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Abstract 

 Emerging infectious fungal diseases (EIFDs) represent a major conservation concern worldwide. 

Here, we provide early insights into the potential threat that Nannizziopsis barbatae (Nb), a novel 

EIFD, poses to Australian herpetological biodiversity. First known to the reptile pet trade as a 

primary pathogen causing untreatable severe dermatomycosis, since 2013, Nb has emerged in a 

growing number of phylogenetically and ecologically distant free-living reptiles across Australia. 

Observing its emergence in a long-term study population of wild eastern water dragons 

(Intellagama lesueurii), we demonstrate the pathogen’s virulence-related genomic features, 

within-population spatiotemporal spread, and survival costs, all of which imply that Nb could pose 

a threat to Australian reptiles in the future. Our findings highlight the need to closely monitor this 

pathogen in Australian ecosystems.  
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Introduction 1 

Emerging infectious fungal diseases (EIFDs) pose a serious threat to the conservation of global 2 

biodiversity (1–3) and are responsible for some of the most severe mass mortality events in wild 3 

populations (1–4). Notable examples include chytridiomycosis, which has now impacted over 500 4 

species of amphibians in 54 countries, driving the extinction of 90 species worldwide (5); white-5 

nose syndrome, which has resulted in a devastating 75% population decline across bats in Canada 6 

and the USA (6, 7); and the more recent snake fungal disease (8), which poses a significant threat 7 

to snake populations in eastern North America (9). Whilst EIFDs make up less than three percent 8 

of infectious agents reported amongst animal hosts, they are nonetheless responsible for over 70 9 

% of disease-driven population declines and extinctions (1).  10 

Members of the fungal genus Nannizziopsis are well known to the pet trade as primary pathogens 11 

that cause serious cutaneous and systemic fatal disease in a diverse range of reptiles across the 12 

world (10–13). Nannizziopsis barbatae was first identified in captivity in 2009 (14), and remained 13 

confined to captivity until, in 2013, two-free living eastern water dragons (Intellagama lesueurii) 14 

from locations separated by 30 km across Brisbane (Queensland, Australia) were identified with 15 

proliferative dermatitis, necrosis, ulceration and emaciation (15). Nb has since emerged in a 16 

growing number of phylogenetically and ecologically distant free-living lizards (2 x agamid 17 

species and 2 x skink species) across Australia (6 sites in Qld, 1 site in NSW and 1 site in WA) 18 

(15) and is known to cause disease in 9 species (data combined from captive and wild cases, see 19 

Table S1). This recent emergence in the wild, followed by a rapid expansion of its geographical 20 

distribution and host range, indicate that this fungal pathogen may present a pressing new threat 21 

to Australia’s herpetological biodiversity. While we know that Nb causes untreatable severe 22 

dermatomycosis (15), mitigating its impact will require a thorough understanding of its ecology. 23 
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Taking advantage of its recent emergence in a long-term study population of eastern water dragons 24 

(15) and using an innovative combination of comparative genomics and spatiotemporal 25 

autocorrelation models, we assess the potential threat that Nb may pose to Australia’s 26 

herpetological biodiversity. 27 

Results  28 

Nb emerged in 2013 in two geographically isolated populations of eastern water dragons in the 29 

city of Brisbane (QLD, Australia). One of these populations (Roma Street Parkland, 27°27′46′S, 30 

153°1′11′E) has been monitored with frequent behavioral surveys and yearly catching since 2010. 31 

This population comprises 336 individuals on average and behavioral surveys were performed 2-32 

3 times per week along a transect which covered 85% of this population (16). During behavioral 33 

surveys, individuals’ GPS position were systematically recorded and profile photographs taken to 34 

allow later identification based on unique scale patterns (17). Disease diagnosis was based on the 35 

presence or absence of characteristic skin lesions (15), which observers were trained to recognize 36 

from season 9 (2018-2019) onwards. Individuals’ disease status for earlier years was hence 37 

determined retrospectively using photos from catching and, when not available, behavioral 38 

surveys. Once diagnosed, individuals were assumed to remain diseased even when not caught 39 

again. Amongst the diseased individuals repeatedly captured between February 2020 and August 40 

2021, some individuals (20/61) showed a reduction in the severity of their lesions, although this 41 

reduction was mainly observed in individuals exhibiting mild lesions (15/20, Data S1). Using this 42 

decade-long individual-based data, we found that the disease prevalence has continuously 43 

increased throughout the population since Nb’s emergence. Starting with one individual in 2013, 44 

a total of 158 individuals have now presented with clinical signs of the disease (n =1221 for field 45 

seasons 3-11) and in the last field season (2020-2021), the prevalence was 26.4% (95%CI: 24.2-46 

28.4, Fig. S1, Table S2).  The majority (96.7%) of these individuals were adults, and males 47 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465237doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465237
http://creativecommons.org/licenses/by/4.0/


 

4 

 

