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Abstract 
 

Objective: Emotional states are expressed in body and mind through subjective experience of 

physiological changes. In previous work, subliminal priming of anger prior to lexical decisions increased 

systolic blood pressure (SBP). This increase predicted the slowing of response times (RT), suggesting that 

baroreflex-related autonomic changes and their interoceptive (feedback) representations, influence 

cognition. Alexithymia is a subclinical affective dysfunction characterized by difficulty in identifying 

emotions. Atypical autonomic and interoceptive profiles are observed in alexithymia. Therefore, we 

sought to identify mechanisms through which SBP fluctuations during emotional processing might 

influence decision-making, including whether alexithymia contributes to this relationship. 

Methods Thirty-two male participants performed an affect priming paradigm and completed the Toronto 

Alexithymia Scale. Emotional faces were briefly presented (20ms) prior a short-term memory task. RT, 

accuracy and SBP were recorded on a trial-by-trial basis. Generalized mixed-effects linear models were 

used to evaluate the impact of emotion, physiological changes, alexithymia score, and their interactions, 

on performances.  

Results A main effect of emotion was observed on accuracy. Participants were more accurate on trials 

with anger primes, compared to neutral priming. Greater accuracy was related to increased SBP. An 

interaction between SBP and emotion was observed on RT: Increased SBP was associated with RT 

prolongation in the anger priming condition, yet this relationship was absent under the sadness priming. 

Alexithymia did not significantly moderate the above relationships.  

Conclusions Our data suggest that peripheral autonomic responses during affective challenges guide 

cognitive processes. We discuss our findings in the theoretical framework proposed by Lacey and Lacey 

(1970). 

Keywords (up to 6): Systolic blood pressure (SBP), Baroreflex, Alexithymia, Affective priming, 

Emotion, EFE 
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Abbreviations: AIC = Akaike Information Criterion; AUQ = Alcohol Use Questionnaire; EFE = 

Emotional Facial Expression; IAPE = Implicit Affect Primes Effort (IAPE); PMM =Predictive Mean 

Matching; SBP = Systolic Blood Pressure; TAS-20 = Toronto Alexithymia Scale-20 items.  
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1. Introduction (~<1500) 

Emotional feeling states originate in part through subjective experience and cerebral representation of 

peripheral physiological reactions to affective stimuli (James, 1884; Lange, 1912). Bodily changes also 

inform and influence perceptual experience, allocation of attentional resources, emotional processing and 

decision-making (Bechara, Tranel, Damasio, & Damasio, 1996; Garfinkel et al., 2016; Gray, Minati, 

Paoletti, & Critchley, 2010; Makovac et al., 2017; Makovac et al., 2015; H. D. Park, Correia, Ducorps, & 

Tallon-Baudry, 2014; Łukowska, Sznajder, & Wierzchoń, 2018). One experimental means of testing how 

autonomic changes influence cognition is the use of an affective priming paradigm. Here, the emotional 

valence of a briefly presented stimulus (i.e. the prime) affects the processing of subsequent stimuli. 

Typically, if the prime and the target are of the same valence, a facilitatory effect (e.g. reduced reaction 

times) is observed. If the valence is different, an inhibitory effect is observed (e.g. increased reaction 

times) relative to a non-valenced control condition. In some forms of this paradigm, the prime is followed 

by a stimulus that prompts performance of a task, e.g. making a lexical decision (Hull, Slone, Meteyer, & 

Matthews, 2002). For example, the subliminal presentation of the word “ANGER” (vs “RELAX”) as a 

prime, just prior to rapid judgments of letter-strings, increases systolic blood pressure in healthy 

individuals. Here, the magnitude of this increase predicts RT prolongation on the task (Garfinkel et al., 

2016). Increased systolic blood pressure is also observed in priming studies using emotional faces 

(Gendolla & Silvestrini, 2011; Lasauskaite, Gendolla, & Silvestrini, 2013; Silvestrini & Gendolla, 2011b, 

2011c) (for review see van der Ploeg, Brosschot, Versluis, & Verkuil, 2017). Affect primes are proposed 

to activate affective mental representations influencing physiological reactivity (Gendolla, 2012), 

informing behavioral responses via afferent (interoceptive) feedback. However, in some forms of 

emotional dysfunction including alexithymia, the representation, and integration of interoceptive bodily 

responses appears to be impaired.  

Alexithymia is a personality construct classically defined by difficulties in describing and identifying 

ones’ own emotional feelings (Apfel & Sifneos, 1979; Taylor, Ryan, & Bagby, 1985). Alexithymic 
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subjects show abnormal affective regulation characterized by reduced emotional faces recognition, 

delayed automatic rapid facial reactions, reduced empathy, reduced emotional awareness, abnormal 

emotional remapping and higher body representation malleability (Georgiou, Mai, & Pollatos, 2016; 

Grynberg et al., 2012; Grynberg & Pollatos, 2015; Lane, Hsu, Locke, Ritenbaugh, & Stonnington, 2015; 

Moriguchi et al., 2007; Scarpazza, Ladavas, & Cattaneo, 2017; Scarpazza, Ladavas, & di Pellegrino, 

2015).  

