferred pseudotime (Fig. 5c) and DP followed the progression

of cell types where decrease in DP was concordant with the major lineage commitments in EB

differentiation (Supplementary Note 4, Supplementary Figs. 19-21). The lineage specification map

of embryoid bodies inferred by MARGARET (Fig. 5e) was characterized by the expression trends

of key marker genes for the terminal cell types (Fig. 5f, Supplementary Note 4).

In the ectodermal lineage, similar to (14), MARGARET was able to identify the bipotent pre-

cursors (cluster 9 expressing HOXA2, HOXB1 and OLIG3 (Fig. 5d)) that originated from the

neuroectoderm cells expressing GBX2 and bifurcated from cluster 9 into the neural crest and

neuronal sub-lineages (Fig. 5e). Further characterization of this branching revealed correlation

between a decrease in MARGARET inferred DP and the up/down regulation of important TFs

in the neural crest and neuronal lineages (Supplementary Fig. 22). The DP drop in the neural

crest lineage was concordant with the upregulation of canonical TFs SOX9/10 (33; 34) (Fig. 5d,f,

Supplementary Fig. 22a,b (right)) while neuronal-subtype cluster 3 exhibited upregulation of TFs

SOX1 and LHX2 (Fig. 5d, Supplementary Fig. 22a,b (left)), which have been shown to be impor-

tant for subtype specification in certain types of neurons (35; 36). GO analysis at finer resolution

(Fig. 5g, Supplementary Table 5) also revealed the enrichment of both neural crest and neuronal

differentiation-related functions in cluster 9 further validating its bi-potency. We further validated

the neural crest sub-branch detected by MARGARET using the bulk RNA-seq data provided by

(14) for FACS purified CD49d+CD63− cells (Supplementary Fig. 23a, Supplementary Note 4).

In the mesoderm lineage, MARGARET trajectory (Fig. 5e) identified a series of intermedi-

ate precursors expressing (CER1, GATA1 ), (GATA6, HOXB4 ) and (GATA5/6, HAND1 ), re-

spectively which finally gave rise to cardiac precursors (expressing TNNT2 ). Bulk-RNA analysis

for FACS purified CD82+CD142+ cells revealed the highest correlation of the single-cell expres-

sion profiles in the mesoderm sub-lineage harboring cardiac precursors (cells with high CD82 and

CD142 expressions) (Supplementary Fig. 23b), suggesting that MARGARET accurately detects

this sub-lineage. Moreover, we found three types of smooth muscle precursors (SMPs) which ex-

pressed different markers (SIX2, PRRX2, and TBX15/18 ) suggesting that SMP differentiation in

the mesoderm lineage proceeds via one or more differentiation intermediates from plate ME cells.

Thus, MARGARET accurately resolved the underlying trajectory structure in the EB dataset by
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inferring branchings and intermediate cell populations essential for cell lineage commitment in early

embryogenesis.

MARGARET elucidates colon differentiation

To investigate colonic epithelial differentiation, we applied MARGARET to a scRNA-seq dataset

comprising three conditions - healthy (4249 cells), clinically inflamed ulcerative colitis (UC) (2848

cells), and non-inflamed UC (4078 cells) across three replicates (15). For the healthy colon

(Fig. 6), MARGARET accurately localized the absorptive and secretory cell lineages from the data

(Fig. 6a,d,f) while also identifying absorptive progenitors, colonocytes, crypt-top (CT) colonocytes,

and BEST4/OTOP2 cells in the absorptive lineage; and secretory progenitors, goblet cells, and en-

teroendocrine cells (EECs) in the secretory lineage (Fig. 6e, more details in Supplementary Note 5).

MARGARET inferred branch probabilities (Supplementary Fig. 24) and gene expression trends

(Fig. 6h) further validated the cell populations.

In the absorptive cell lineage, BEST4/OTOP2 cells were detected as a terminal state that

branched from the absorptive progenitors (APs) before they gave rise to colonocytes. GO analy-

sis of absorptive lineage clusters revealed the role of BEST4/OTOP2 cells in maintaining metal-

ion transport and homeostasis in the colonic epithelium (Fig. 6g). Notably, GO terms for the

BEST4/OTOP2 cell cluster did not include any overlapping terms with CT colonocytes and colono-

cytes, suggesting the functional variability between these cell types. However, BEST4/OTOP2 cells

exhibited high CA scores (Fig. 6d) and expressed colonocyte-specific markers GUCA2A, CEA-

CAM1, and CEACAM7, which suggests their similarity to mature colonocytes and localization

towards the crypt top. Moreover, APs showed enrichment of GO terms corresponding to both

BEST4 cells and colonocytes (Fig. 6g). The branching of BEST4/OTOP2 cells was also marked by

the downregulation of the TF ESRRA and the high expression of TFs CDX1 and PPARG (Fig. 6i).

We observed a similar branching in the absorptive lineage under non-inflamed UC (Supplementary

Fig. 25) with similar GO enrichment for major absorptive cell types. Therefore, our findings suggest

that BEST4/OTOP2 cells are mature colonocytes with a different functional profile as compared

to CT colonocytes and originate from APs as a different sub-lineage within the absorptive lineage.

