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ABSTRACT 

Intracellular trafficking pathways control 
residency and bioactivity of integral membrane 
proteins at the cell surface. Upon internalisation, 
surface cargo proteins can be delivered back to the 
plasma membrane via endosomal recycling 
pathways. Recycling is thought to be controlled at 
the metabolic and transcriptional level, but such 
mechanisms are not fully understood. In yeast, 
recycling of surface proteins can be triggered by 
cargo deubiquitination and a series of molecular 
factors have been implicated in this trafficking. In 
this study, we follow up on the observation that many 
subunits of the Rpd3 lysine deacetylase complex are 
required for recycling. We validate ten Rpd3-complex 
subunits in recycling using two distinct assays and 
developed tools to quantify both. Fluorescently 
labelled Rpd3 localises to the nucleus and 
complements recycling defects, which we 
hypothesised were mediated by modulated 
expression of Rpd3 target gene(s). Bioinformatics 
implicated 32 candidates that function downstream 
of Rpd3, which were over-expressed and assessed 
for capacity to suppress recycling defects of rpd3∆ 
cells. This effort yielded 3 hits: Sit4, Dit1 and Ldb7, 
which were validated with a lipid dye recycling assay. 
Additionally, the essential phosphatidylinositol-4-
kinase Pik1 was shown to have a role in recycling. 
We propose recycling is governed by Rpd3 at the 
transcriptional level via multiple downstream target 
genes. 
 
 
INTRODUCTION 

Most integral membrane proteins expressed in 
eukaryotic cells are inserted into the endoplasmic 
reticulum (ER) via different mechanisms [1]. Many of 
these perform diverse roles at the plasma membrane 
(PM), such as ion channels, nutrient transporters, and 
different classes of receptors [2,3], and are actively 
transported from the ER through the secretory pathway 
to the cell surface [4]. Mechanisms of surface protein 
regulation have been elucidated using the budding yeast 
Saccharomyces cerevisiae, where hundreds of proteins 
are organised in distinct spatial arrangements [5]. The 
lateral movement of proteins between regions of the PM 
correlates with their biological activity [6]. For example, 

inactive nutrient transporters localised to eisosome 
subdomains adopt an active conformation for nutrient 
uptake upon migration to other regions of the PM in 
response to substrate [7,8]. This altered PM localisation 
of active transporters supports their internalisation and 
endocytosis [9], a process which is controlled 
metabolically, with stress conditions altering eisosomal 
capacity to harbour nutrient transporters [10,11].  

Surface proteins are internalised to the 
endosomal system, a network of intracellular 
compartments that organise and traffic protein and lipid 
material to other intracellular destinations [12]. Surface 
membrane proteins destined for degradation are retained 
in endosomes, which undergo a maturation process to 
definable late endosomes called multivesicular bodies 
(MVBs), which interface with lysosomes to drive cargo 
degradation [13]. The ubiquitination of membrane 
proteins serves as a conserved signal for trafficking 
through the degradative MVB pathway [14]. However, 
studies in various systems have shown that cargo 
deubiquitination cancels the degradation signal and 
triggers surface recycling [15]. Surface cargo recycling 
back to the PM in mammalian cells occurs either directly 
or via distinct compartments [16]. In yeast, surface 
recycling of cargoes from Vps4-endosomes is triggered 
by cargo deubiquitination [17]. 

Fluorescently labelled lysosomal cargoes fused 
to the catalytic domain of a deubiquitinating enzyme 
(DUb) are rediverted back to the PM and serve as 
reporters for this deubiquitination-induced recycling 
pathway [18]. A GFP-tagged DUb-fusion of the G-protein 
coupled receptor (GPCR) Ste3, which localises 
exclusively to the surface in wild-type cells, was used to 
screen for potential recycling factors that mis-localise the 
reporter [19]. This assay was calibrated with recycling 
mutants lacking RCY1, which have defective trafficking 
of recycled material, including the yeast synaptobrevin 
Snc1, the GPCR Ste2 and lipids labelled with the 
amphiphilic styryl dye FM4-64 [20,21]. Characterisation 
of this yeast recycling pathway has shown requirement 
for the Rag GTPases [19], the endosomal sorting 
complexes required for transport (ESCRT)-related 
protein Ist1 [17], and the phosphatidylinositol 3-kinase 
activity effector Gpa1 [22]. However, whether the 
pathway is regulated at a transcriptional level, and what 
the downstream molecular players might be, is unknown. 
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Acetylation of protein substrates is a common 
co- or post-translational modification whereby an acetyl 
group is covalently attached to proteins at their N-
terminus or lysine residues [23]. Protein acetylation can 
alter the behaviour, biological activity, and stability of 
modified protein substrates, and has been implicated in 
a range of human diseases [24]. Acetylation of lysine 
residues, performed by lysine acetyltransferase (KAT) 
enzymes, is a reversible process that is antagonised by 
various lysine deacetylases (KDAC) enzymes. These 
enzymes were initially shown to modify histones [25] by 
regulating chromatin condensation and transcriptional 
activity [26]. Although, there are many additional 
functional consequences of protein acetylation, in both 
eukaryote and prokaryote systems [27]. KDACs (or 
histone DACs, HDACs) in human cells can be classified 
into two groups, the seven members of the NAD+-
dependent sirtuin family [28] and the eleven members of 
the ‘classical’ Rpd3/Hda1 family [29].  

