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Abstract

Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease. The relative contributions of livestock

species to RVFV transmission has not been previously quantified. To estimate their potential to transmit

the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious

virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship

between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net

infectiousness of each host species over the duration of their infectious periods, taking into account different

survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the

lifespan of infectious particles, could be sources of heterogeneity between hosts. For similar infectious titers,

we found that infection rates in Aedes spp. vectors were significantly higher than in Culex spp. vectors.

Consequently, for Aedes infections, we estimated the net infectiousness of lambs to be 2.93 (median) and

3.65 times higher than that of calves and goats, respectively. Among lambs, individuals which eventually

died from the infection were 1.93 times more infectious than lambs recovering. Beyond infectiousness, the

relative contributions of host species to transmission depend on local ecological factors, including relative

abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design
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efficient, targeted, surveillance and vaccination strategies.

1 Introduction

At the beginning of this century, 75% of emerging pathogens in humans were estimated to be zoonotic (Taylor

et al., 2001) and 77% of livestock pathogens could be transmitted between different host species (Cleaveland

et al., 2001). Estimating the relative role different species play in sustaining or amplifying pathogen spread is

fundamental for designing control strategies (Hollingsworth et al., 2015; Buhnerkempe et al., 2015; Lloyd-Smith

et al., 2015; Webster et al., 2017), yet is hampered by an incomplete understanding of the host(-vector)-pathogen

interactions that underlie the spread of these pathogens (Roche et al., 2013; Vazquez-Prokopec et al., 2016; Fen-

ton et al., 2015; Martin et al., 2019).

The potential of a host to contribute to virus transmission is determined by the complex interplay of different

factors. For viruses transmitted by arthropod vectors (i.e., arboviruses) these epidemiological interactions are

driven both by ecological, population-level factors (i.e., the presence of specific host and vector species and

their respective interactions) and the individual-level interactions of the virus with its hosts and vectors. The

ability of a host species to infect a susceptible vector upon a potentially infectious contact is determined by the

latter. Namely, it derives from i) the viral replication in the host and ii) the ability of a vector to pick up the

virus upon blood feeding and subsequently become infected and infectious. While these processes can and have

been studied in experimental settings, combining these findings into epidemiologically meaningful parameters

is challenging (Althouse and Hanley, 2015; Bosch et al., 2018; Kain and Bolker, 2019).

Within-host mathematical models and accompanying inference frameworks have been developed to aid the anal-

ysis and interpretation of viral load patterns obtained in controlled infection experiments. Such models provide

insights into the biological mechanisms underlying observed patterns (Clapham et al., 2014; Ben-Shachar and

Koelle, 2015; Ben-Shachar et al., 2016; Clapham et al., 2016; Koelle et al., 2019) and how those patterns relate

to the clinical expression of the disease (Bosch et al., 2018). The majority of these modelling efforts are based

on viral RNA (or DNA) data, which are indirect measures of infectious virus. Efforts to combine these with

infectious virus data ( e.g., median tissue culture infectious dose, TCID50 or plaque forming units, PFU) have

recently emerged for influenza viruses and provide better mechanistic insights into the proportion of particles

that are infectious and could contribute to onward transmission (Schulze-Horsel et al., 2009; Pinilla et al., 2012;

Petrie et al., 2013, 2015; Simon et al., 2016; Yan et al., 2020).

Rift Valley fever virus (RVFV) exemplifies the challenges inherent to battling multi-host arboviruses. It was

first identified in Kenya, in 1930, after description of an enzootic hepatitis in sheep (Daubney et al., 1931). The
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virus has since caused outbreaks throughout the African continent as well as in the Southwest Indian ocean

islands (Comoros archipelago, Madagascar) and the Arabian Peninsula (Nanyingi et al., 2015). RVFV mainly

affects sheep, goats, and cattle, in which it causes abortion storms and sudden death of newborns (Al-Afaleq

and Hussein, 2011; El Mamy et al., 2011). Spillover to humans happens through the handling of infectious

animal tissue or by vectorial transmission. While most human infections remain asymptomatic or manifest as a

mild illness, symptoms can range from flu-like to hepatitis, retinitis and in the most severe cases, haemorrhagic

disease (LaBeaud et al., 2010). RVFV vector-borne transmission is mainly mediated by Aedes and Culex spp.

mosquitoes, making its establishment possible in a wide range of ecosystems (Linthicum et al., 2016). While

sheep are generally believed to be the most important host species (Bird et al., 2009; Clark et al., 2018; Bron

et al., 2021), efforts fall short of quantifying livestock hosts relative contribution to RVFV transmission.