Recent work suggests that interoceptive failure (e.g. reduced sensitivity to bodily sensations) is core to 

emotional impairments observed in alexithymia (Betka et al., 2017; Bird et al., 2010; Brewer, Cook, & 

Bird, 2016; Hogeveen, Bird, Chau, Krueger, & Grafman, 2016; J. Murphy, Catmur, & Bird, 2017; Shah, 

Hall, Catmur, & Bird, 2016). Indeed, visceral arousal informs the complex experience of subjective 

feelings (Critchley & Harrison, 2013; Shah, Catmur, & Bird, 2017; Tsakiris & Critchley, 2016). For 

example, one channel communicating cardiovascular arousal originates in afferent signals from arterial 

baroreceptors localized in the aorta and carotids. The arterial baroreflex is a homeostatic mechanism that 

minimizes fluctuation in blood pressure through coupling afferent baroreceptor signals to efferent control 

of heart rate, cardiac output and peripheral resistance (Brading, 1999; Eckberg & Sleight, 1992). 

Observations in hypertensive patients can inform our understanding of how interoceptive abnormalities 

may underlie the expression of alexithymia. In hypertension, abnormalities of the baroreflex mechanism 

are observed, including reduced baroreflex sensitivity (Mussalo et al., 2002). Hypertensive patients are 

also reported to show impaired interoceptive abilities during a heartbeat detection task (Yoris et al., 

2017).This deficit is observed independently of heart rate or heart rate variability (HRV; an index of 

parasympathetic cardiac control) and exteroceptive abilities remain preserved (Yoris et al., 2017).This 

disruption of interoceptive processing in hypertensive patients is likely to contribute to the association 

between raised resting systolic blood pressure and impaired emotional processing (McCubbin et al., 2011; 

Pury, McCubbin, Helfer, Galloway, & McMullen, 2004).These findings suggest important significance of 

blood pressure on aspects of interoception.  
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Conversely, peripheral autonomic abnormalities are documented in alexithymic subjects who are at 

increased risk of premature death and cardiovascular disease (Helmers & Mente, 1999; Kauhanen, 

Kaplan, Cohen, Julkunen, & Salonen, 1996; Kauhanen, Kaplan, Cohen, Salonen, & Salonen, 1994; 

Tolmunen, Lehto, Heliste, Kurl, & Kauhanen, 2010). Dampened autonomic reactivity to emotional 

challenges or stress supports a hypoarousal model of alexithymia (Cecchetto, Korb, Rumiati, & Aiello, 

2018; Constantinou, Panayiotou, & Theodorou, 2014; Neumann, Sollers, Thayer, & Waldstein, 2004; 

Peasley-Miklus, Panayiotou, & Vrana, 2016; Pollatos et al., 2011). However, there is yet no conclusive 

evidence for an association between alexithymia and abnormal baroreflex sensitivity (Virtanen et al., 

2003). Alexithymic individuals report higher self-reported anxiety and show greater systolic blood 

pressure reactivity during the stress of blood donation (Byrne & Ditto, 2005). During anger recall, 

alexithymic individuals have attenuated cardiac responses (Neumann et al., 2004) but then show 

hampered recovery (of diastolic blood pressure recovery and cardiac preejection period), compared to 

non-alexithymic individuals (Neumann et al., 2004). Nevertheless, alexithymia is more prevalent among 

hypertensive patients than in the general population (Gage & Egan, 1984; Jula, Salminen, & Saarijarvi, 

1999; Todarello, Taylor, Parker, & Fanelli, 1995).  

A few studies have tested affective priming effects in alexithymia, but with variable methodologies. 

Priming by verbal stimuli is reportedly enhanced in alexithymia (Suslow, 1998), and greatest for negative 

primes when emotionally congruent with targets (Suslow, Junghanns, Donges, & Arolt, 2001). In a third 

study using different types of prime/target associations (e.g. verbal-verbal; facial-verbal; verbal facial 

etc.), alexithymia also reportedly moderates the impact of angry face primes on the evaluative judgment 

of an affective target, the effect apparent across verbal, visual and cross-modal trials (Vermeulen, 

Luminet, & Corneille, 2006). When primes and targets are specifically related to illness (e.g. verbal 

prime: “dizziness”), alexithymia was associated with faster reaction times for negative and positive verbal 

primes to illness-related targets (Brandt, Pintzinger, & Tran, 2015). These studies do not report implicit 

physiological responses.  
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1.1. Aims and hypotheses 

Therefore, we sought to identify the relationship between physiological changes evoked by emotional 

primes (indexed by systolic blood pressure) and cognition (indexed by accuracy and speed of decision-

making). A second aim was to explore whether alexithymia contributed to this relationship.  

We expected that greater accuracy and shorter reaction times on a short-term / working memory task will 

be predicted by increased systolic blood pressure in the emotional priming conditions (anger and sadness) 

compared to the neutral priming condition.  

Also, we hypothesized that alexithymia may partly mediate the relationship between physiological 

changes and decision-making through its association with increased systolic blood pressure at rest.  

Given the well documented co-occurrence of depression, anxiety and alcohol use disorders in alexithymia 

(Finn, Martin, & Pihl, 1987; Hendryx, Haviland, & Shaw, 1991), we additionally assessed these variables 

in order to control for potential cofounding effects.  
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2. Methods  

2.1. Participants  

Thirty-two male volunteers (mean age 25.1 yrs; range 18–36yrs) took part in the experiment, based on a 

sample size calculation using statistical information from a similar study (Garfinkel et al., 2016). The 

present study contributed to the baseline session of a larger project looking at the impact of intranasal 

oxytocin on emotional regulation processes. For this reason, only male participants were recruited, via 

poster advertisements placed around the University of Sussex and Brighton and Sussex Medical School. 