Rpd3 is a yeast KDAC that is highly conserved 
throughout evolution [30] and has predominantly been 
linked with transcriptional regulation [31–33]. A large 
series of genetic, biochemical, and proteomic efforts 
have robustly characterised Rpd3 interactions (~100 
physical and ~1000 genetic) and shown Rpd3 exists in 
two main complexes, termed Large (Rpd3L) and Small 
(Rpd3S), which have functionally distinct actions [30]. 
Almost all Rpd3 subunits localise to the nucleus with a 
small cytosolic population [34–37], where transcriptional 
control occurs via histone modification. Multiple 
members of the Rpd3-complex have been implicated in 
various biological processes, such as chromatin stability 
[38], DNA damage [39], drug sensitivity [40,41], and 
physiological stress responses [42,43]. Rpd3 was also 
shown to be required for efficient recycling of cargoes 
from endosomes back to the PM [19], as discussed 
above. In this study, we examined ten Rpd3-complex 
members that were previously implicated in yeast 
recycling and identify the downstream molecular factors 
that mediate recycling. 
 
 
RESULTS 
 
The Rpd3 complex is required for efficient surface 
recycling 

Endosomal recycling can be tracked using Ste3-
GFP-DUb [18], which recycles efficiently in wild-type cells 
but is retained in intracellular endosomes in recycling 
mutants such as rcy1∆ cells (Figure 1A), demonstrated 
by 3D confocal projections of the recycling reporter in 
wild-type cells and recycling defective rcy1∆ mutants 
(Movie S1). Plasmid expression of Ste3-GFP-DUb in 
4,985 haploid deletion mutants revealed 89 validated 
mutants that are defective in cell surface recycling. 
Amongst this list of potential recycling factors were rpd3∆ 
cells, which lacks a histone modifying regulator of gene 
expression [33], alongside 9 other mutants of the Rpd3-
complex [44] (Figure 1B). To confirm these results, we 
stably integrated Ste3-GFP-DUb into wild-type and all 10 
previous identified mutants of the Rpd3 complex, 
revealing all mutants had some degree of recycling 
inefficiency, with intracellular accumulation of reporter 
similar to that observed in rcy1∆ cells (Figure 1C). To 

quantify differences between different null strains lacking 
component of the Rpd3-complex, we optimised the 
segmentation of cells using phase contrast (PC) and 
digital interference contrast (DIC). Although PC 
introduced an obvious border to define cells for 
segmentation in brightfield micrographs, we noted a 
significantly poorer fluorescence signal (Figure 2A). We 
therefore refined parameters to define cells from DIC 
images and used this protocol to estimate the 
background autofluorescence in the green channel 
capturing Ste3-GFP-DUb expressing yeast cells. For 
this, cells expressing Ste3-GFP-DUb were mixed with a 
separate culture of cells expressing Gpa2-mCherry and 
imaged (Figure 2B). Gpa2 is a Ga-subunit that regulates 
cAMP production that exclusively localises to the 
periphery via lipid modifications [22,45]. Segmentation of 
cells expressing Gpa2-mCherry allowed cellular 
autofluorescence to be measured in optical conditions 
optimised for Ste3-GFP-DUb acquisitions (Figure 2C). 
Having optimised segmentation and normalisation 
parameters, we then used a morphological erosion 
function [46] to measure the levels of cell surface signal 

Figure 1: The Rpd3-complex is required for Ste3-GFP-DUb recycling 
A) Schematic diagram showing Ste3-GFP-DUb recycling reporter, which 
efficiently recycles in wild-type cells (left) but accumulates in intracellular 
endosomal compartments in mutants with defective recycling (right). B) 
Results from localisation screen revealed 4,896 gene deletion mutant 
strains had no defect in recycling Ste3-GFP-DUb to the surface (grey) but 
89 mutants were defective in recycling (black), including 10 members of 
the Rpd3 complex (blue). C) Wild-type and indicated mutant cells 
expressing a chromosomally integrated version of Ste3-GFP-DUb under 
control of the STE3 promoter were grown to mid-log phase and imaged 
by confocal fluorescence microscopy. Scale bar, 5 µm. 
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as a percentage of total fluorescence. As expected, Ste3-
GFP-DUb and Gpa2-mCherry, which both primarily 
localise to the PM at steady state, had similarly high 
levels of PM localisation (Figure 2D). Applying this 
analysis to all mutants of the Rpd3-complex expressing  
Ste3-GFP-DUb revealed every mutant had defective 
recycling compared to wild-type cells (Figure 2E). We 
found the most defective mutant was hos2∆, which was 
as defective as the prototypical recycling mutant strain 
rcy1∆. The least defective mutant was ume1∆, which still 
exhibited significantly impaired recycling compared to 
wild-type cells.  