(58.3%). Only five juveniles were found with clinical signs of the disease (0.07 to 5.5% of 48 

juveniles) between late 2018 to early 2021, despite juveniles representing on average 17.8% of 49 

observed individuals during these years. 50 

N. barbatae shares genomic characteristics with other fungal pathogens 51 

Nb is a member of the Onygenales, an order of fungi that are able to degrade keratin, the main 52 

component of the vertebrate outer skin layer. Some members of this order are important primary 53 

pathogens of animals and humans and recent comparative genomic studies have helped resolve 54 

differences in gene content between pathogenic and non-pathogenic species (18). With this in 55 

mind, we performed a comparative whole-genome analysis incorporating the full set of genes of 56 

Nb (8,012 predicted protein-coding sequences) together with 16 other species of fungi (Table 1) 57 

to uncover genomic features likely to contribute to Nb’s pathogenicity. 58 

First, we identified that the Nb genome contains a gene repertoire rich in proteases, known to 59 

increase fungal virulence (19), and shares similarities with other pathogenic Onygenaceae (Fig. 60 

1A). Most notable is an expansion of trypsin domain-containing genes (PF00089) (Fig. 1B) found 61 

only in Nb (7 genes) and the fungus causing snake fungal disease, O. ophidiicola (29 genes). Both 62 

of these species are capable of primary infection in reptiles (9, 20) suggesting a role for this gene 63 

family in influencing host range. Nb has a degradome that bears resemblance to important 64 

dermatophytes and the enrichment of proteases including, subtilase (PF00082) and deuterolysin 65 

(PF02102), suggest extensive proteolytic capacity. Second, Nb has a large number of protein 66 

kinase domain-containing genes (PF00069) which may contribute to its capacity to infect a broad 67 

range of reptile taxa (15). Last, we identified a higher number of LysM domain-containing genes 68 

(PF01476) in the Nb genome than most of the other fungi in this analysis. Together, these 69 
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characteristics of the Nb genome highlight factors which may be key to determining its propensity 70 

to infect herpetofauna. 71 

N. barbatae infection is spatially structured within the population 72 

To investigate the phenotypic and spatiotemporal predictors of fungal infection, we constructed 73 

spatiotemporal autocorrelation models using the Integrated Nested Laplace Algorithm. 74 

Comparison of disease prevalence models (Fig. S2) provided strong support for spatial structuring 75 

(ΔDIC=-117.24 relative to the base model), but relatively little evidence for spatiotemporal 76 

structuring (ΔDIC=-4.11 relative to the spatial model) (Fig. S2). That is, disease prevalence varied 77 

more spatially (assuming no time effect) than spatiotemporally. Indeed, spatial effects were 78 

strongly correlated across field seasons (rho>0.9) and disease prevalence has remained 79 

consistently higher in the East (up to 33%) compared to the West (<10%, Fig. 2). Models also 80 

showed lower prevalence in juveniles than adults, and in females compared to males (Fig. S2). 81 

N. barbatae infection is associated with survival costs 82 

To investigate the survival costs of infection, we fitted a binomial survival model, where survival 83 

of an individual was coded based on whether they were observed in any subsequent year. The full 84 

population model showed effects of cohort, field season and sex on the yearly probability of 85 

survival but failed to detect any effect of the disease (Fig. 3A). In contrast, randomly subsampling 86 

diseased and non-diseased individuals from matching cohorts and accounting for age (number of 87 

days in the population), sex, and field season in subsequent models revealed a small but significant 88 

individual survival costs of the disease (Fig. 3B-D). All subsampled models found a significant 89 

effect of the disease (Fig. 3B); the overall mean survival cost was 12% (Fig. 3C), so that the mean 90 

predicted annual survival of diseased individuals was 74% compared to 86% for non-diseased 91 
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individuals (Fig. 3D). Controlling for spatial autocorrelation did not improve model fit (ΔDIC>-2 92 

relative to the base model), demonstrating that this survival cost did not vary spatially.  93 

Discussion 94 

Gaining early insights into disease virulence, spatiotemporal spread, and survival costs is 95 

particularly urgent in the case of novel emerging infections that have the potential to severely 96 

threaten biodiversity. Yet such data are challenging to obtain in the wild, greatly impeding our 97 

abilities to predict and mitigate the impact of infections on wildlife. Our study investigates within-98 

population spread and impacts of Nannizziopsis barbatae, a novel emerging infectious fungal 99 

disease which should give us cause for vigilance.  100 

Genomic signatures of pathogenicity 101 

We show that the free-living Nb genome sampled from our long-term study population of eastern 102 

water dragon contains many gene families implicated in fungal pathogenicity, including several 103 

proteases, protein kinases, and LysM effector proteins. Virulence in wildlife fungal pathogens has 104 

often been associated with expansions of protease gene repertoires and their expression (e.g. 105 

chytrid (21); WNS (22–24)). Nb has a gene repertoire rich in proteases with features similar to 106 

those identified in other wildlife fungal pathogens such as snake fungal disease (e.g. trypsin 107 

domain-containing genes) and chytrid fungus (e.g. M36 metalloproteases). Additionally, a 108 

comprehensive and novel repertoire of protein kinases can provide fungal species with plasticity 109 

in occupying different ecological niches and responding to environmental change (25, 26). LysM 110 

effector proteins may contribute to fungal virulence by suppressing the host immune system 111 

response via interactions with chitin (27). Comparative studies strongly suggest an association 112 

with the enrichment of LysM domain-containing genes and virulence in the keratin-degrading 113 

dermatophytes (26). Furthermore, chitin-binding CBM18 gene family proteins (PF00187) are also 114 
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found expanded in B. dendrobatidis, and are thought to play a role in evasion of the amphibian 115 

host immune response (26). While understanding the molecular mechanisms of this pathogen is 116 

central to mitigating its impact on wildlife, the exact source of Nb, its current free-living genetic 117 

diversity, and its mode of introduction into our dragon population remain unknown. Genomic 118 

resources for Nannizziopsis spp. will enable the development of tools to answer these questions.  119 