Given the crucial role of goblet cells in colonic barrier maintenance (37), we further characterized

the transcriptional landscape of the goblet cell lineages under healthy and inflamed UC conditions
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using MARGARET (Supplementary Fig. 26). Under both conditions, MARGARET reconstructed

a linear trajectory in the goblet cell lineage from immature goblet cells to mature goblet cells

(Supplementary Fig. 26g,h) (maturity of cells indicated by pseudotime order (Supplementary

Fig. 26c,f)). We observed relatively higher expression levels of WFDC2 in immature goblet cells

than in mature goblet cells under both healthy and inflamed conditions. In contrast, MUC2 was

more expressed in mature goblet cells (Supplementary Fig. 26i). Moreover, mature goblet cells

had higher CA scores than immature goblet cells, suggesting that these cells reside towards crypt

top (Supplementary Fig 26b,e). The functional characterization (Supplementary Fig. 26j) of the

goblet cell clusters revealed the enrichment of GO terms related to wound healing, immune, and

stress response in the mature goblet cells under inflamed UC condition indicating their potential

role in inflammatory responses to inflammatory bowel disease (IBD). The goblet cells in inflamed

UC further showed spatial and crypt-wide transcriptional heterogeneity. The mature goblets in

inflamed UC showed elevated expressions of SPINK1 and SPINK4 (Supplementary Fig. 27a),

genes that are normally expressed by immature goblets in healthy colon. Moreover, we also observed

transcriptional dysregulation of interferon-regulated cytokines including CD164, CD55, and IRF7

(38) throughout the goblet cell lineage in inflamed UC (Supplementary Fig. 27b).

Discussion

As single-cell datasets grow in size and complexity, MARGARET addresses the need for the accu-

rate detection of cell-state lineages, prediction of cell fates, and the inference of cell plasticity in

complex topologies underlying dynamic cellular processes. The end-to-end computational frame-

work of MARGARET alleviates the challenges faced by existing TI methods: inability of the

classical dimensionality reduction methods to accurately recover the underlying topology, insuf-

ficient generalizability to connected and disconnected graph trajectories beyond tree-structured

topologies, accurate detection of less-sampled cell fates, and inference of cell fate plasticity for

complex trajectory types. Our analysis of a diverse simulated benchmark consisting of challenging

topologies showed that MARGARET generalizes to complex trajectories and can accurately infer

the underlying topology and pseudotime order of cells in the trajectory while outperforming state-

of-the-art methods on the same. Moreover, using synthetic disconnected trajectories, we showed
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that MARGARET can accurately infer DP for each component in the disconnected trajectories

whereas Palantir’s DP inference is mostly incorrect for such datasets. (Supplementary Fig. 5).

Using multiple biological datasets, we also showed that MARGARET’s metric learning-based

approach can refine the cellular latent space inferred by other dimensionality reduction methods.

On a variety of important biological systems, we showed that MARGARET identified all the major

lineages and the established cell fates and recovered the marker gene expression trends. In early

human hematopoiesis, MARGARET identified progenitor populations associated with the branch-

ing points (MDP and GMP in the myeloid and MEP in the erythroid lineages respectively) which

were not characterized in the original study that used Palantir. MARGARET also identified cDC2

as a terminal state in the dendritic cell lineage along with pDCs. For embryoid body differentia-

tion, MARGARET reconstructed a detailed lineage map of all major and sub-lineages and further

validated the presence of novel differentiation intermediates in the neuroectoderm and mesoderm

lineages and identified novel smooth muscle precursor populations. For colonic epithelial differen-

tiation, MARGARET helped identify a branch point for BEST4/OTOP2 cells in the absorptive

lineage, while also uncovering the dysregulation of essential marker genes and cytokines in goblet

cells under the inflamed UC condition.

Similar to other pseudotime methods, MARGARET assumes unidirectional cell differentiation

where immature stem cells differentiate into more mature cell types. This assumption is violated for

trans-differentiation and de-differentiation, events that can lead to ancestral cell-states and scRNA-

seq data alone might be insufficient in characterizing such events (9). Recently, (39; 40) utilized

naturally occurring somatic mutations for lineage tracing. It would be an interesting direction

to extend MARGARET by incorporating auxiliary signals like lineage information and real-time

information for elucidating reprogramming. Lastly, while we focus on scRNA-seq datasets in this

study, it is worth noting that our framework can easily be extended for other single-cell omics as well

as multi-omics datasets. The modular structure of our method also allows for effortless integration

with other dimension reduction and omics-integration methods. Given the explosion of single-cell

datasets fuelled by collaborative efforts such as Human Cell Atlas (HCA) project (41) and Human

Biomolecular Atlas Program (HubMAP) (42), we anticipate MARGARET to be a valuable tool

for multifaceted exploration of dynamic cellular processes from varied biological systems.
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Methods

Preprocessing scRNA-seq data

We downloaded the filtered, normalized and log-transformed count matrices for early Human

Hematopoiesis datasets (replicates 1 and 2) provided by (9) (see Data Availability). Pre-processed

replicate 1 consisted of 5780 cells and 14651 genes while replicate 2 consisted of 6501 cells and

14913 genes. For each replicate, we performed imputation using MAGIC (43), and then computed

300 dimensional PCA embeddings on the imputed data as suggested in (9). For the embryoid body

(EB) dataset, we downloaded the filtered, normalized and square-root transformed count matrix as

provided in (14) (see Data Availability). The EB dataset consisted of 16821 cells and 17845 genes.