To validate the role of the Rpd3 complex in 
surface recycling, we have previously employed an 
assay that takes advantage of recycling mutants 
exhibiting defective surface localisation of the tryptophan 

permease Tat2 (Figure 3A), which is required for growth 
in limited tryptophan media [47]. This assay requires 
tryptophan auxotroph strains, so we tested Rpd3-
complex mutants in the SEY6210 background that 
harbours a trp1-Δ901 mutation for growth capacity in 
media of replete (40 mg/L) versus low tryptophan 
concentrations (5 mg/L and 2.5 mg/L). We have recently 
documented a quantitative analysis method for such 
growth assays across large spectrum of serial dilutions 
[48], which we used to quantify growth defects attributed 
to defective Tat2 recycling in Rpd3-complex mutants 
(Figure 3B, 3C). We confirmed that most mutants had a 
low-tryptophan dependent phenotype. Importantly, only 
pho23∆ cells exhibited wild-type like growth in both low 
(5 mg/L and 2.5 mg/L) tryptophan media, and ume1∆ 
cells in 2.5 mg/L tryptophan had growth that was not 
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Figure 2: Quantification of Ste3-GFP-DUb recycling defects in Rpd3-complex mutants 
A) Cells expressing Ste3-GFP-DUb were grown to mid-log phase and imaged with Phase Contrast (top) or DIC (bottom) objectives. Segmentation with 
ROI shown overlaid on each fluorescence image. A second ROI that excludes plasma membrane signal was created by morphological erosion. B-C) 
Wild-type cells expressing Gpa2-mCherry from the CUP1 promoter, induced by addition of 100 µM copper chloride to the media, and wild-type cells 
expressing Ste3-GFP-DUb were mixed at a 1:1 ratio and imaged. mCherry expressing cells were used to identify and segment wild-type cells lacking 
GFP signal, allowing cellular background fluorescence in the green channel, observed at increased intensity (right), to be measured. D) The surface 
levels of Ste3-GFP-DUb and Gpa2-mCherry were both calculated as a percentage. E) The percentage of plasma membrane Ste3-GFP-DUb signal in 
wild-type cells (grey, n=104) was compared with rcy1∆ mutants (green, n =111) and various mutants (magenta) of the Rpd3 complex: hos2∆ (n=47), 
cti6∆ (n=73), sin3∆ (n=114), rpd3∆ (n=57), stb2∆ (n=61), pho23∆ (n=77), and ume1∆ (n=36). Student’s t-test comparisons between wild-type and each 
mutant were performed and asterisks (*) used to indicate significant difference (p < 0.0001). Scale bar, 5 µm. 
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significantly different to wild-type. Convincingly, pho23∆ 
and ume1∆ mutants were the two least defective mutants 
from our quantitative analysis of Ste3-GFP-DUb 
recycling in a completely different strain background. 
This indirect assay further suggests that Tat2 recycling is 
perturbed in all these mutants lacking Rpd3-subunits. We 
note that expression of TAT2 in rpd3∆ cells is very similar 
to wild-type cells [49,50], but even when Tat2-3xHA was 
expressed from an endogenous promoter levels were 
significantly reduced in rpd3∆ cells (Figure 3D, 3E). We 
assume the reduced recycling of Tat2 that impairs 
tryptophan uptake results in increased trafficking of Tat2 
from endosomes to the vacuole for degradation. 
 
Hypothesis for Rpd3-complex in recycling 

Having confirmed and quantified that the 
requirement of the Rpd3 complex in surface recycling of 
diverse cargoes, we set out to confirm the mechanisms 
regulating this trafficking pathway. As previously 
documented, Rpd3 primarily localises to the nucleus [34] 

As expected, Rpd3 with a C-terminal mCherry tag (Rpd3-
mCherry) localised to the nucleus labelled with Hoechst 
stain, but also to the cytoplasm (Figure 4A). Similar 
results were observed for an N-terminally tagged fusion 
of mCherry-Rpd3 (Figure 4B). The Ste3-GFP-DUb 
recycling defect of rpd3∆ cells was successfully 
complemented by expression of tagged Rpd3, showing 
these fusion proteins are functional (Figure 4C). The 
nuclear localisation of the KDAC Rpd3 allows regulation 
of transcription via the posttranslational modification of 
chromatin [31]. Rpd3 forms both small and large 
complexes with Sin3 and other subunits that contribute 
to its regulation [44,51], with various additional studies 
further documenting protein-protein interactions between 
Rpd3-complex subunits [52–56], which we highlight in a 
physical interaction network (Figure 4D). Importantly, 
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Figure 3: The Rpd3-complex is required for Tat2 recycling 
A) Schematic diagram showing the uptake of tryptophan via the high 
affinity Tat2 permease. In tryptophan auxotroph cells grown on media 
containing low tryptophan concentrations, Tat2 uptake is required for 
efficient growth of wild-type cells (left) and Tat2 recycling defects inhibit 
growth (left). B-C) Yeast were grown to mid-log phase and spotted out on 
media of replete (40 µg/ml) and limited, either 5 µg/ml (in B) and 2.5 µg/ml 
(in C) tryptophan concentration. Growth was measured across multiple 
serial dilutions and calculated as a ratio compared to wild-type cells from 
the same plate. Asterisks (*) used to indicate significant difference (p < 
0.03) from t-test comparisons. D) Cells transformed with a Tat2-3xHA 
plasmid containing a copper-inducible CUP1 promoter were grown in 
media containing 50 µM copper chloride to mid-log phase before lysates 
were generated for immunoblot analysis using 𝛂-HA and 𝛂-Rsp5 
antibodies (upper). E) Densitometry was used to measure the signal 
intensity of Tat2-HA in different clones and strains from (D), normalized to 
loading control. 