All participants were healthy, with no history of psychiatric or neurological diseases. The average number 

of years of education was M= 16.9 (SD = 2.6). All participants gave their written informed consent and 

were compensated £7 per hour for their time. The study was reviewed and approved by the BSMS 

Research Governance and Ethics committee. 

2.2. Material  

2.3. Stimuli 

A modified version of a Sternberg Task (e.g. item-recognition paradigm involving short-term / working 

memory) was designed(Sternberg, 1966). Ninety-six strings of seven letters were selected (e.g. 

KOPLTFV, IZTNLDS). Each presentation of a letter-string was followed by visual mask then the 

presentation of a target letter. The target letter was present in half of the letter-string trials. During the 

experiment, the letter-string was preceded by a visual prime: a very short presentation of an image 

displaying an emotional facial expression (EFE) of sadness, anger or neutrality. For each of these 

affective conditions, there were 32 trials (32 letter-strings preceded by an EFE of sadness, 32 letter-strings 

preceded by an EFE of anger, 32 letter-strings preceded by an EFE of neutrality). The EFE, coloured and 

from front perspective, were chosen from the Karolinska Directed Emotional Faces battery (Goeleven, De 

Raedt, Leyman, & Verschuere, 2008, for list of stimuli codes see the supplementary section). Trials were 
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presented in blocks of four consecutive trials of the same EFE, balanced and randomised for male/female 

gender. This cognitive task was run using Matlab. 

2.4. Physiological recording 

Blood pressure was recorded using non-invasive, beat-to-beat monitoring via photoplethysmographic 

technology (Finometer PRO , Finapres medical systems, Amsterdam, The Netherlands). An inflatable 

finger cuff and infrared plethysmograph were fitted to the middle finger of the participant’s left hand, 

allowing measurements of beat-to-beat systolic blood pressure. The heart level electrode was attached to 

participant’s clothing in the mid-clavicular line at the level of the heart. Physiological data was recorded 

using Spike software 2 6.08. 

2.5. Questionnaires 

2.5.1. Toronto Alexithymia Scale-20 items (TAS-20) 

The TAS-20 (Bagby, Parker, & Taylor, 1994) consists of 20 items rated on a five-point Likert scale (from 

1 “strongly disagree” to 5 “strongly agree”). Exploratory factor analysis and confirmatory factor analyses 

demonstrated that TAS-20 had a good internal consistency (Cronbach’s α=0.81), a good test-retest 

reliability (0.77, p <0.01) and a three-factor structure, in both clinical and non-clinical populations 

(Haviland, Shaw, MacMurray, & Cummings, 1988; Taylor et al., 1988). The TAS-20 is composed of 

three factors. The first factor measures difficulties in identifying feelings (DIF), the second factor 

measures difficulties in describing feelings (DDF) and the third factor measures the way the participant 

uses externally oriented thoughts (EOT). The total alexithymia score is the sum of responses across all 20 

items. We only considered the total score in our analyses. High alexithymic are characterised by a score > 

or = 61; non alexithymic are characterised by a score < or = 51; between 50 and 60, subjects are 

characterised as intermediate. 

2.5.2. Trait Anxiety (STAI) 
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Trait anxiety was assessed using the Trait version of the Spielberger State/Trait Anxiety Inventory (STAI; 

Spielberger et al., 1983). This questionnaire is composed of 20 questions, assessing trait anxiety with 

questions such as “I lack self-confidence” and “I have disturbing thoughts”. Participants were asked to 

answer each statement using a response scale which runs from 1 = “Almost never” to 4 = “Almost 

always” in order to capture a stable dispositional tendency (trait) for anxiety.  

2.5.3. Beck Depression Index II (BDI) 

Symptoms and severity of depression were evaluated using the BDI (Beck, Steer, Ball, & Ranieri, 1996). 

Participants responded to 21 questions designed to assess the individual’s level of depression (e.g. 

Sadness, pessimism, past failure etc.). The BDI items are scored on a scale from 0–3. All items were then 

summed for a BDI total score.  

2.5.4. Alcohol Use Questionnaire (AUQ) 

The AUQ (Mehrabian & Russell, 1978) is a 15-item scale measuring in a detailed way the quantity of 

alcohol consumption (alcohol units of 8g drunk per week). For the past six months, participants were 

asked to estimate the number of drinking days, the usual quantity consumed and drinking pattern. For the 

purpose of our study, we used only the drinking quantity (i.e. alcohol units per week).  

2.6. Procedure 

The study was conducted at the Clinical Imaging Science Centre in Brighton, United Kingdom. 

Participants were asked to abstain drinking 24h before the experiment and gave fully informed consent. 