Here, we aim to gain more insight into the relative importance of livestock species in RVFV transmission. Using

experimental data and mathematical modeling, we derive estimates of hosts’ individual potential to transmit

RVFV to vectors during their infection.

2 Results

2.1 Overall approach

We developed a mechanistic compartmental within-host model, representing the infection of target cells and

the subsequent production of viral particles, not all of which are infectious (Figure 1). We distinguish the

total amount of viral particles produced by infected cells, Vtot, and the subpart capable of infecting new cells,

Vinf . We fitted this model to time-series of viral RNA (RT-qPCR) and infectious virus (TCID50), measured in

experimentally infected calves, lambs, and young goats. We compared the cell-level basic reproduction number

R0 and mean generation time Tg, between groups. We quantified the relationship between vertebrate hosts’

infectious titers and transmission to mosquitoes using data extracted from a literature review. Finally, we

estimated the net infectiousness of livestock species, a metric proportional to the number of mosquitoes a host

would infect over the entire course of its infection.

2.2 Data

Data on viral RNA and infectious virus were obtained from a published study on a candidate RVFV vaccine

(Wichgers Schreur et al., 2020a) (Section 4). Mock vaccinated animals were infected with a virulent RVFV

strain. Eight animals were exposed per species (lambs, calves, young goats), all animals became viraemic.

An additional dataset obtained from 8 lambs, following the same protocol, was added. In total, 10/16 lambs

succumbed to the infection or were euthanized, 3 to 7 days after RVFV inoculation, while others survived until

the end of the experiment (2 weeks). All calves and young goats survived until the end of the experiment.
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Figure 1: Graphical representation of the within-host model. Infectious viruses Vinf were fitted to TCID50

measures, and total viral production Vtot to RT-qPCR measures. The eclipse phase (state L) is the period
between the infection of a cell by a virus and the appearance of mature virus within the cell. Productively
infected cells I are the only ones producing progeny virions. Subscripts in L and I indicate the use of Erlang
distributions for the time spent in those states. Target cells are not replenished and only productively infected
cells die. Model assumptions, equations and parameter definitions can be found in Section 4, Eq. 1, and Table
2.

2.3 Within-host model of RVFV infection

We fitted a within-host model to four datasets, measuring viral RNA and infectious virus in RVFV-infected

lambs (surviving ; dying), calves, and young goats, using a Bayesian framework (Section 4). The model con-

sisted of 10 parameters, 5 of which were held constant (Table 2). We estimated the death rate δ of infected

cells, their total daily production of viral particles ξp, among which p are infectious, the degradation rate dinf

of infectious viruses into non-infectious viruses, and the clearance rate ch of viral particles. Parameter values

were then used to calculate the cell-level basic reproduction number R0 and mean generation time Tg. Initial

conditions were set using elements of the experimental protocol along with a sensitivity analysis (Section 4,

Table 2). Outputs from the Markov Chain Monte Carlo (MCMC) procedure can be found in Supplementary

Information S.1. The fits satisfyingly capture the dynamics present in the data (Figure 2).