 

Figure 4: Rpd3 complex members regulate Ste3-GFP-DUb recycling 
A) Yeast cells transformed with plasmids expressing Rpd3 from the CUP1 
promoter with either a C-terminal (left) or N-terminal (right) mCherry tag 
were grown to mid-log phase in media containing 50 µM copper chloride 
prior to confocal microscopy. B) Wild-type cells expressing Rpd3-mCherry 
were grown to mid-log phase, washed twice in fresh media and then 
incubated for 30 minutes with water containing 8 µM Hoechst, followed 
by fluorescence microscopy. C) Mutant rpd3∆ cells expressing an 
endogenously expressed version of Ste3-GFP-DUb were transformed with 
a vector control (upper) and a plasmid encoding Rpd3-mCherry under 
control of the CUP1 promoter (lower). Transformants were grown to mid-
log phase prior to confocal microscopy. D) A protein association network 
based only on experimental evidence of physical interactions (confidence 
= 0.400) was generated for the Large Rpd3 complex using STRING v11.5. 
Entries are coloured based on a kmeans clustering algorithm for 3 clusters 
(red, green, blue) but also outlines indicate whether mutants of these 
proteins were identified (black) or not (blue) from the Ste3-GFP-DUb 
localisation screen. Scale bar, 5 µm. 
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many of these factors (10 out of 14) were independently 
identified from a blind genetic screen for recycling 
machinery [19] and subsequently validated and 
quantified (Figures 1 - 3). We hypothesised that the 
Rpd3-complex regulates expression of either specific 
recycling factor(s) identified from the Ste3-GFP-DUb 
localisation screen or regulates the expression of an 

unknown essential gene not represented in the library of 
viable haploid deletions used for this screen. 
 
Downstream Rpd3 targets regulate recycling 

As recycling defects were phenocopied across 
most mutants lacking subunits of the Rpd3-complex, we 
reasoned that gene expression differences of potential 
target genes would be shared across mutants. Therefore, 
we assembled gene expression profiles [50] for the 89 
validated recycling factors [19], depicted as a heatmap 
(Figure 5A) but averaged the changes in gene 
expression across all mutant conditions. This allowed us 
to identify 24 genes with significantly reduced expression 
across mutants. These represented our initial candidates 
for a complementation screen, as we hypothesised their 
repression via Rpd3-complex results in recycling defects. 
Therefore, reintroducing high levels of these factors 
might supress these recycling defects. We also included 
the next 10 genes that were decreased to a smaller 
degree, to account for gene regulation that was 
repressed significantly in only certain mutants (for 
example to account for technical errors during 
transcriptomic analyses). Each of these genes were 
over-expressed from a plasmid library [57] in rpd3∆ cells 
stably expressing Ste3-GFP-DUb. We were unable to 
test complementation of GPA1 and HDA1 as these 