Demographic data (e.g. age, education level) were recorded and psychometric questionnaires were 

administered. Participants were breathalyzed and a urinary sample was collected to test for drug use. Task 

instructions were explained again and an inflatable Finometer finger cuff was then fitted to participants’ 

middle finger. After a 5 min recording calibration period, the participant was invited to start the Sternberg 

Task (Gendolla & Silvestrini, 2011). Each trial began with a 1000 ms fixation cross, followed by the EFE 

(20 ms) and a backward Mondrian mask (125 ms). This rapid series of events was immediately followed 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.22.465429doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465429
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

by a string of seven letters that remained on screen for 750ms, followed by a backward mask of seven 

“X” letters (750 ms). Then a target letter appeared at the centre of the screen until participants made a 

decision (max 2000ms), denoting whether or not the target letter was present in the earlier letter-string by 

pressing the right or the left arrow key, respectively. Next, a visual analogue scale allowed participants to 

rate their confidences for each trial, from “zero” to “extreme” (3000ms). In case of non-response, the 

message “Please answer more quickly” was presented during 3000ms. Finally, an inter stimuli interval of 

randomised duration (between 100 to 300 ms) was added before the beginning of the next trial. The 

maximum duration of a trial was 7s 645ms. Participants were encouraged to answer as quickly and 

accurately as possible. Reaction times (RT) and accuracy were recorded. The order in which these blocks 

were presented was randomized. Pilot study data showed participants would be unaware of the emotional 

nature of the prime stimulus (Gendolla & Silvestrini, 2011). However this was not formally confirmed for 

each individual trial in the main study. 

2.7. Data analyses 

2.7.1. Behavioural data processing 

One participant was excluded due to a depression score above three standard deviations of the mean. 

Reaction time on the Sternberg task and accuracy of response were recorded for each trial. Very fast 

reaction times (< or = 100ms) were deleted (Whelan, 2008). Missing data were quantified. Seventy-six 

reaction times data points were missing on a total of 1240 observations. Rather than deleting these cases, 

we performed multiple imputation using predictive mean matching. Predictive mean matching (PMM) is 

a semi-parametric imputation approach which imputes missing values by means of the nearest-neighbour 

donor with a distance based on the expected values of the missing variables conditional on the observed 

covariates (Little, 1988) We calculated these using the Multiple Imputation by Chained Equations 

(MICE) package in R, with PMM as method of imputation and the number of imputations set at 5 (Van 

Buuren & Groothuis-Oudshoorn, 2011). Imputed data were checked and included in the dataset.   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.22.465429doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465429
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

2.7.2. Physiological data processing 

Inter-beat-Interval (IBI, ms), beat-to-beat values of systolic blood pressure (mmHg; from Finapres) and 

event-related information were extracted from recordings in Spike. Physiological data were smoothed 

using a Gaussian function (set to 1) to create a constant signal over systolic peaks and average across 

potential spike artefacts. Events data were aligned and binned at 100�Hz. All data were exported to 

Matlab (MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, 

United States). Trial-by-trial systolic blood pressure levels values were derived from the averaged height 

of systolic peaks between the EFE presentation and the end of the VAS presentation over each trial.  

2.8. Statistical Analyses  

2.8.1. Correlations  

Mean and standards deviations were computed for reaction time, accuracy and systolic blood pressure. 

Physiological and behavioral measures were correlated to psychometric data, using 2-tailed 

nonparametric correlations.  

2.8.2. Mixed effects linear models 

We used mixed-effects modeling to test effects of the variables (accuracy, reaction times (RT) and 

systolic blood pressure (SBP)), measured on trial by trial basis, (Barr, Levy, Scheepers, & Tily, 2013).  

Accuracy was analyzed using a generalized linear mixed model as the outcome was binary (binomial 

family; Inaccurate =0; Accurate =1). To satisfy normality assumption, reaction times were also analyzed 

using a generalized linear mixed-effects model (Lo & Andrews, 2015). After fitting different density to 

the observed reaction times distribution, the relative quality of the models was estimated using Akaike 

information criterion (AIC). The lower AIC (e.g. best fit) was observed when a Gamma distribution was 

fitted to the observed reaction time distribution. 
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The same basic model was tested for each of the two outcomes (i.e. accuracy and reaction time). The 

basic model included systolic blood pressure, emotion (3 levels: Neutrality=0; Sadness=1; Anger=2), 

TAS score and the interactions terms as predictors. Therefore, intercept reflects the outcome value in the 

neutral condition. Given the established influence of age on blood pressure reactivity, age was included in 

the basic model as a control variable. Finally, participants were specified as a random (subject) factor, 

allowing for random intercepts. 

The basic model was then compared to a similar model that also included anxiety, depression and alcohol 

intake to test confounding effects of these variables, contrasting the goodness of fit of the models using 

likelihood ratio tests.  

All continuous predictors were mean-centered prior being entered in models. Analyses were undertaken 

using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015). For models including a random term, 

the default lme4 optimizer was used. Finally, p values were computed using lmerTest package 

(Kuznetsova, Brockhoff, & Christensen, 2014). All analyses were run in the R environment (version 

3.4.2; RCoreTeam, 2013).  

2.8.3. Post-hoc analyses: Heart rate variability  

In order to explore if accuracy, reaction times and systolic blood pressure were related to a deceleration at 

the heart rate level, we analysed the heart rate variability in the frequency domain. To do so, we used the 

software HRVAS (Ramshur, , http://sourceforge.net/projects/hrvas/?source=navbar). The Lomb-Scargle 

method was preferred as this method provides power spectral density estimates of unevenly sampled data 

(Laguna, Moody, & Mark, 1998). For each participant, we computed mean interbeat interval, low cardiac 

frequencies percentage (0.04Hz to 0.15Hz), high cardiac frequencies percentage (0.15Hz to 0.4Hz) and 

the ratio low-to-high cardiac frequencies. Finally, mean and standards deviations were computed for each 

variable. Physiological measures were correlated to behavioural data, using 2-tailed nonparametric 

correlations.   
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3. Results  

3.1. Mean, standard deviations, correlation and sample characterisation 

Means, standard deviations, ranges, and correlation coefficients between psychometric, physiological and 

behavioral measures, are presented in Error! Reference source not found.. We did not observe 

suprathreshold correlations across psychometric data, behavioral and physiological measures. Moreover, 

in this sample, we found also no positive correlation between alexithymia and resting systolic blood 

pressure. Concerning alexithymia scores, 10 participants were characterized as non alexithymic (32.26%), 

10 participants were classified as intermediate (32.26%), 11 participants were classified as alexithymic 

(35.48%). 