We then performed initial denoising on the dataset to extract 50 dimensional PCA embeddings as

performed in (14). For studying the epithelial differentiation in early intestinal development, we

downloaded the filtered, normalized and log-transformed count matrix provided by (44). Top 2000

highly variable genes were identified in this dataset and then PCA was performed to compute 300-

dimensional embeddings, which were used for further analysis. All preprocessing was performed

using Scanpy (8).

MARGARET Overview

The overall framework of MARGARET consists of two main steps: inferring the lower-dimensional

cell-state manifold using preprocessed data and trajectory modelling.

Inference of Lower-dimensional Cell-state Manifold

For inferring the cell-state manifold, Given preprocessed scRNA-seq data, we propose an unsu-

pervised metric-learning-based approach to learn a meaningful lower-dimensional representation of

each cell in the scRNA-seq dataset (see Fig. 1a). The central idea is to learn a non-linear manifold

over cell representations such that the cells which belong to the same cell type (cluster) are packed

compactly while the cells belonging to different clusters are far apart in the manifold. The key

steps of our proposed approach are as follows:

1. Computing initial clusters: Given the preprocessed scRNA-seq data with N cells and an

initial embedding of dimension D, we perform initial clustering on the data. The cluster label
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assigned to each cell is then treated as a pseudo-label, which is used in subsequent steps. The

pseudo-labelled dataset is denoted as DPL = {(xi, yi)}Ni=1, where the pair (xi, yi) represents

the initial embedding and the pseudo-label of the ith cell in the dataset respectively. It is

worth noting that the choice of the clustering method in this step can be arbitrary. However,

we advocate the use of community detection methods such as Louvain and Leiden clustering

(45) in this work.

2. Metric learning: We then learn a low-dimensional representation of each pseudo-labelled

cell using a non-linear mapping fθ : RD → Rd parameterized by θ where d ≤ D. In this work,

we represent fθ using a feed-forward deep neural network with parameters θ. Given this pa-

rameterization and a pseudo-labelled dataset DPL, we learn a low-dimensional representation

of each cell as follows:

Given an initial representation (xi, yi) for the ith cell, two additional cells (xj , yj) and (xk,

yk) are sampled from DPL − {(xi, yi)} such that yi = yj and yi 6= yk. Let us assume that fa,

fp and fn denote the low-dimensional embeddings of xi, xj and xk such that:

fa = fθ(xi)

fp = fθ(xj)

fn = fθ(xk)

θ is updated such that the Triplet-Margin loss function (46) L (fa, fp, fn) is minimized, where

the loss L (fa, fp, fn) is given by:

L (fa, fp, fn) = max {d(fa, fp)− d(fa, fn) +margin, 0} (1)

d(fi, fj) = ‖fi − fj‖p (2)

The value of margin and p are chosen as 1 and 2 respectively. Intuitively, for each cell

xi (denoting the anchor), we sample positive (xj) and negative samples (xk) such that the

distance between the anchor and the positive sample is minimized while the distance between

the anchor and the negative sample is maximized. This training step is repeated for e epochs,

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465455doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465455
http://creativecommons.org/licenses/by-nc-nd/4.0/


where e is a hyperparameter.

3. Cluster refinement: We generate the low-dimensional representations of all cells in the

dataset using pre-trained fθ from step 2. Using the updated low-dimensional embedding

fθ(xi) for all N cells, cells are clustered again to generate refined cluster assignments, which

act as new pseudo-labels for the cells {xi}Ni=1.

4. Episodic training: The sequence of steps 2 and 3 form a single episode. We repeat steps

2 and 3 alternatively for a total of E episodes, where E is a hyperparameter. We can also

alternate between the two steps until convergence which can be assessed by monitoring the

quality of the clusters generated from step 3. For example, when using Leiden or Louvain

clustering, convergence can be assessed by monitoring the modularity score of the refined

clusters.

5. Inferring final low-dimensional manifold:: After training, the final low-dimensional rep-

resentation, f∗i for cell i can be obtained by fθ∗(xi) where θ∗ denotes the trained parameters of

the deep neural network f . As a by-product of training, we also obtain the refined cluster as-

signments, y∗i for each cell in the scRNA-seq dataset. The refined embeddings Mf = {f∗i }Ni=1

and cluster assignments {y∗i }Ni=1 are used in subsequent steps of MARGARET.

Network Architecture and Training Hyperparameters

We use a simple feed-forward deep neural network architecture in MARGARET consisting of 2-fully

connected layers of sizes 128 and 64 respectively. The size of the input layer depends on the size of

the embedding of the preprocessed scRNA-seq dataset. The number of neurons in the final output

layer is the same as the size of the desired low-dimensional embedding which is a hyperparameter. In

addition, each fully connected layer in MARGARET is followed by a Batch Normalization (BN) (47)

layer followed by the ReLU activation. To regularize and enrich the intermediate representations,

we use Dropout (48) after each Linear-BN-ReLU module. The dropout rate is set to 0.3 for all the

experiments. Moreover, the layer sizes were also kept fixed for all the experiments.

During training, we used Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01

to update the metric learner parameters. To adjust the learning rate during training, we used a

poly-learning rate scheduler (49) with the following update schedule:
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lr(t) = lr(0) ∗ (1− t

num epochs
)α (3)

α = 0.9 was used during training.