Figure 5: Complementation screen reveals Rpd3 recycling targets  
A) Changes in gene expression of 89 validated recycling factors were 
averaged across various null mutants of the Rpd3-complex compared with 
wild-type, with mean ± standard deviation plotted (upper). Individual log2 
fold-change expression profiles were also assembled (organised rows top 
- bottom: stb2∆, ume1∆, hos2∆, cti6∆, pho23∆, sap30∆, dep1∆, sin3∆, 
rpd3∆) as a heat map (lower right). The successful deletion of each gene 
is shown to reduce expression of each individual subunit (lower left). B) 
Each of the listed genes were chosen for over-expression in rpd3∆ cells 
stably integrated with Ste3-GFP-DUb. Single colony transformants of each 
were grown to mid-log phase and imaged by confocal microscopy. 
Transformants that rescue Ste3-GFP-DUb recycling were first scored 
qualitatively, with modest (light green) and substantial (dark green) levels 
of potential complementation of recycling indicated. C) Over-expression 
candidates identified from the screen described in (B) were grown to mid-
log phase and prepared for confocal imaging. D) Quantification of surface 
level Ste3-GFP-DUb in each of the indicated cellular conditions, with 
asterisks (*) used to indicate significant difference of p < 0.0001 from t-
test comparisons. Scale bar, 5 µm. 
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Figure 6: Over-expression of Sit4, Ldb7 and Dit1 rescues FM4-64 
recycling defect of rpd3∆ mutants 
A) Schematic representation of dye recycling assay, where the fluorescent 
lipid dye FM4-64 is loaded to endosomes for 8 minutes at room 
temperature in YPD media containing 40 µM FM4-64, subjected to 3x 3-
5 minute washes in ice cold minimal media prior to a small volume of 
washed culture (~5 - 15 µl) brought up in 3 mls media maintained at room 
temperature followed by flow cytometry measurements. B) FM4-64 
fluorescence is measured by flow cytometry and the average fluorescence 
measured across the first 10 seconds and use to calculate all further 
measurements as a percentage of this average (upper). Voltage and flow 
rate are set to analyse 1000 - 3000 cells per second, with measurements 
acquired for 10 minutes total (lower). C - E) Efflux measurements following 
protocol in (A) were acquired for rpd3∆ cells transformed with plasmids 
over-expressing Sit1 (C) Ldb7 (D) and Dit1 (E). As a control, the efflux 
profile of wild-type and rpd3∆ cells labelled and measured during the 
same session are included in each graph. 
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clones repeatedly did not yield any transformations, 
potentially as the combinations of these over-expressors 
with rpd3∆ are not viable. We assessed reporter 
localisation in each over-expression condition from 3 
independent transformants and used a qualitative 
scoring system to document results (Figure 5B). This 
screen revealed 3 factors, Sit4, Dit1 and Ldb7, that 
complement the recycling defect of rpd3∆ cells, which 
were all confirmed by further imaging experiments 
(Figure 5C) and quantification using the analysis pipeline 
discussed above (Figure 5D). We included images and 
analysis of Prm8 as a control, as PRM8 was the most 
repressed gene that failed to complement recycling upon 

over-expression. To validate these complementation 
factors, we employed a distinct recycling assay based on 
the lipid dye FM4-64, which can be loaded to endosomes 
for brief labelling periods, followed by tracking efflux via 
recycling that triggers dye quenching [20]. We found that 
the rate of efflux from recycling mutants is reduced 
(Figure 6A). Efflux can be tracked through a kinetic 
assay using flow cytometry, measuring fluorescence 
from ~1500 cells per second and the fluorescence of 
each cell is presented as a percentage of the initial 
fluorescence, calculated as the average from all events 
in first 10 seconds (Figure 6B). This assay was used to 
show that plasmid over-expression of Sit4, Dit1 and Ldb7 
all increase the rate of FM4-64 recycling observed in 
rpd3∆ cells (Figure 6C-F). A wild-type positive control, 
and rpd3∆ cells transformed with an empty vector as a 
negative control were performed at the same time and 
the profiles of these efflux measurements overlaid to 
each complementation profile. 
 
Rpd3 regulates the essential factor Pik1 

As the Rpd3 complex might also regulate 
expression of essential genes that are involved in 
membrane trafficking of surface proteins. To explore this 
possibility, we used recently optimised bioinformatics 
approaches [48] to assemble gene expression profiles of 
only essential genes that were not tested in the original 
recycling reporter screen (Figure 7A). We compared 
essential gene profiles of 7 different null strains 
representing Rpd3-complex members [50], many of 
which share large regions of expression patterns with 
hos2∆ and ume1∆ cells being most distinct (Figure 7B). 
As the recycling phenotypes are shared across the 
various mutants, we averaged the changes in expression 
across mutants to identify those with most significantly 
altered expression. Gene ontology analyses of the most 
repressed 43 genes (log2 fold change < 5.0) was 
performed and showed enrichment for processes 
including autophagy, phosphorylation and lipid regulation 
(Figure 7C), with a large amount of annotation overlap of 
the most enriched (Figure 7D). We considered PIK1, a 
phosphatidylinositol-4-kinase (PI4K) that regulates 
trafficking from both the Golgi and endosomes [58], 
would be a likely Rpd3 target gene with potential to 
regulate trafficking of surface membrane proteins. 
Indeed, the levels of PIK1 are substantially decreased in 
mutants of the Rpd3-complex, even when viewed with all 
essential and non-essential gene profiles (Figure 7E). To 
test the hypothesis that Pik1 is required for efficient 
recycling, we again employed the FM4-64 efflux assay 
(Figure 6A). For this, wild-type cells and temperature 
sensitive mutants were loaded with FM4-64 and the rate 
of efflux was measured over time. There was a significant 
decrease in recycling efficiency in cells expressing either 
mutant allele of pik1 (pik1-83 and pik1-139), even when 
the cytometry experiments performed in media that was 
not at restrictive temperature (Figure 7F).  

It has previously been proposed that the 
unfolded protein response (UPR), which is elevated in 
rpd3∆ cells, results in surface proteins like the uracil 
permease Fur4 to be retained in the ER and degraded 
[41]. This conclusion was based on dramatically reduced 
cellular levels of fluorescently tagged Fur4, not increased 
levels of GFP retained following vacuolar degradation. 