3.2. Accuracy  

Accuracy was analyzed with emotion (3 levels: Neutrality=0; Sadness=1; Anger=2), systolic blood 

pressure, TAS and their interactions as fixed factors. The participant (subject) variable was defined as a 

random factor (see methods section). The model controlled for age. The distribution was set as binomial 

(see Error! Reference source not found.).  

There was a main effect of emotion; anger primes elicited increased accuracy compared to sadness and 

neutrality conditions (β = -0.50, SE = 0.13, p < .001; see Figure 1). A main effect of systolic blood 

pressure was also observed: increased systolic blood pressure was further also related to increased 

accuracy (β = 1.56, SE = 0.6, p < .050). Interaction between systolic blood pressure and emotion (anger 

vs neutrality) was observed as a trend: Here, low systolic blood pressure was associated with better 

accuracy in the anger condition compared to the neutral condition. However, increased blood pressure led 

to similar accuracy in both conditions (β = -1.14, SE = 0.64, p = .070; see Figure 2). Interaction between 

TAS-20 and systolic blood pressure was also observed as a trend: While in non-alexithymic individuals, 

performance accuracy correlated positively with systolic blood pressure, alexithymic individuals showed 

increased accuracy at lower systolic blood pressures and their gain in accuracy with increasing systolic 
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blood pressure was reduced compared to non-alexithymic individuals (β = -0.1, SE = 0.05, p =.058; see 

Figure 3). There was furthermore a main effect of age (β = -0.06, SE = 0.03, p < .050). Addition of 

control variables (anxiety, depression, alcohol intake) to the model did not significantly improve the 

goodness of fit (Basic model: AIC =2586.9; Model with covariates: AIC = 2590.4; comparison: χ2 (3) = 

2.53; p = .470). 

3.3. Reaction Time  

Reaction times were analyzed with emotion (3 levels: Neutrality=0; Sadness=1; Anger=2), systolic blood 

pressure, TAS and their interactions as fixed factors. The participant variable was defined as a random 

factor (see methods section above). The model controlled for age. The distribution was set as gamma. (see 

Error! Reference source not found.). 

There was an interaction between systolic blood pressure and emotion (sadness vs. neutrality conditions): 

For neutral (and anger) primes, increases in systolic blood pressure was associated with prolongation of 

reaction times. However, increases in blood pressure during the sadness prime condition were associated 

with faster reaction times (β = -0.20, SE = 0.06, p < .001; see Figure 4). A main effect of systolic blood 

pressure on reaction time was observed as a trend (β = -0.14, SE = 0.08, p = .090). Addition of control 

variables (anxiety, depression, alcohol intake) to the model did not significantly improve the goodness of 

fit (Basic model: AIC =736.17; Model with covariates: AIC = 741.50; comparison: χ2 (3) = 0.67; p = 

.880). 
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3.4. Post-hoc analyses  

Means, standard deviations, and ranges, as well as uncorrected correlation coefficients between 

physiological and behavioral measures, are presented in Table 4. We observed a negative correlation 

between mean interbeat interval and correct responses percentage: greater accuracy was associated with 

increased heart rate (τ= -.323, p = .012). Reaction times were negatively correlated with low frequencies 

percentage suggesting an association between shorter reaction times and increased sympathetic (or mixed) 

activity (τ= -.254; p = .045). We did not observe suprathreshold correlations across HRV-related 

measures and systolic blood pressure.   
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4. Discussion (~<1500) 

In this present study, we tested how systolic blood pressure changes influence cognition during the 

processing of emotional primes, and explored how alexithymia might contribute to this relationship. We 

found an effect of emotional arousal on the accuracy of letter-string judgments: individuals were more 

accurate in their judgments when primed by angry faces compared to neutral faces. Moreover, better 

accuracy was associated with increased systolic blood pressure, regardless of the emotion. However, 

systolic blood pressure interacted also with the emotion quality of the prime on reaction time responses, 

where increasing blood pressure slowed reaction times following anger and neutrality primes but did not 

impact responses following sadness primes. We saw no direct moderating effect of alexithymia on 

accuracy or reaction times in our participants. Alexithymia did not correlate with blood pressure level. 

Nevertheless, a trend of interaction between systolic blood pressure and alexithymia on performance 

accuracy was still observed. Non-alexithymic individuals were more accurate in conditions associated 

with increased systolic blood pressure. In fact, alexithymic individuals were more accurate under low 

blood pressure compared to non-alexithymic individuals, whereas the inverse was observed under high 

blood pressure. Overall, alexithymic participants did not seem to benefit cognitively from blood pressure 

increases as much as non-alexithymic participants.  