Trajectory Modelling

Given a low dimensional representation of cells, Mf and refined cluster assignments {y∗i }Ni=1, MAR-

GARET learns a connectivity graph over the set of refined clusters similar to PAGA (16) to model

the trajectory over the underlying dynamic process. The key steps involved in learning the trajec-

tory are described below.

1. Learning an undirected graph: MARGARET first learns an undirected graph U over the

refined partition of cells y∗i . This learned graph U models the connectivity of the cell clusters

and identifies the connected and disconnected neighborhoods in the cell-state manifold. To

learn U , we first compute the k-nearest-neighbor (kNN) graph, G at the single-cell level using

the learned low-dimensional manifold (Mf ). The resulting graph, G is represented as a N×N

sparse adjacency matrix. We then assess the connectivity between two clusters ci and cj by

introducing a novel measure of connectedness. Formally, we define the connectivity between

two clusters ci and cj as:

ψij =
eij + eji − erand
ei + ej − erand

(4)

where eij denotes the number of kNN graph edges from cluster ci to cj , eji denotes the

number of kNN graph edges from cluster cj to ci, ei denotes the number of outgoing edges

from cluster ci, ej denotes the number of outgoing edges from cluster cj , and erand denotes the

number of edges from cluster ci to cj and vice-versa under the random assignment of edges.

Intuitively, when computing the connectivity between two clusters, we adjust the connectivity

score to account for the random assignment of edges from cluster ci to cj to prevent spurious

connections in U .

Following PAGA (16), we model the random assignment of edges between two clusters using
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a binomial distribution. In this scenario, erand is given by:

erand =
einj + ejni
N − 1

, (5)

where ni and nj represent the number of cells (size) in the clusters ci and cj respectively and

N represents the total number of nodes in the kNN graph (i.e. the number of cells). Given

a threshold (lower-bound for ψij) tc, two clusters ci and cj are said to be connected when

ψij > tc. In this work we define a simple statistical test and compute the z-score between two

clusters ci and cj given by:

zij =
eij + eji − erand

σrand
, (6)

where σrand denotes the standard deviation of the binomial model and can be specified as:

σrand =
einj(N − nj − 1) + ejni(N − ni − 1)

(N − 1)2
(7)

The statistical test proposed in Equation (6) is a direct consequence of the fact that under

sufficiently large partitions, binomial random variables can be well approximated by a normal

distribution. Therefore, the connectivity between two clusters ci and cj is given by ψij when

zij > tc where tc is a user-defined threshold.

2. Pseudotime computation: As in prior works (16; 9; 7; 50), MARGARET learns a temporal

ordering over cells to uncover the dynamics of the underlying dynamic process. To determine

the temporal order of the cells, for each cell, we infer pseudotime, which denotes the position

of the cell in the underlying cell-state manifold representing the dynamic process.

Given the kNN graph G and a prior starting cell index s, one possible way to estimate the

pseudotime can be to compute the shortest-path distance of each cell from the starting cell

s because the shortest-path distances better approximate the geodesic distances in a non-

linear manifold (51). However, the kNN graph G can be inherently noisy due to spurious

connections between cells. Hence, directly computing the shortest-path distances using G

would give inaccurate estimates of the distance of each cell in the manifold from s. To

mitigate this problem, we prune the kNN graph G by using our undirected graph U as a
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reference model.

Formally, given an undirected graph U and the kNN graph G , we prune an edge between

two cells xci and xcj belonging to two clusters ci and cj respectively, iff ∃ eij ∈ G and ψij = 0

where eij represents a (short-circuit) edge between cells xci and xcj in the kNN graph G .

Given a pruned kNN graph G ∗, we compute the shortest-path distance of each cell from a

user-defined starting cell s to infer the pseudotime for each cell in the scRNA-seq dataset.

3. Orientation of Edges in Trajectory: Given an undirected graph U and the pseudotime

{τpn}Nn=1, we compute the mean-pseudotime for each cluster ci as:

mci =

∑N
n=1 1[xn ∈ ci]τpn∑N
n=1 1[xn ∈ ci]

(8)

We then orient an edge from cluster ci to cj iff: mci < mcj and ψij 6= 0 to obtain the final

trajectory T with node-set V and directed edge-set E .

Prediction of Terminal States

Given a trajectory T = (V ,E ), we compute the shortest-path betweenness (52; 53; 54) of every

node in T . Formally, the shortest-path betweenness can be defined as:

b(v) =
∑

(u,w)∈V

dsp(u,w|v)

dsp(u,w)
(9)

where b(v) is the betweenness for node v, dsp(u,w|v) represents the shortest-path distance between

nodes u and w that passes through node v and dsp(u,w) represents the shortest-path distance

between nodes u and w. Intuitively, the betweenness for any node v ∈ V is the sum of the fraction

of all-pairs shortest paths that pass through node v thus indicating its importance in the network.

Given the shortest-path betweenness values b(v)v∈V , we compute the median (bmed) and the median

absolute-deviation (MAD) (bmad) of the betweenness values respectively. A node v is added to the

set of terminal states if

b(v) < (bmed − tTS × bmad), (10)
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where tTS is a user-defined scalar multiplier. Higher values of tTS typically lead to nodes with

no outgoing edges in V being selected as the terminal states. At the single-cell level, we select

the cells having the maximum pseudotime value in each terminal state as the terminal cell for the

underlying developmental process.