The model selection performed highlights different viral load dynamics between livestock species (Deviance

Information Criterion (DIC) 1307 vs 1186, comparison based on surviving animals as calves and young goats all

survived, Figure 2). In particular, the ratio of daily viral RNA over infectious viruses produced (ξ) is the highest

in the goat group, meaning that the replication process might be less efficient in this species (Table 1). The
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highest density intervals (HDIs) for this parameter are wide (Table 1), but the posterior distributions remain

informative (Figure S.4). In addition, among surviving hosts, the lifespan of infectious particles (dinf + ch)−1 is

estimated to be the longest in goats (Table 1). The resulting dynamics show viremia in goats peaks sooner than

in calves and in lambs, but with a lower peak value for infectious viruses (Figure 2). Lambs have on average the

most infectious viral particles. Model results indicate this could be a result of a slightly higher daily production

rate p (Table 1), as well as their initial susceptible cell population, which we estimated to be higher than in other

species (Figure S.1). Characterizing the infectious replication process through the basic reproduction number R0

and generation time Tg (Section 4, Eq. 2-3) shows no strong differences between species when comparing surviv-

ing individuals (Figure 3). R0 ranges from 8.51 (median; 95% HDI 5.69 - 14.53) for calves, to 11.47 (median; 95%

HDI 7.73 - 17.68) for lambs. Tg (i.e., the time between infection of a cell and infection of a secondary cell) ranges

from 13.48h (median; 95% HDI 12.84h - 15.23h) in goats to 14.43h (median; 95% HDI 12.82h - 18.31h) in calves.

Among lambs, individuals succumbing to RVF are characterized by higher viral loads, both total and infectious,

and a slower decay after the peak is reached (Figure 2). The best model fit is achieved when allowing parameters

to vary depending on the survival of the individuals (Figure 2, DIC 928 vs 745), indicating significantly different

within-host dynamics depending on clinical outcome. In particular, we estimated that both infected cells and

infectious viral particles have prolonged lifespans in dying lambs (δ−1 and (dinf + ch)−1 respectively, Table

1). This impacts R0 which is 1.88 times higher (median ratio; 95% HDI 0.84 ; 3.51) in dying individuals than

surviving ones, and Tg, which is 1.19 times longer (median ratio; 95% HDI 0.91 ; 1.65) in dying individuals

than surviving ones. Besides, the ratio of daily viral RNA over infectious viruses produced (ξ), which does not

influence R0, is higher in dying lambs than surviving ones (Table 1).
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Figure 2: Data on viral RNA (RT-qPCR) and infectious virus (TCID50), in log10/ml of plasma, and model
fits, for host groups showing significantly different viral dynamics. Circles are data points. Solid colored lines
show predicted median. Grey lines represent model trajectories resulting from 1000 parameter sets sampled
in posterior distributions. Purple is for viral RNA and blue for infectious viruses. For lambs which died from
RVF, circled points represent individuals’ time of death. LOD = limit of detection, 1.55 for TCID50, 1.7 for
viral RNA (log10)

6

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465395doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465395
http://creativecommons.org/licenses/by-nc/4.0/


Estimate : median [HDI]
Parameter Goat Calf Lamb surv. Lamb dead

δ I death rate 2.61 [1.91 ; 3.0] 2.17 [1.30 ; 3.0] 2.34 [1.60 ; 3.0] 1.52 [0.85 ; 2.44]
p production of Vinf 20.14 [13.33 ; 29.40] 14.98 [12.31 ; 17.89] 21.53 [17.09 ; 26.50] 25.27 [19.72 ; 31.00]
ξ ratio Vtot

Vinf
produced 672.76 [333.96 ; 999.56] 75.16 [20.60 ; 161.05] 44.33 [9.66 ; 104.48] 221.15 [50.57 ; 510.97]

dinf degradation Vinf → Vtot 2.10 [1.36 ; 2.92] 3.77 [2.17 ; 6.63] 3.26 [2.19 ; 4.48] 1.60 [0.90 ; 2.31]
ch clearance of Vinf and Vtot 2.06 [1.88 ; 2.24] 1.72 [1.53 ; 1.92] 2.24 [1.94 ; 2.53] 1.43 [0.87 ; 2.01]

Table 1: Parameter estimates per host group. Median of joint posterior distributions (3 chains) and HDI =
highest density interval (95%). All parameters are in unit day−1, see Section 4 for detailed definitions. The
HDI is built such as every point inside the interval has higher credibility than any point outside the interval
(Kruschke, 2015).