Our first main finding was an effect of arousal of the affective primes on decision-making accuracy. Here, 

participants were more accurate on the Sternberg task after being primed by angry faces compared to 

neutral faces. These results are coherent with existing literature: briefly flashed visual anger stimuli 

influence behavior, even without stimulating explicit affective responses (Gendolla, 2012; S. T. Murphy 

& Zajonc, 1993; Winkielman, Berridge, & Wilbarger, 2005). Anger is a negative-valenced and 

particularly salient emotion, which preferentially captures attentional resources (Burra, Barras, Coll, & 

Kerzel, 2016; Burra, Coll, Barras, & Kerzel, 2017; Feldmann-Wustefeld, Schmidt-Daffy, & Schubo, 

2011; Hodsoll, Viding, & Lavie, 2011; Pinkham, Griffin, Baron, Sasson, & Gur, 2010; Shasteen, Sasson, 

& Pinkham, 2014). Presentation of angry face stimuli can increase visual short-term memory and working 
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memory via modulation of basal ganglia activation (Jackson, Wolf, Johnston, Raymond, & Linden, 2008; 

Jackson, Wu, Linden, & Raymond, 2009). One potential explanation for increased accuracy after anger 

priming is the triggering of a hypervigilant state by the emotional anger prime, enhancing attentional 

deployment, which improves task performance. Alternatively, when primed by anger, the participants 

experienced a subjective reduction in task demand and a consequent increased ease in performance, when 

compared to the neutral and sadness priming conditions (Chatelain, Silvestrini, & Gendolla, 2016; 

Gendolla & Silvestrini, 2011). The latter is consistent with the coupling of anger to appetitive and 

approach motivational systems (Carver & Harmon-Jones, 2009; Russell, 2003). Angry facial expressions 

facilitate the generation of approach rather than avoidance motor responses (Wilkowski & Meier, 2010) 

and dynamic angry faces increase motor corticospinal excitability, mediating implicit and automatic 

responses to threat (Hortensius, de Gelder, & Schutter, 2016).However, here we did not find a main effect 

of emotion on reaction times.  

Our second main finding, nevertheless, was a significant interaction between priming condition and 

systolic blood pressure. In both anger and neutral priming conditions increases in systolic blood pressure 

evoked increased reaction times. However, this linear relationship was absent in the sadness priming 

condition: reaction times did not seem to be modulated by systolic blood pressure changes. Moreover, in 

the sadness condition, lower systolic pressure was associated with longer reaction times. Blood pressure 

increases following verbal anger primes have been previously observed to predict a prolongation of 

reaction time on a lexical task (Garfinkel et al., 2016). The difference between these effects of anger and 

sadness primes parallels earlier findings: Sadness primes during an easy task can increase cardiovascular 

responses compared to anger primes, yet in a difficult task, the inverse pattern is found (Freydefont, 

Gendolla, & Silvestrini, 2012). Moreover, even masked sadness stimuli are associated with greater 

perceived difficulty and less ease when performing tasks (increased reactions times) and, therefore, 

increase the likelihood of disengagement when task demand becomes excessive (Silvestrini & Gendolla, 

2011a, 2011c). However, our data did not show any reaction time prolongation during the sadness 
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condition, as might be predicted by the implicit affect primes effort (IAPE) model of Gendolla as a sign 

of disengagement.  

Our third main finding was that, on a trial-by-trial basis, task performance accuracy was related to 

increased systolic blood pressure. These data extend the existent literature. As shown by intra-arterial 

recordings, a sympathetic mechanism is implicated in engendering the blood pressure increases that 

accompany simple reaction-time tasks, (Obrist et al., 1974; Paller & Shapiro, 1983). Lower blood 

pressure correlates with poorer performance on a visuospatial attentional task in young hypotensive 

women (Cellini, Covassin, de Zambotti, Sarlo, & Stegagno, 2013; Wharton et al., 2006). Moreover, 

pharmacological elevation of blood pressure improves cognitive performance in hypotensive patients 

(Duschek, Hadjamu, & Schandry, 2007). Typically a rise in blood pressure activates arterial 

baroreceptors, which ultimately inhibit both cardiac and cortical activity, impacting cognitive processes 

(Kimmerly, 2017; Rau, Pauli, Brody, Elbert, & Birbaumer, 1993). Natural or artificial baroreceptor 

stimulation can inhibit somatosensory afferent information flow (including pain) (Angrilli, Mini, Mucha, 

& Rau, 1997; Gray et al., 2010). This cardiac afferent mechanism is postulated to reduce input from the 

external environment and, thereby reduce inattention and distractibility. Correspondingly, our data (i.e. 

higher systolic blood pressure, higher accuracy), accompanied possibly by heartrate deceleration 

(reducing afferent cardiac feedback to the brain and thereby limiting interference with cognitive 

processes) might have been broadly in line with the notion of an increase in attentive observation of the 

environment (Lacey & Lacey, 1970). Speculatively, our observed increased blood pressure could have 

regulated cardiac output - via vagal influences. This control might have thus facilitated sensorimotor 

performance (Cellini et al., 2013; G. Park & Thayer, 2014; G. Park, Vasey, Van Bavel, & Thayer, 2013). 

Indeed, cardiac deceleration is itself modulated by arousal (e.g. threat) supporting the hypothesis of an 

evolutionary survival strategy (Hare, Wood, Britain, & Shadman, 1970; Libby, Lacey, & Lacey, 1973). 