Figure 7: The essential PIK1 gene is an Rpd3 target that regulates surface 
recycling 
A) Pictorial representation of Ste3-GFP-DUb localisation screen where 
4,985 nonessential mutants were tested (green) but the 1,290 essential 
genes were not (orange). B) Heat map generated from changes in 
essential gene expression when indicated mutants are compared with 
wild-type cells. C) Gene Ontology analysis was performed on essential 
genes that had reduced expression of 5-fold or more when different 
rpd3∆ mutants (B) on average across all mutants (totalling 43 genes). D) 
Venn diagram showing the overlap of GO annotations (C) in top three 
scoring biological processes. E) Volcano plot of all genes, including 
essential and non-essential ORFs, showing changes in gene expression 
compared with wild-type cells for sin3∆, pho23∆, and cti6∆. The reduced 
levels of PIK1 are highlighted in each comparison (red). F) FM4-64 efflux 
measurements of wild-type cells and mutants harbouring temperature 
sensitive alleles of pik1 (pik1-83, green and pik1-139, blue) were 
performed by flow cytometry and plotted as a % of average initial 
fluorescence (from first 10 seconds). 
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However, Fur4 tagged with mNeonGreen (mNG) 
expressed in wild-type and rpd3∆ cells localises at the 
PM and inside the vacuole, with no indication of ER 
retention (Figure 8A). Furthermore, we observed no 
difference in overall levels of Fur4-mNG between wild-
type cells and rpd3∆ mutants (Figure 8B). For this 
reason, we propose the regulation of Rpd3 on cell 
surface proteins is not indirect via the UPR, but through 
regulation of factors required for recycling. We conclude 
that both non-essential and essential gene targets of the 
Rpd3-complex have the capacity to regulate cell surface 
recycling governed at the transcriptional level (Figure 
8C). 
 
DISCUSSION 

The lysine deacetylase Rpd3, alongside many of 
its physical interactors, are known to have massive 
effects on gene expression in yeast [50,59–61]. The 
identification of all 10 members of the complex from a 
blind screen [19] strongly implicate the Rpd3 complex as 
a regulator of recycling in yeast. In this study, we showed 
that these 10 subunits are required for recycling, but to 
different degrees. We stably integrated Ste3-GFP-DUb 
to give consistent phenotypes over plasmid-borne 
expression initially used to screen for factors. This 
allowed a quantification approach to specifically measure 
how much GFP signal was found efficiently recycled to 
the PM versus signal retained in endosomes (Figure 2). 
Importantly, these results were compared to the 
quantitation of a growth defect indirectly associated with 
Tat2 recycling (Figure 3). For example, hos2∆ mutants 
were amongst the most defective mutants in both 
quantified assays, and both ume1∆ and pho23∆ were the 
least defective. We note that unlike Ste3-GFP-DUb 
localisation, the tryptophan-uptake assay was not 
sensitive enough to identify defects in Tat2 recycling in 
pho23∆ mutants. Although Rpd3 is associated with 
global deacetylation events [31], Pho23 is more limited to 
a specific subset of loci [62,63], so it may be that Pho23 
does not regulate all genes associated with efficient 
recycling. We show the DNA-binding protein Ume6 is 
required for recycling, with ume6∆ mutants one of the 
most defective Tat2 recycling mutants. The genetic 
screen did not identify several Rpd3 subunits, such as 
the DNA-binding protein Ash1 (Figure 4), which exhibits 
gene specific regulation with Ume6 [64]. Therefore many, 
but not all, Rpd3-subunits are required for efficient 
transcriptional control of the recycling pathway. 

To explain these results, a phenotypic 
complementation screen was performed by over-
expressing downstream recycling genes repressed in 
rpd3∆ mutants. We predicted this over-expression 
strategy using 2µ based plasmids retained with 100s of 
copies per cell [65], would overwhelm repression 
mechanisms in rpd3∆ cells to reveal and bona fide target 
recycling genes. 32 candidates were tested in this 
screen, with only two additional candidates, HDA1 and 
GPA1, failing to yield viable transformants after various 
attempts and optimisations. Higher levels of Hda1, which 
is histone deacetylase related to Rpd3 with shared 
molecular activity [31], might induce lethality in rpd3∆ 
mutants. This screen revealed 3 validated hits that 
rescue recycling of rpd3∆ mutants: the protein 
phosphatase Sit4, the transcriptional regulator Ldb7 and 