Figure 3: Outcome measures per host group. Points are median estimates, lines show highest density intervals,
computed from joint posterior distributions (3 chains). Basic reproduction number R0 is computed with Eq. 2
and generation time Tg with Eq. 3. Note that generation times are constrained in their lower values due to the
eclipse phase duration (κ−1) and rate of virus entry into cells (β) being fixed (Table 2).
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2.4 Dose-response relationship in RVFV mosquito vectors

Through a systematic review, we identified 9 papers from which data could be extracted to estimate the relation-

ship between vertebrate host infectious titers and associated infection rates in vectors (Section 4, Supplementary

Information S.2.1). Selected experiments were performed with hamster hosts, Aedes or Culex spp. vectors, us-

ing RVFV strain ZH501.

Dose-response curves differ significantly between Aedes and Culex spp. (Figure 4, Supplementary Information

S.2). At 5 log10 TCID50/ml for instance, which most animals could reach or exceed (Figure 2), there is 25% [15

; 38] probability to infect an Aedes spp. vector and 11% [7 ; 18] probability to infect a Culex spp. vector (Figure

4). We did not find a significant effect of temperature and number of days post exposure on infection rates

(Supplementary Information S.2.2, S.2.3). The effect of dose is best captured by Eq. S.6, used by Ferguson et al.,

2015, fitted with a betabinomial likelihood accounting for overdispersal in the data (Supplementary Information

S.2.3). Species-specific curves were estimated for Aedes vexans, Aedes japonicus, Culex nigripalpus, and Culex

tarsalis (Supplementary Information S.2.3, Figure S.6). While there is intra-genus variability, infection rates in

Aedes vexans and Aedes japonicus are on average higher than in Culex nigripalpus, and Culex tarsalis at similar

host infectious titers (Figure S.6).

2.5 Net infectiousness of RVFV livestock hosts

Net infectiousness (NI, Eq. 4) varies with both host species and mosquito genus involved (Section 4, Figure

5). NI is lowest for goats and highest for lambs. The relative differences in NI between host species is stronger

when comparing transmission to Culex (median ratio lamb:goat 4.79 ; median ratio lamb:calf 3.75) than to

Aedes mosquitoes (median ratio lamb:goat 3.65 ; median ratio lamb:calf 2.93). Every host type studied has

the highest NI when bitten by an Aedes spp. vector, but the uncertainty around NI estimates decreases when

considering Culex bites (Figure 5).
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Figure 4: Dose-response relationships linking host infectious titers to the probability to infect mosquito vectors.
Data retrieved from a systematic review (Section 4, Supplementary Information S.2). Points and triangles
show infection rates (presence of RVFV in mosquito bodies, legs excluded) from experiments performed with
hamsters with RVFV strain ZH501. Fits were obtained with Eq. S.6 using a betabinomial likelihood to account
for overdispersal in the data. Prediction intervals correspond to trajectories resulting from 1000 parameter sets
sampled in posterior distributions. Note that infectious titers >10 log10 are not to be expected in hosts, but
were included to show the full curve.

Figure 5: Net infectiousness of RVFV livestock host species, function of the mosquito genus involved in trans-
mission. Points are median estimates, lines show highest density intervals, computed using 1000 parameter sets
sampled in joint posterior distributions (3 chains). For lambs, parameters were sampled in the posteriors of
both surviving and dying groups, according to the survival rate observed in the original dataset (6/16, Figure
S.7). Time of death also varied according to a Weibull survival model (Section 4).

Lambs’ NI varies with the expected death rate among lambs (Section 4, Figure S.7). Lambs dying from RVF

have a higher NI than lambs surviving (Figure S.7). Indeed, dying lambs are more infectious than their surviving
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counterparts during their whole viremic period, which in 60% of cases can last longer (day 7) than the infectious

period of surviving individuals (probability < 1% to infect an Aedes or a Culex past day 5 post inoculation).

When bitten by an Aedes spp. vector, lambs NI ranges from 0.24 to 2.54, increasing by a factor 1.93 (median

ratio) from surviving to succumbing individuals. When bitten by a Culex spp. vector, lambs NI ranges from

0.12 to 1.36, increasing by a factor 2.22 (median ratio) from surviving to succumbing individuals.