Inferring Cell branch Probabilities and Differentiation Potential

Similar to (9), we model differentiation as a stochastic process on our learned cell-state manifold

where the cells can follow the paths in the pruned kNN graph G ∗ to reach any of the terminal

states. Following (9), we model this stochastic process using an absorbing Markov Chain with the

terminal cells acting as the absorbing states. Essentially, this formulation enables us to calculate

the differentiation potential (DP) for each cell, a quantity that represents the potency of a cell to

differentiate into specialized cell types. Given a set of terminal cells Tc, for each cell i, we compute

the branch probabilities pbij (j ∈ Tc), which represents the probability of cell i reaching a terminal

cell j. Since DP of a cell (dpi) quantitatively characterizes the potency of a cell to maturate to

different terminal states it can be obtained by computing the entropy of the branch probabilities

of each cell as follows:

dpi = −
∑
j∈Tc

pbij log pbij (11)

This is a reasonable way of modelling DP because cells with heterogeneous branch probabilities

can be expected to have lesser potency of differentiating into diverse cell types. In the remainder of

this section, we discuss the key steps involved in computing the branch probabilities for each cell i.

1. Waypoint sampling for scalable modelling of DP: Given the scRNA-seq dataset with

N cells, fitting an absorbing Markov Chain can be computationally intractable for large

N . To scale our absorbing Markov Chain model to large datasets, we sample a subset of

cells M , from the scRNA-seq dataset such that M << N . We call these subset of cells as

landmarks or waypoints. Specifically, given a set of K disjoint partitions of the embedding

space y∗, we sample k waypoints per cluster by applying k-means++ (55) initialization for

each cluster. We use the refined clusters obtained from the Metric-learning step for sampling

the waypoints. Using such a scheme for waypoint sampling has two main advantages. Firstly,
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using a kmeans++ like scheme in each cluster ensures high intra-cluster waypoint coverage.

Secondly, sampling waypoints from each cluster guarantees coverage of the entire embedding

landscape. In contrast, (19; 56) use random sampling to compute waypoints which provides

no coverage guarantees. Palantir (9) uses Max-min sampling (57) to compute waypoints

which is more efficient than random sampling but might require a large number of waypoints

to cover the embedding space.

2. Computing Waypoint to Terminal Cell(s) probabilities: Given a set of waypoints

W consisting of M waypoints, we compute a nearest-neighbor graph Gw using the low-

dimensional representations of W . We then prune Gw using the short-circuit edge pruning (See

Pseudotime computation) with the undirected connectivity graph U as a reference model.

Furthermore, following (9), we also remove edges in Gw which violate the pseudotime ordering

between waypoint cells. Formally, an edge wij ∈ Gw from waypoint wi to wj is pruned iff:

τpi > τpj + ασij (12)

where τpi and τpj represent the pseudotime for waypoints wi and wj respectively and σij

represents the scaling factor for cell wi given by the distance of wi to its lth neighbor in

Gw. The statistical test in Equation 12 differs from the formulation in (9) in terms of the

parameter α. We found that parameterizing Equation 12 with the user-defined parameter α

provides an additional flexibility in controlling the number of edges that are pruned which is

an important aspect of fitting an absorbing Markov Chain.

Given a pruned waypoint nearest-neighbor graph G ∗w and a set of terminal cells Tc, we row-

normalize G ∗w to obtain the transition matrix T . For two waypoints wi and wj , the entry

tij in T represents the probability of transitioning from waypoint wi to wj . An absorbing

Markov Chain is specified by a transition matrix of the form

Q R

0 I

 where Q represents the

transition probabilities of moving between intermediate states and R represents the transition

probabilities of moving from intermediate states to the terminal states. We represent our

transition matrix T using this formulation and compute the waypoint to terminal cell branch
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probabilities as follows:

PW Tc = FR (13)

where F is the fundamental matrix given by F = (I −Q)−1. Since our Transition matrix T

can be sparse, we recommend computing the fundamental matrix using the Moore-Penrose

pseudoinverse to avoid numerical issues.

3. Computing Cell to Waypoint Connectivity: Given the pruned nearest neighbor graph

G ∗, we compute cell to cell connectivity using a local random walk (LRW) (58) formulation.

LRW is a quasi-local method to estimate connectivity between nodes in a graph based on

limiting a random-walk to a fixed number of steps. Hence, the approach is computationally

much more efficient than using a global random walk until convergence. Formally, the LRW

connectivity ζ(i,j) between two cells indexed by i and j is given by:

ζ(i,j)(t) = kipij(t) + kjpji(t) (14)

where pij(t) and pji(t) represent the probabilities obtained when moving from cell i to j and

vice-versa at time t respectively. The constants ki and kj are set to k
|E ∗

k |
where k is the number

of nearest neighbors and |E ∗k | is the total number of edges in G ∗. Given the similarity matrix

Z representing LRW-based connectivities between different cells we can index Z to compute

cell to waypoint similarities, Zw.