the sporulation factor Dit1 (Figures 5 & 6). The Sit4 
phosphatase is a strong candidate for regulating 
recycling as it has been previously shown to modify 
machinery in secretory [66] and endocytic [67] trafficking 
pathways. Ldb7 is itself a transcriptional regulator [68], in 
the family of low-dye-binding mutants associated with 
Golgi function, stress response and cell wall organisation 
[69], any of which might indirectly impinge in recycling. 
Finally, Dit1 which regulates formation of spore walls 
following developmental expression of starved diploid 
cells [70,71]. DIT1 is repressed in haploids via Ssn6-
Tup1 repressor [72] and increased greatly during 
sporulation [73]. However, many independent studies 
report haploid expression of DIT1, that can be further 
repressed upon increased temperature [74], deletion of 
RPD3 [49] or addition of the Rpd3 inhibitor trichostatin A 
[75], potentially pointing to a distinct function. Finally, the 
implication of the Pik1 in recycling (Figures 7) is easily 
rationalised as it is known to modify lipids required for 
proper Golgi and endosomal trafficking [58], so fine 
tuning of these various pathways that control surface 
proteins could be mediated via the Rpd3-complex. 
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Figure 8: Summary model 
A) Wild-type and rpd3∆ cells expressing Fur4-mNeonGreen (Fur4-mNG) 
from a plasmid were grown to mid-log phase, resuspended in azide 
containing buffer and then imaged using confocal fluorescence 
microscopy. B) Micrographs from (A) were segmented based on DIC 
images and then the GFP fluorescence signal measured for each wild-type 
(n = 93) and rpd3∆ (n = 94) cells, then mean intensity plotted. C) The Rpd3 
chromatin remodelling complex localises to the nucleus and post-
translationally deacetylates histones (HDAC activity) to control expression 
of PIK1, SIT4, LDB7 and DIT1, which are all required for efficient cell 
surface recycling of internalised surface membrane proteins and lipids. 
Scale bar, 5 µm. 
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Our observations are consistent with other 
reports in the literature relating to surface protein 
regulation and the Rpd3-complex. For example, the Trk2 
surface potassium channel has been proposed to be 
negative regulated in cells mutants of rpd3 [76]. Similarly, 
although as rpd3∆ cells have increased expression of the 
major acid phosphatase PHO5 [77], phosphate uptake 
via the surface localised H+/PO43− symporter Pho84 is 
defective in rpd3∆ cells, with accumulation of Pho84-GFP 
in endosome-like compartments in cells lacking RPD3 
[78]. Encouragingly, both our bioinformatic and functional 
observations on recycling align with a study on how yeast 
cells respond to exposure to the anti-malaria drug 
artemisinin, which found both rpd3∆ and sit4∆ cells were 
hypersensitive to the drug and suggest this is due to 
premature degradation of surface proteins [41]. Beyond 
this, we have previously shown that the developmentally 
regulated expression of the Cos proteins, which drive 
ubiquitin-mediated vacuolar degradation of surface 
proteins in trans [79], is ablated by deletion of either 
RPD3 or SIN3 [80]. This demonstrates that complex and 
overlapping modes of transcriptional regulation control 
the membrane trafficking routes used by cell surface 
membrane proteins.  

The experimental validation of these candidates 
demonstrates the complexity of surface protein recycling 
in yeast. As Rpd3 and some of the downstream recycling 
gene targets discussed are highly conserved throughout 
evolution, this regulatory control could be maintained in 
other eukaryotic systems. Indeed, Rpd3 has orthologues 
expressed in various other eukaryotic systems, and its 
roles could be understood in terms of regulating surface 
membrane proteins. For example, in Drosophila, Rpd3 is 
required for cells to respond appropriate to nutrient 
starvation [81]. For discoveries in yeast relating to 
recycling and its metabolic or transcriptional control, we 
recommend using more than one assay, such as Ste3-
GFP-DUb localisation (Figure 1), Tat2 mediated 
tryptophan update (Figure 3), or efflux of internalised 
FM4-64 (Figure 6), to fully validate any defect. Beyond 
this, we promote the use of bioinformatics to identify 
downstream targets of transcriptional regulators for 
experimental testing, as discussed in this study. Future 
work will be aimed at deciphering the individual roles of 
these new candidates in the recycling pathways and 
understanding any functional overlap. 

 
 
METHODS 
 
Reagents 
Yeast strains and are included as supplemental tables 
(Table S1 and Table S2, respectively). 
 
Yeast strains and culture conditions 
Yeast strains used in this study are listed in Table S1 and 
were grown in either yeast extract peptone dextrose 
(YPD) media, for example when making competent cells, 
or synthetic complete (SC) minimal drop-out media 
lacking appropriate bases/amino acids, when selection of 
plasmids or integrations was necessary. Competent 
yeast stocks were prepared in Li-TE sorbitol buffer 
(100mM lithium acetate, 10mM Tris.HCl pH 7.5, 1.2M 
sorbitol, 1mM EDTA, 200µM calcium chloride) and 

plasmids incubated for 40 mins at 30°C followed by heat 
shock at 42°C for 20 minutes and plating on solid 
selective media. Yeast cultures were prepared by 
inoculation from a clonal yeast patch and grown 
overnight at 30°C in 5 ml two-fold serial dilutions to 
ensure cells used in experimental procedures were at 
mid log (OD600 = ~1.0). Expression of proteins from the 
CUP1 promoter was induced by addition of 50 μM 
Copper Chloride (CuCl2) to the media for at least 1 hour 
prior to experiments. Nuclei of yeast cells were labelled 
with fluorescent DNA stain by first growing to mid-log 
phase, washing in fresh SC media, prior to addition of 8 
µM Hoechst-33342 (InvitrogenTM) for 30 minutes. 
Bacterial culture  
Plasmid DNA listed in Table S2 was stored and 
propagated in Top10 Escherichia coli (InvitrogenTM). For 
plasmid isolation, E. coli were grown in 2YT media (w/v: 
1.6% tryptone, 1% yeast extract, 0.5% NaCl) containing 
either 100 µg/ml ampicillin sodium salt (Melford) or 50 
µg/ml kanamycin monosulphate (Formedium) each 
diluted from 1000x frozen stock.  
 