3 Discussion

We have presented the results of a data-driven estimation of livestock hosts RVFV transmission potential, pro-

viding mechanistic insights into potential sources of heterogeneity between species. Our results demonstrate

that sheep are the most infectious livestock hosts, and that virulent infection leading to death reinforces the

infectiousness of this species. We also showed that lower infectious doses are needed to infect Aedes spp. vec-

tors than Culex spp.. The framework presented here can be applied to other multi-host arboviruses to estimate

transmission potential, a key component of hosts contribution to transmission at large scale.

The suite of experimental data used in our study incorporated the major elements needed for an epidemiolog-

ically relevant estimation of hosts transmission potential. We included both viral RNA and infectious viruses,

measured in vivo, in natural RVFV hosts. Similar existing models used data coming either from in vitro ex-

periments (Schulze-Horsel et al., 2009; Iwami et al., 2012; Pinilla et al., 2012; Simon et al., 2016; Yan et al.,

2020), or from model hosts, such as ferrets for influenza (Petrie et al., 2013, 2015). The breeds infected in our

dataset make our estimates directly relevant for scenarios of RVFV emergence in Europe, and a comparison

with African breeds would be an appropriate next step, along with the comparison of several RVFV strains

(Vloet et al., 2017; Fontaine et al., 2018). Performing infection through mosquito bites rather than intravenous

injection would ensure a natural course of infection, although the protocol presently used was shown to yield

similar viral load dynamics as mosquito-mediated infection (Wichgers Schreur et al., 2021). This would further

allow for the exploration of the impact of heterogeneity of exposure (i.e., number of infectious bites or infectious

titers in vector saliva) on infectiousness. Finally, data on adult livestock as well as human viremia levels will be

key to complete our understanding of hosts contribution to RVFV transmission.

Our within-host model is the second developed for RVFV (Tuncer et al., 2016), but the first to mechanistically

represent the process of viral production from host cells. This enabled an identification of processes driving

differences between groups and an increased understanding of the cell-level viral replication process. First, we

estimated a less efficient replication in goats, further advocating for the use of infectious virus measures in order

not to overestimate transmission potential (Tesla et al., 2018). Besides, we estimated the lifetime of infectious

viral particles and infected cells to be longer in dying lambs than their surviving counterparts, which calls for an
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exploration of corresponding (immune) mechanisms in future experiments. The uncertainty around parameter

estimates remains important, and summarizing parameter estimates into aggregated outcome measures R0 and

Tg put those mechanistic differences into perspective. Indeed, once correlation between parameters are taken

into account, the replication process is most different between severe and moderate infection within sheep and

less so between host species. The model could be refined by incorporating an explicit immune response (Elliott

and Weber, 2009; Mapder et al., 2019) or taking into account the genomic composition of viral particles (Jacobs

et al., 2019; Bermúdez-Méndez et al., 2021), but the quantity of information needed (number of timesteps and

replicates, inclusion of data on immune responses ) could hamper this costly data collection.

By gathering relevant competence studies into a meta-analysis, we quantified the relationship between infec-

tious titers and mosquito RVFV infections. To our knowledge, such dose-response relationship had not been

quantified for RVFV. This results in a lack of precision in between-host RVFV transmission models which usu-

ally assume constant infectiousness of hosts over their infectious period. Quantifying how the probability to

infect a vector increases with dose will also affect the stochasticity of transmission in small populations (be it

emergence or extinction). Dose-response curves have been important for the study of other arboviruses, e.g.,

for exploring the role of asymptomatic dengue infections (Bosch et al., 2018) or the epidemic potential of Aedes

albopictus for Zika virus (Lequime et al., 2020). One important originality of our work was to highlight a higher

susceptibility of Aedes spp. vectors to RVFV infection compared to Culex spp. vectors, at similar infectious

titers. Further studies are needed to confirm whether this higher probability of infection is also accompanied by

a higher probability of the mosquito becoming infectious itself. This would require the detection of infectious

particles in mosquitoes’ saliva, which was only performed in 23 out of 185 data points in the present systematic

review.