Given the cell to waypoint similarities Zw, and waypoint to terminal state probabilities PW Tc , we

compute the cell to terminal states branch probabilities pbij by a simple projection:

Pb = ZwPW Tc (15)

where Pb is a N ×|Tc| matrix representing branch probabilities for each cell. We then compute the

DP for each cell using Equation 11.
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Inference of Gene Expression Trends Along Lineages

To visualize the variation in the expression of a gene g across different lineages with pseudotime,

we fit generalized additive models (GAMs) (59) to the gene expressions and pseudotime values (gi,

τpi ) of cells along a particular lineage j weighted by their branch probabilities pbij for that lineage

(see Supplementary Note 2 in (9) for more details). We imputed the preprocessed expression value

of gene g using MAGIC (43), when computing the lineage trends for the hematopoiesis and EB

datasets. No imputation was performed for the colon IBD dataset. We used the LinearGAM im-

plementation available in the pyGAM package (60) to fit the lineage trends with the regularization

penalty set to 10 and the order of the splines set to 4 for all the experiments.

Differential Expression and Gene Ontology analysis

We used the Wilcoxon-rank sum test available in Scanpy (8) to estimate differentially expressed

(DE) genes for each cluster and the Benjamini-Hochberg correction for adjusting the p-values. All

genes were ranked in the DE analysis, which is the default behavior in Scanpy 1.7.2. To assess

the functional significance of MARGARET inferred clusters, we performed Gene Ontology (GO)

analysis using the gprofiler-official (61) package. To determine the GO terms for a cluster, we

selected the top DE genes with a log fold change value greater than 1.0 and the adjusted p-value

less than 0.05. In case more than 500 genes were included, we selected the top 500 genes to obtain

a list of GO terms associated with that cluster.

Performance Metrics for Trajectory Inference

Here we describe the quantitative performance metrics used for evaluating the trajectory inferred

by a TI method:

1. Ipsen-Mikhailov (IM) Distance: We used the IM distance (62) metric for global topology

comparison between PAGA and MARGARET. Before computing the IM distance, the tra-

jectories inferred from both the methods (including the ground-truth trajectory) were coerced

to an undirected graph. Formally, the Laplacian spectra for a graph G can be specified as a

mixture of Lorentz distributions (Equation (16)) with the same half-width at half-maximum

γ and centered at the frequencies ωk given by ωk =
√
|λk|, where λk is the kth eigenvalue
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of the graph Laplacian of G . The constant C is a normalization constant for the resulting

probability distribution.

ρ(ω) = C

N−1∑
k=1

γ

(ω − ωk)2 + γ2
(16)

The IM distance measures the difference between the Laplacian spectra of two graphs as

follows:

IM(ρ1, ρ2) =

√∫ ∞
0

(ρ1(ω)− ρ2(ω))2dω (17)

Since it is a measure of distance between the spectra of two graphs, a low IM distance

corresponds to greater similarity in the global topology of the two graphs.

2. Rank Correlation Metrics: We used two rank correlation metrics to compare the ground truth

ordering and pseudotime orderings inferred by the TI methods. More specifically, we used the

Kendall’s Tau (KT) and the Spearman’s Rank (SR) correlation coefficients to estimate the

similarity in rank orderings of the data. As suggested in (63), the KT correlation coefficient

can be specified as follows:

τb =
P −Q√

(P +Q+ T ) ∗ (P +Q+ U)
(18)

where P and Q represent the number of concordant and discordant pairs, respectively. T

and U represent the number of ties in the two orderings, respectively. The SR correlation

coefficient is simply defined as the Pearson’s correlation coefficient applied to the ranks of the

variables measured in the two orderings. We used the scipy.stats package to compute both

KT and SR correlation coefficients.

3. Clustering Metrics: We used Adjusted Rand Index (ARI) and Normalized Mutual Information

(NMI) metrics to assess the clustering performance of MARGARET embeddings. The ARI

metric corrects the Rand Index for chance and is specified by the following formulation:

ARI =

∑
ij

(nij

2

)
− [
∑

i

(
ai
2

)∑
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(bj
2

)
]/
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n
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)
1
2 [
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2
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+
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) (19)
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where ai, bj and nij are values from the contingency table which is used to estimate the

overlap between two partitionings. The NMI metric between two clusterings C1 and C2 can

be formulated as follows:

NMI =
I(C1, C2)√
H(C1)H(C2)

(20)

where I is the mutual information between the two clusterings C1 and C2 and H is the

Shannon-Entropy of the clustering.

Visualization of Embedding

We used UMAP (12) (with default parameters) for visualization of all the datasets except the early

Hematopoiesis scRNA-seq data provided by (9), for which we used tSNE (64) visualization with a

perplexity value of 180 for replicate 1 and 150 for replicate 2.

Computing Crypt-axis Score

As suggested in (15), we used the expression of the following genes to define the crypt-axis

(CA) score: SEPP1, CEACAM7, PLAC8, CEACAM1, TSPAN1, CEACAM5, CEACAM6, IFI27,

DHRS9, KRT20, RHOC, CD177, PKIB, HPGD and LYPD8. The final crypt-axis score for each

cell was then computed by summing over the normalized expression (between 0 and 1) values of

each gene included in our set.