However, we are cautious as we only observed a statistical trend in the interaction between blood pressure 

and emotion on performance accuracy. For the neutral condition, increased systolic blood pressure was 
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associated with greater accuracy. First, we recognised the relevance of this observation to Lacey and 

Lacey’s (1970) hypothesis. This model describes an association between cardiac deceleration and 

attention (or ‘intake’) directed to stimulations from the external environment; congruent with the lower-

level inhibitory influence on sensory processing and cortical excitability induced by baroreceptor 

activation. To test the Lacey and Lacey’s hypothesis, we conducted post-hoc analyses. These showed that 

greater accuracy and shorter reaction times were associated with faster heart rate and an increase in power 

of low frequency heart rate variability, respectively. Given the absence of an association between 

heartbeat deceleration or increased parasympathetic activity index (e.g. high cardiac frequencies) and 

accuracy, our data do not seem to support Lacey and Lacey’s hypothesis. Instead, the rise in systolic 

blood pressure and the greater accuracy seem to be both driven by increased arousal induced by affective 

priming. This interpretation is congruent with the observed increased accuracy, in the absence of a 

modulation bodily state, under anger priming condition. Moreover, this discrepancy between different 

emotional conditions suggests the involvement of emotion-specific pathways (Brooks et al., 2012; Lacey 

& Lacey, 1970). Also, it is important to specify that regression analyses do not allow determining whether 

the association between performance and physiological reactivity reflects a causal influence of the later to 

the former. For example, task performance and physiological activity might be both independent but 

parallel consequences of effortful cognitive processes, as proposed by the IAPE model (Gendolla, 2012). 

A secondary aim of the study was to characterise the impact of alexithymia on the relationship between 

bodily changes and behaviors. Here, we found a trend of an interaction between alexithymia and systolic 

blood pressure. Compared to non-alexithymic, alexithymic individuals benefitted least from systolic 

blood pressure fluctuations. Alexithymia is classically characterized by increased blood pressure and 

reduced interoceptive abilities (Betka et al., 2017; Bornemann & Singer, 2017; Brewer et al., 2016; Gage 

& Egan, 1984; Jula et al., 1999; J. Murphy et al., 2017; Todarello et al., 1995). Given their atypical 

autonomic profiles, one could postulate that alexithymic people might also attribute less salience to bodily 

changes and show impaired integration of autonomic information when compared to non-alexithymic. 
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Compensatory strategies developed by alexithymic individuals may explain, in part, why they are not 

impaired on the task. For example, alexithymic individual might use information related to bodily actions 

(e.g. increased somatosensory and motor areas activation) rather than affective states to correctly label 

emotional faces (Ihme et al., 2014). Alexithymic individuals may have particular difficulty in processing 

and automatically using high arousal emotional information in the context of cognitive challenges 

(Vermeulen et al., 2006). In that way, our data also suggest reduced integration of highly relevant 

emotional information in alexithymia. Further studies should clarify this relationship. 

4.1. Limitations 

Finally, we recognize limitations of our study. A larger sample might have increased statistical power and 

sensitivity to explore the impact of inter-individual characteristics on these relationships between body 

and behaviour. For example, it would have been interesting to measure trait anger and hostility, which is a 

factor known to modulate the effects of subliminal anger primes (Garfinkel et al., 2016; Wilkowski & 

Robinson, 2008). Another limitation is that after calibrating the stimuli independently, we did not conduct 

an awareness check during the task to establish the degree to which the very brief (20ms) primes were 

processed unconsciously by each partcipant. We, therefore, cannot guarantee that our affective prime 

stimuli were rendered fully subliminal (van der Ploeg et al., 2017), although this would be unusual for our 

rapid presentation of the primes. Also, an objective measure of effort mobilization would have permitted 

us to interpret our results more confidently in the framework proposed by the IAPE model (Gendolla, 

2012). Lastly, recent studies highlight the importance of taking in account both affective and cognitive 

dimensions of alexithymia as their autonomic signatures may differ (Cecchetto, Rumiati, & Aiello, 2017; 

Martínez-Velázquez, Honoré, de Zorzi, Ramos-Loyo, & Sequeira, 2017). We did not have this degree of 

granularity within the present dataset. 

4.2. Conclusion 
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In conclusion, our data demonstrate the interacting effects of peripheral autonomic changes and affective 

states in guiding mental processes. A growing literature highlights atypical autonomic profiles across a 

wide range of psychiatric disorders. Future studies should, therefore, clarify the weight given to 

autonomic information in the generation of behavioural responses, in vulnerable populations.  
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6. Tables 

Table 1 

  

C
or

re
ct

 
A

ns
w

er
 (

%
) 

R
ea

ct
io

n 
T

im
es

 (m
s)

 

Sy
to

lic
 B

lo
od

 
P

re
ss

ur
e 

 
(S

B
P

; m
m

H
g)

 

A
le

xi
th

ym
ia

 
(T

A
S-

20
)  

U
ni

t 
of

 
al

co
ho

l p
er

  
w

ee
k 

D
ep

re
ss

io
n 

sc
or

e 
 

(B
D

I)
 

M
ea

n 

St
d.

 D
ev

 

M
in

im
um

 

M
ax

im
um

 

Correct Answer (%) 
τ -      

83.47 8.80 54.17 97.92 
p .      

Reaction Times (s) 
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730 1380 
p 0.484 .     