A lot remains unknown about the bottlenecks of arboviruses propagation in mosquitoes (Weaver et al., 2021).

It can depend on species within each genus (Bustamante and Lord, 2010; Golnar et al., 2014) or even mosquito

provenance (field vs laboratory-reared, Turell et al., 2008, 2010, 2013), in part because of the role of temperature

(Turell et al., 2020). Further experiments are needed to know whether a given infectious titer sampled during

the increasing or the decreasing phase of viral dynamics would yield the same probability to infect vectors. This

comes down to defining what makes a viral particle infectious to host cells vs vector cells, and might relate to

the efficiency of genome packaging by those cells (Bermúdez-Méndez et al., 2021). Mechanistic modeling will

help grasp the complexity of involved processes.

Our study provided key estimates of RVFV livestock hosts’ transmission potential. It quantified for the first

time the prominent role of sheep, which are 3 to 4 times more infectious than cattle and goats, due to more

infectious viruses and a longer infectious period. In addition, fatal infection in sheep does not diminish trans-
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mission potential but could rather increase it, based on time of deaths observed in our dataset. This entails

that most vulnerable populations, in addition to suffering more deaths, will likely experience larger outbreaks.

Understanding the relationship between infectiousness and pathogen load represents a key challenge to connect

modeling scales (Gog et al., 2015). We have importantly contributed to deciphering this relationship for Rift

Valley fever virus. Combining these results with ecological factors such as vector presence, population dynamics,

and trophic preference, as well as human factors which define the presence of livestock hosts and their mobility,

will increase our understanding of RVFV transmission dynamics at large scale. These interacting scales might

yield unexpected patterns and reshape the way we design surveillance and control strategies for multi-host

arboviruses in general.

4 Materials and Methods

4.1 Data

Animals (16 lambs, 8 calves, 8 young goats) were inoculated intravenously with 5 log10 TCID50 of strain rRVFV

35/74. Animals’ age was 2-3 weeks for calves, 8-10 weeks for lambs and goats. The average body weight of

animals, used further to calibrate the inoculum per ml of plasma, was 45 kg for lambs, 30 kg for goats, and 80

kg for calves. Animals were purchased from conventional Dutch farms, and the breed was Texel cross for sheep,

Saanen for goats, and Holstein-Friesian for cattle (Wichgers Schreur et al., 2020b).

4.2 Within-host model of RVFV infection

Our mechanistic model (Figure 1) is formulated as a set of ordinary differential equations, and is similar to

existing within-host models developed for influenza (Petrie et al., 2013; Yan et al., 2020):

dT

dt
= −βTVinf

dL1

dt
= βTVinf − nLκL1

dLi
dt

= nLκ(Li−1 − Li), i = 2, ..., nL

dI1
dt

= nLκLnL
− nIδI1

dIj
dt

= nIδ(Ij−1 − Ij), j = 2, ..., nI

dVinf
dt

= p

nI∑
j=1

Ij − dinfVinf − chVinf − σβTVinf

dVtot
dt

= ξp

nI∑
j=1

Ij − chVtot

(1)
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In this model, infectious viruses Vinf infect susceptible target cells T at rate β. Infected cells first go through

a latent state, L (eclipse phase). Then, they become productively infected cells, I. These cells produce viral

particles Vtot at rate ξp, not all of which are infectious (Vinf produced at rate p). Infectious viruses degrade into

non-infectious viruses at rate dinf , which does not impact total viral production Vtot. A similar host clearance

rate ch is applied to both non-infectious and infectious particles.

To achieve realistic distributions of time spent in L and I states, we used Erlang distributions. This means

that infected cells go through nL latent stages and nI infectious stages, where the time spent in each stage is

exponentially distributed. We used nL = nI = 20, sufficient for the resulting latent and infectious periods to be

almost normally or lognormally distributed (Krylova and Earn, 2013; Lloyd, 2001). The mean of these Erlang

distributions are κ−1 and δ−1, and their variance
1

nLκ2
and

1

nIδ2
.