DNA manipulations 
Yeast expression plasmids were purified from ~5ml 
saturated cultures using a Wizard® DNA Purification 
System (Promega) and were transformed into competent 
yeast. The Gibson assembly principle [82] of incubating 
homologous PCR products with Taq ligase (NEB), T5 
exonuclease (NEB) and Phusion polymerase (NEB) for 1 
hour at 50°C, followed by plating on selective 2YT media, 
was used to create different fluorescently labelled Rpd3 
expression constructs, which were confirmed by Sanger 
sequencing. Stable integrations of Ste3-GFP-DUb under 
control of the STE3 promoter were performed by 
linearising pCM850 with NsiI followed by ethanol 
precipitation and transformation into the various parental 
yeast strains. For strains with loxP flanked integrations, 
cassettes were excised using a modified TEF1-Cre 
expression system [83] 
 
Fluorescence microscopy 
Yeast cells were grown to mid-log phase and prepared 
for confocal microscopy by centrifugation to concentrate 
samples and resuspension in water prior to storage on 
ice prior to confocal microscopy. Imaging was performed 
from live cells using a laser scanning confocal 
microscope (Zeiss LSM 780) with a 63x Differential 
Interference Contrast (DIC) or 63x Phase-Contrast (PC) 
oil-immersion objectives (Objective Plan-Apochromat 
63x/1.4 Oil, Numerical Aperture 1.4, Zeiss). 
Fluorescence microscopy images were captured via Zen 
Black (Zeiss) software and modified for contrast, colour 
and merge in ImageJ (version 2.0.0). 
 
Flow cytometry FM4-64 recycling assay 
Mid-log phase yeast cells were concentrated 5-10x and 
brough up in fresh 100 µl YPD containing 40 µM FM4-64 
dye (N-(3-Triethylammoniumpropyl)-4-(6- (4-
(Diethylamino) Phenyl) Hexatrienyl) Pyridinium 
Dibromide) dye. FM4-64 was loaded to endosomes for 8 
minutes at room temperature prior to 4x 5minute washes 
in cold SC media. Cells were resuspended in a small 
volume (100 - 200 µl) ice cold SC media and ~10 µl 
added to a flow cytometer tube with 3 mls room 
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temperature SC media and fluorescence measurements 
taken immediately for a 600 second period using an LSR 
Fortessa instrument (BD Biosciences). Flow rate was set 
to flow at a rate between 1000 – 2000 cells per second. 
FM4-64 fluorescence was measured with a 561nm 
excitation laser, and emission filter 710 / 50. Flow data 
was analysed using FCS Express (version 7.06.0015; 
DeNovo). 
 
Immunoblotting 
Lysates were generated from mid-log phase yeast by 
resuspension in 0.2 M sodium hydroxide for 3 minutes 
before pelleting and resuspension in TWIRL buffer (8M 
urea, 10% glycerol, 5% SDS, 10% 2-Mercaptoethanol, 
50mM Tris.HCl pH 6.8, 0.1% bromophenol blue). Lysates 
were resolved by SDS-PAGE before protein transferred 
to nitrocellulose using the iBlot2 system (ThermoFisher). 
Membrane was blocked in 5% milk followed by probing 
with either α-HA Mouse Monoclonal (Catalogue #HA.11; 
Biolegend, SanDiego, CA) or α-Rsp5 Rabbit Polyclonal 
[84] antibodies. Secondary antibodies conjugated to 
HRP (Abcam, PLC) were used to visualise signals using 
the Pico Plus (ThermoFisher) Enhanced 
chemiluminescence substrate and an iBrightTM Imager 
(ThermoFisher). 
Bioinformatics & statistics 
For non-essential (Figure 5) and essential (Figure 7) 
recycling gene candidates, gene expression profiles 
were averaged across all mutants, since all mutants 
phenocopy one another with regards to recycling defects, 
and prioritised based on this average. Heat maps were 
generated to show distribution of individual values across 
mutants. Microarray data documenting expression 

changes (log fold and p values) were read into RStudio 
(version XXX RStudio Team, 2020) then processed using 
the dplyr (v1.0.7; Wickham et al., 2021) and tidyverse 
(v1.3.0; Wickham et al., 2019) packages to include only 
data for indicated deletion strains of the Rpd3-complex. 
The data were further sub-setted to include genes 
deemed essential for viability (1290 ORFs represented) 
acquired from the Saccharomyces Genome Database. 
Hierarchical clustering was visualised in the form of a 
heatmap using base R. Gene Ontology enrichments 
were performed using GO Term Finder (version 0.86) via 
YeastMine [85,86]. Physical interaction maps were 
generated using STRING pathway (version 11.5) 
analysis software [87]. Statistical analyses were 
performed using Graphpad (Prism, version 9.0.2). 
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