Simulation of Benchmark Datasets

To benchmark MARGARET’s performance on several aspects of trajectory inference, we generated

a suite of synthetic single-cell gene expression datasets representing different complex trajectory

models. We used dyntoy (13) (https://github.com/dynverse/dyntoy) to generate the synthetic

benchmark (see Supplementary Table 3 for the details of different synthetic datasets) spanning

multifurcating and disconnected topologies. For benchmarking MARGARET, PAGA (16), and

Monocle3 (7), all the simulated datasets were subjected to the same data preprocessing steps fol-

lowing Seurat (65): removal of genes expressed in less than 3 cells, normalization, log transformation
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with a pseudo count of 1.0, and finally z-score normalization. For benchmarking Palantir, the steps

proposed by the authors in (9) were used to preprocess the simulated datasets.

Data Availability

All the experimental biological datasets used in this study are openly available and can be referenced

from Supplementary Table 3. The human hematpoiesis dataset is available through the Human

Cell Atlas portal at https://prod.data.humancellatlas.org/explore/projects/29f53b7e

-071b-44b5-998a-0ae70d0229a4. The scRNA-seq and bulk RNA-seq datasets for the embryoid

body dataset can be accessed via the Mendeley Data repository at https://doi.org/10.176

32/v6n743h5ng.1. The scRNA-seq data for colon differentiation can be accessed using the GEO

accession number GSE116222. All the real datasets used for demonstrating the clustering efficiency

of MARGARET can be accessed via the scvi-tools package (66).

Code Availability

MARGARET has been implemented in Python and is freely available at https://github.com/Z

afar-Lab/Margaret.
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Figure 1: Overview of MARGARET. (a) Given a preprocessed scRNA-seq dataset, MAR-
GARET uses an unsupervised metric-learning-based approach to learn compact cell-state repre-
sentations from pseudolabels generated from an initial cell embedding. The cell cluster assignments
and the MARGARET embedding are refined through an episodic training which results in the fi-
nal refined embeddings and refined cell type clusters. (b) MARGARET infers the connectivity
graph between the refined cell partitions by computing connectivities between clusters using a
cell-level k-nearest-neighbor (kNN) graph. (c) MARGARET prunes the kNN graph by removing
short-circuit edges and infers cell pseudotime from the pruned kNN graph by computing geodesic
distances from the start cell(s). The pseudotime values are then utilized to infer a directed tra-
jectory. MARGARET utilizes the inferred cell-state embeddings and the trajectory for several
downstream tasks. 33
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Figure 2: MARGARET outperforms state-of-the-art TI methods. MARGARET out-
performed state-of-the-art TI methods on qualitative and quantitative metrics when applied to a
simulated benchmark consisting of ten datasets with diverse trajectory types. (a) (Left) Sample
disconnected dataset (1966 cells) (Right) Sample multifurcating dataset (5000 cells) (b) Visu-
alization of the cell embedding landscape inferred by different TI methods on the disconnected
(Top) and multifurcating (Bottom) datasets. Palantir embedding landscapes shown with projected
pseudotime values. Monocle3 inferred trajectory graph projected on the embedding with colors
denoting cluster information. PAGA and MARGARET outputs shown as connectivity graphs.
PAGA, Monocle3 and MARGARET inferred graphs were computed using Louvain clustering with
0.4 resolution. (c) IM distance comparison between MARGARET and PAGA on the multifurcat-
ing (Left) and the disconnected (Right) benchmarks (lower score is better).(d) Kendall’s Tau (KT)
correlation comparison between MARGARET and other TI methods on the multifurcating (Left)
and the disconnected (Right) benchmarks (higher score is better). Refer to Supplementary Table
2 for exact KT scores and SR scores.
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Figure 3: MARGARET delineates major lineages and identifies important transcrip-
tional switches in early human hematopoiesis. Analysis of scRNA-seq data for human
hematopoiesis replicate 1 by MARGARET. (a) tSNE plot of cell-state embedding inferred by MAR-
GARET for the human hematopoiesis dataset, cells are colored by MARGARET inferred clusters.
(b) MARGARET pseudotime and (c) differentiation potential calculated using one HSC as a start
cell. (d) Heat map for marker genes for all MARGARET inferred clusters. (e) MARGARET
inferred trajectory annotated with cell-type and lineage information (important marker genes are
mentioned within parantheses with the cell type annotation). Ery: Erythrocyte; Mk: Megakary-
ocyte; MEP: Megakaryocyte-Erythroid Progenitors; HSC: Hematopoeitic Stem Cells; CLP: Com-
mon Lymphoid Progenitors; CMP: Common Myeloid Progenitors; GMP: Granulocyte-Monocyte
Progenitors; MDP: Monocyte-Dendritic Cell Progenitors; cDC: Classical Dendritic Cells; pDC:
Plasmacytoid Dendritic Cells; Mono: Monocytes. (f) Gene expression trends for essential genes
for major inferred lineages. (g) Differential expression (DE) analysis between cluster 4 (MDP)
and cluster 5 (GMP) (h) Variation of CEBPA and ID2 gene expressions in the monocyte (Mono)
lineage (top) and the dendritic cell (DC) lineage (bottom) for replicate 1. The boxplots summarize
the expression of the gene in each cluster in the lineage, where the box depicts the interquartile
range (IQR, the range between the 25th and 75th percentile) with the median value, whiskers in-
dicate the maximum and minimum value within 1.5 times the IQR. The red dotted line represents
the mean differentiation potential for each cluster in the lineage.
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Figure 4: MARGARET characterizes cellular heterogeneity in the monocytic and den-
dritic cell lineages. (a) Variation of the expression of CEBPE and FLT3 across the monocyte
(Mono) lineage (left) and the DC lineage (right) for replicate 1. The boxplots summarize the ex-
pression of the gene in each cluster in the lineage, where the box depicts the interquartile range
(IQR, the range between the 25th and 75th percentile) with the median value, whiskers indicate the
maximum and minimum value within 1.5 times the IQR. The red dotted line represents the mean
differentiation potential for each cluster in the lineage. (b) Mean expression of ITGAX (top) and
CSF1R (bottom), projected on the MARGARET inferred connectivity graph. (c) Gene expression
trends for neutrophil-like monocyte marker genes: PRTN3, ELANE, CTSG are highly correlated
with monocyte branch probability (dotted black line). (d) MARGARET inferred trajectory for the
DC sub-lineage obtained from the combined analysis of replicates 1 and 2. MARGARET accurately
recovers the cDC and pDC lineages. (e) Gene expression trends for pDC markers (top): IRF7,
TCF4 and cDC markers (bottom): CLEC12A, CLEC10A. (f) Heat map of DC-lineage specific
marker genes for MARGARET inferred DC sub-lineage clusters. (g) Comparison of differentially
Expressed genes between cDCs (cluster DC8) and pDCs (cluster DC0).