We used a target-cell limited model, meaning that the depletion of target cells is what triggers the viral load

peak and subsequent decline. We did not incorporate an explicit immune response. However, as explained by

Beauchemin and Handel, 2011, this type of model can be seen as equivalent to assuming a constant effect of the

immune response (IR). This IR can act implicitly by limiting the number of cells susceptible to the infection,

removing infected cells or viral particles.

We fitted Vinf to TCID50 measures and Vtot to RT-qPCR measures. As TCID50 measures the dose needed to

induce a cytopathic effect in 50% of the cells, a conversion factor σ is needed to express it as a quantity of infec-

tious viruses, usually measured in plaque forming units (PFUs). Here, we set σ = 0.69 TCID50/ml, consistent

with 1 ml virus stock having half the number of (PFUs) as TCID50 using Poisson sampling (Canini et al., 2016).

We used a Metropolis Rosenbluth Monte Carlo Markov Chain (MCMC) algorithm to fit our model, implemented

in R, using the odin package (https://github.com/mrc-ide/odin) to speed up simulations. The composite log-

likelihood, applied to log10 measures, was similar to Clapham et al., 2014 (errors normally distributed, limit

of detection accounted for). Log-likelihoods for total and infectious viruses were summed, as well as across

individuals. The score obtained was used by the algorithm to determine if a parameter set should be accepted.

At each iteration, parameters were simultaneously sampled using normal distributions centered around their

last accepted value, with a standard deviation specific to each parameter. To obtain acceptance rates between

10% and 45% (the optimal acceptance rate being 23.4% as shown by Roberts et al., 1997) for each parameter,

we used a custom function which determines appropriate standard deviations for their sampling. Fixed and

estimated parameters can be found in Table 2, chosen in agreement with identifiability analyses of similar mod-

els (Miao et al., 2011; Beauchemin and Handel, 2011). Priors represent the probability distribution of possible

parameter values, based on prior knowledge. We used uniform distributions, with bounds intended to allow a
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wide exploration of parameter values while being biologically realistic.

Our fitting procedure worked as follows : for each dataset to fit, we ran small chains (10,000 iterations, 5,000

burn-in period) fixing T0 at different values spread across [3;6.5] log10/ml plasma. The best T0 value was then

assessed through maximum log-likelihood profiles (Figure S.1) and kept for longer chains. Three long chains

were run (100,000 iterations, 20,000 burn-in) for each dataset. The Gelman Rubin diagnostic test was used to

assess common convergence of the chains (Supplementary Information S.1).

To determine whether viral load dynamics V (t) differ between livestock host groups, we ran the inference pro-

cedure in two distinct ways : treating these groups as equal (aggregating datasets) or different (fitting done for

each dataset separately, Supplementary Information S.1). The resulting joint posterior distributions was used

to compute the Deviance Information Criterion (DIC) of these models and select those with the smallest DIC

(Supplementary Information S.1). We did not attempt to find differences between individuals of a given group.

To characterize the replication process at the beginning of the infection, we computed two outcome measures

from the parameters of our model. The basic reproduction number R0 (Eq. 2, Beauchemin et al., 2008; Yan

et al., 2020) is defined as the average number of new infected cells produced by one infected cell introduced

into an entirely susceptible target-cell population. The generation time Tg (Eq. 3, Wallinga and Lipsitch, 2007;

Svensson, 2007; Yan et al., 2020) is the average time between the infection of a cell and the infection of a

secondary cell, again in an entirely susceptible target cell population. The formula for Tg was adapted to a

model using Erlang distributions (for time spent in L and I states). How it changes compared to Tg computed

for models with exponential distributions is explained in Supplementary Information S.1.