Sytolic Blood Pressure  
(SBP; mmHg) 

τ -
0.108 

0.11 -    

125 19 78 161 
p 0.403 0.386 .    

Alexithymia (TAS-20) 

τ -
0.173 

0.128 -0.08 -   

55.13 9.69 36 74 
p 0.183 0.315 0.529 .   

Unit of alcohol per 
week 

τ 0.037 0.131 0.153 0.063 -  
24.57 18.32 4.5 69.5 

p 0.772 0.3 0.228 0.622 .  

Depression score (BDI) 

τ -
0.114 

0.039 -0.079 .265 -0.039 - 

11.58 7.57 0 29 
p 0.383 0.759 0.54 0.041 0.759 . 

Trait Anxiety (STAI) 
τ 0.11 0.064 -0.125 0.162 -0.086 .450 

47.71 12.31 22 66 
p 0.401 0.621 0.331 0.213 0.506 0.001 
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Table 2 

 β SE z  p   

Intercept  1.56 0.13 12.25 <0.001 *** 

Sadness -0.01 0.12 -0.09 0.93  

Anger  0.49 0.13 3.80 <0.001 *** 

Systolic Blood pressure 

(SBP) 

1.56 0.60 2.59 0.01 * 

TAS-20 0.01 0.01 0.51 0.61  

Age  -0.06 0.03 -2.28 0.02 * 

Sadness:SBP -0.59 0.59 -1.01 0.31  

Anger:SBP -1.14 0.64 -1.79 0.07 . 

Sadness:TAS-20 -0.01 0.01 -1.03 0.30  

Anger:TAS-20 -0.01 0.01 -0.77 0.44  

SBP:TAS-20 -0.10 0.05 -1.90 0.06 . 

Sadness:SBP:TAS-20 0.04 0.05 0.92 0.36  

Anger:SBP:TAS-20 -0.02 0.06 -0.39 0.70  
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Table 3 

 β SE  z  p   

Intercept  1.01 0.03 30.08 <0.001 *** 

Sadness -0.01 0.01 -1.03 0.30  

Anger  0.00 0.01 -0.07 0.95  

Systolic Blood pressure 
(SBP) 

-0.14 0.08 -1.69 0.09 . 

TAS-20 0.00 0.00 -0.51 0.61  

Age  0.00 0.01 0.26 0.79  

Sadness:SBP 0.20 0.06 3.36 <0.001 *** 

Anger:SBP -0.01 0.06 -0.19 0.85  

Sadness:TAS-20 0.00 0.00 0.94 0.35  

Anger:TAS-20 0.00 0.00 -1.01 0.31  

SBP:TAS-20 -0.01 0.01 -1.23 0.22  

Sadness:SBP:TAS-20 -0.01 0.00 -1.58 0.11  

Anger:SBP:TAS-20 0.00 0.00 0.27 0.79  
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Table 4 

  

Correct 

Answer 

Reaction 

Times 

Systolic Blood 

Pressure (SBP) 
Mean Std. Dev Minimum Maximum 

Mean Interbeat Interval 

(ms) 

Kendall's tau -.323 0.084 0.08 
842.69 106.00 606.3 1086.3 

Sig. (2-tailed) 0.012 0.507 0.529 

Low cardiac 

frequencies (%) 

Kendall's tau 0.097 -.254 0.215 
48.83 11.59 21.9 73.5 

Sig. (2-tailed) 0.453 0.045 0.089 

High cardiac 

frequencies (%) 

Kendall's tau -0.18 0.099 0.017 
25.25 12.14 8.3 64 

Sig. (2-tailed) 0.162 0.434 0.892 

Ratio Low/high cardiac 

frequencies 

Kendall's tau 0.158 -0.133 0.074 
2.50 1.60 0.34 7.07 

Sig. (2-tailed) 0.23 0.301 0.568 
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7. Tables Legends  

 

Table 1: Mean, standard deviations, range as well as uncorrected Kendall's tau correlation coefficients for 

psychometric, physiological and behavioural measures 

 

Table 2: Mixed-effects regression model to explain accuracy, using Emotion (Neutrality, Sadness, 

Anger), systolic blood pressure (SBP) alexithymia (TAS-20) and their interactions as predictors, and, age 

as control variable. signif. codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’ 0.1 

 

Table 3: Mixed-effects regression model to explain reaction times, using Emotion (Neutrality, Sadness, 

Anger), systolic blood pressure (SBP) alexithymia (TAS-20) and their interactions as predictors, and, age 

as control variable. signif. codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’ 0.1 

 

Table 4: Mean, standard deviations, range as well as Kendall's tau correlation coefficients for heart rate 

variability-related and behavioural measures.  
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8. Figure Legends  

 

Figure 1: Main effect of emotion on probability of being accurate (*** p < .001) 

 

Figure 2: Trend of interaction between systolic blood pressure and emotion on probability of being 

accurate (p = .070) 

 

Figure 3: Trend of interaction between systolic blood pressure and Alexithymia (TAS-20 scores) on 

probability of being accurate (p = .058). To illustrate this interaction, high alexithymic (represented by 

Mean TAS-20 score + 1SD = 65), intermediate (represented by Mean TAS-20 score = 55) and non 

alexithymic (represented by Mean TAS-20 score -1SD = 45) were plotted. 

 

Figure 4: Interaction between systolic blood pressure and emotion on reaction times (p < .001) 
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