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465455doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465455
http://creativecommons.org/licenses/by-nc-nd/4.0/


ESC EN NCNE ME

a b c d

e

f

g

CD34 ONECUT-1KLF5POU5F1

SOX10 LHX5 TBX18 TNNT2

Pseudotime

Pseudo-timeClusters Real time

ESC

Pre-NE + NE

EN

CP

H

NE

NCNS-5

NS-4
NS-3

NS-2

NS-1

NC

NE/NC

ECP

ECP

SMP
SMP SMP

ME + Cardiac

ESC (POU5F1, NANOG,
ZIC5)

(TNNT2)

(PAX3, SOX9,
FOXD3)

(LHX2/5, SIX3/6)

(ZBTB16, DMRT3)

(SOX1, NKX2-8)

(OLIG1, NPAS-1,
NR2F1, LMX1A)

(ONECUT1, KLF7)

(CD34, TAL1, PECAM1)

(PDGFRA, TBX15/18,
CXCL12) (TBX15, PRRX2)

(SIX2, PDGFRA, 
TBX15)

(WT1)

(KLF5, FOXA2, CDX2,
SOX17)

Cardiac: GATA4, CER1
ME: MYC, HOXD9

PS + Pre-NE
PS: MIXL1, T, EOMES

Pre-NE: POU5F1

(HOXA2, HOXB1,
OLIG3)

Pre-NE: OTX2
NE: LHX2

(WT1)

(GATA5/6,
HAND1)

(GATA6,
HOXB4,
HAND1)

Plate ME (MYC, TBX5)

(PRSS56, SOX10)

(POU5F1, NANOG)

(PAX6, NKX2-8)

Figure 5: MARGARET characterizes the differentiation trajectory in human embryoid
bodies. MARGARET reconstructs a detailed lineage map and identifies novel cell types and dif-
ferentiation intermediates in the embryoid body (EB) dataset (n =). (a) UMAP plot of cell-state
embedding inferred by MARGARET for EB dataset. (b) MARGARET inferred cell embedding
preserves real time information. (c) MARGARET pseudotime projected on the cell embeddings.
(d) Heat map of marker genes for all MARGARET inferred clusters. (e) MARGARET inferred
trajectory annotated with cell-type and lineage information (characteristic marker genes are men-
tioned within parantheses with the cell-type annotation). ESC: Embryoid stem cells; PS: Primitive
streak; NE: Neuroectoderm; NC: Neural crest; NS: Neuronal subtypes; EN: Endoderm; H: He-
mangioblasts; ME: Mesoderm; SMP: Smooth muscle precursors; ECP: Epicardial precursors; CP:
Cardiac precursors. (f) Gene expression trends for the inferred lineages. (g) Gene ontology (GO)
analysis of MARGARET inferred clusters (grouped by major lineages). The heatmap value for a
GO term was set to

√
− log(pval), where pval is the p-value for the corresponding GO term.
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Figure 6: MARGARET delineates the differentiation trajectory for colonic epithelial
cells for healthy humans. (a) UMAP plot of cell-state embedding inferred by MARGARET for
healthy human colonic epithelium (n = 3), cells are colored by clusters inferred by MARGARET.
(b) MARGARET pseudotime and (c) differentiation potential for each cell projected on the cell
embeddings. (d) Crypt-axis score (See Methods) projected on MARGARET cell embeddings. (e)
Heat map showing marker genes for each MARGARET inferred cluster. Marker genes were curated
from (15). (f) MARGARET inferred trajectory annotated with cell type and lineage information
(important marker genes for each cell type are mentioned within parantheses with the cell type
information). CT: Crypt-top; EEC: enteroendocrine cells (g) Gene Ontology (GO) analysis for
major inferred cell types in the absorptive cell lineage. Top GO:BP terms were included for each
cell type. The value for a GO term in the heat map was set to

√
− log(pval), where pval is the p-value

for the corresponding GO term. (h) Gene expression trends for essential genes for major inferred
lineages. (i) Mean expression of TFs CDX1, ESRRA and PPARG, projected on the MARGARET
inferred connectivity graph.
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