R0 =
βT0p

δ(ch + dinf + σβT0)
(2)

Tg =
1

κ
+
nI + 1

2nI
.
1

δ
+

1

ch + dinf + σβT0
(3)

14

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465395doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465395
http://creativecommons.org/licenses/by-nc/4.0/


Name Meaning Value/Estimated Reference/Prior
T0 initial number of susceptible target cells Fixed within MCMC, estimated

a priori through likelihood pro-
files

see Figure S.1

L0 initial number of latently infected cells 0
I0 initial number of productively infected cells 0

Vinf,0 initial number of infectious virions 12.5 for calves, 62.5 for goats,
52.6 for lambs (per ml of plasma,
total inoculum per animal being
105

References for plasma:body
weight ratios Quigley et al., 1998;
Courtice, 1943; Coghlan et al.,
1977

β rate governing infection of target cells by
infectious virions

set such as βT0 = 48 day−1 assumed

nL, nI number of L and I states for the Erlang
distributions

20 Krylova and Earn, 2013; Lloyd,
2001

κ−1 eclipse phase duration 1/3 day (8 hours) P. Wichgers-Schreur personal
communication, observed in vitro

δ death rate of productively infected cells Estimated [0.1 ; 10]◦ day−1

p rate of production of infectious virions Estimated [0.2 ; 3.104]† day−1

dinf rate of degradation of infectious virions
into non-infectious viral particles

Estimated [0.1 ; 10] day−1

ch host-driven clearance rate Estimated [0.1 ; 10] day−1

σ correction factor to convert from infectious
virions to TCID50

0.69 Canini et al., 2016

ξ ratio of total viral particles to infectious
virions, as produced by infected cells

Estimated [1 ; 1000]† day−1

Table 2: Parameters of the within-host model. Values if fixed, prior range (uniform distribution) if estimated.
† : these values were applied for each L (respectively I) states, so a daily rate per L (I) cell (not state) can be
obtained by multiplying by nL (nI)
◦ : δ was constrained to be inferior to κ and (ch + dinf ), as advised by Smith et al., 2010.
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4.3 Dose-response relationship in RVFV mosquito vectors

A systematic review of the literature was performed to study F (V ), the relationship between a vertebrate host

RVFV infectious titer and the associated probability to infect a mosquito upon its bite (Supplementary Infor-

mation S.2.1). We limited our quantitative analysis to experiments performed with Aedes and Culex spp., with

strain ZH501, on hamsters (Supplementary Information S.2.1). This corresponded to 185 data points from 9

papers.

To assess the impact of the diversity of protocols from which the data originated, we tested the effect of tem-

perature, and number of days between mosquito feeding and dissection, in addition to dose (infectious titer) on

infection rates (presence of RVFV in the body of mosquitoes, legs excluded, Supplementary Information S.2.2,

S.2.3). For that we used a logistic function (Eq. S.5), fitted with a binomial and a beta-binomial likelihood,

the latter to account for overdispersal in the data (Supplementary Information S.2.3).

We used Akaike Information Criterion (AIC) to compare model fit of different functional forms (Supplementary

Information S.2.3). Best fitting functions were then used to explore differences between and within genera

(Table S.1, Figure S.6).

4.4 Net infectiousness of RVFV livestock hosts

We define net infectiousness (NI) as the integral of an infectiousness curve over time (Eq. 4)

NIvect,host =

∫
Fvect(Vhost(t))dt (4)

NI combines the dose-response relationship in vectors Fvect(V ) with infectious virus dynamics in hosts Vhost(t).

As such, it must incorporate the uncertainty from both estimations. This was done by sampling 1000 parameter

sets in Fvect(V ) and Vhost(t) posteriors. For lambs, a draw in a Bernoulli distribution first determined whether

the viral load dynamics should be of a surviving or dying type. In the latter case, a time of death was sampled

in a Weibull survival model fitted to death times present in our dataset, and determined the end of the viral

load curve. Finally, a sensitivity analysis explored how the survival rate in the lamb population impacts the

average NI of lambs.

This quantity NI is proportional to the expected number of mosquitoes infected by a host over the entire course

of its infection, assuming that biting occurs at a constant rate over this period. By extension, the NI ratio

of two host categories is identical to the ratio of the expected number of mosquitoes infected by those two

types of hosts, assuming bites to be equally distributed over both species. In the present study, NI was also

vector-specific.
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