The emergence of this disease urgently necessitates the identification of its origin to better 120 

understand and thus predict the impact it will likely have on the Australian herpetofauna. For 121 

instance, it is critical that we determine whether or not we are dealing with a novel pathogen and 122 

thus naïve hosts, or whether the population has had historical exposure to the pathogen.  123 

Within-population spread 124 

Even though central to the forecasting and control of wildlife disease management, quantifying 125 

the contribution of different transmission pathways of a pathogen is notoriously challenging to 126 

achieve in nature (28). Using an intensively-studied lizard population, we provide a much-needed 127 

early assessment of Nb’s spatiotemporal spread since its emergence in 2013. We show that the 128 

disease has spread relatively rapidly across an increasing portion of the population, providing the 129 

first likely evidence for within-population Nb transmission in the wild. From a single individual 130 

dragon identified with Nb-like clinical signs in 2013, more than 150 individuals have displayed 131 

apparent clinical signs of Nb and the disease prevalence has reached 26.4% of the population. 132 

Worryingly, prevalence of the disease has been continuously increasing since 2016 and shows no 133 

signs of slowing down. Although it is unclear what the transmission route of this pathogen is in 134 

this population (e.g. physical contact or environmental latency), our results show that over the 135 

years, the disease prevalence has remained higher in the eastern part of the park than in the western 136 

area, which could be due to spatial variation in environmental factors influencing the pathogen’s 137 
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survival, transmission, or virulence (29). Analyses of the dragons’ spatial and social behaviors 138 

coupled with molecular diagnostics capabilities will help identify transmission routes, predict 139 

geographic spread of the pathogen, and inform potential future interventions (30).  140 

Low but detectable survival costs 141 

Survival costs of Nb infection were detectable at an individual level. Although individuals showing 142 

clinical signs of the disease varied in their survival costs, they were still relatively likely to survive 143 

from one year to the next (>70% chance), demonstrating that adults are relatively tolerant to the 144 

pathogen and can carry it for multiple years once skin lesions become apparent. Although the 145 

disease has been shown to be incurable in captive reptiles (15), some rare individuals in this 146 

population showed reductions in the severity of their lesions (Data S1) and we are yet to determine 147 

whether individual diseased dragons can entirely clear the infection (as shown in chytridiomycosis 148 

(31) and white-nose syndrome (32)). Additionally, we were only able to detect survival costs when 149 

we subsampled our dataset to cohort-matched (age and sex) diseased and non-diseased individuals, 150 

thereby reducing extraneous variation in survival probability. Evidence for individual survival 151 

costs remains similarly equivocal for other EIFDs, some of which have been studied for much 152 

longer than Nb (31–33). We also acknowledge some uncertainty in our estimates of survival costs 153 

due to potential errors in diagnosis, our visual assessment being particularly prone to miss 154 

asymptomatic or cryptic infections in the population. Additionally, because lesions are easier to 155 

observe in caught individuals, this underestimation may be particularly severe for individuals or 156 

classes of individuals that were less likely to be caught (e.g. juveniles). Taken together, these facts 157 

imply a general difficulty detecting survival costs of fungal pathogens in long-lived reptiles.  158 

Despite identifying individual-level costs of infection, predicting Nb’s impacts on population 159 

dynamics remains difficult. Such uncertainty is likewise common to other EIFDs, as some 160 
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populations affected by chytridiomycosis and white nose syndrome have not declined 161 

systematically (44, 45). Predicting Nb’s impacts on the viability of our studied population of 162 

eastern water dragons will require key information about: i) Nb’s prevalence and survival costs at 163 

different life stages (36, 37), which should be achieved with higher certainty through the use of 164 

molecular diagnosis; ii) Nb’s potential reproduction costs, as was documented for snake fungal 165 

disease (38) and chytridiomycosis (39); iii) the mechanisms underlying Nb’s spatiotemporal 166 

spread. In addition, assessing whether the pathogen’s transmission dynamics are density-167 

dependent might be crucial to understanding whether the epidemic will become self-limiting (40).  168 

A novel threat for the Australian biodiversity?  169 

EIFDs constitute an increasing cause for concern regarding global health, food security and 170 

biodiversity conservation (1). With Nb, we may be witnessing the early days of a novel fungal 171 

threat to Australian herpetological biodiversity. While other infamous EIFDs with global impacts 172 

on wild animal populations were only reported after mass mortality events had already occurred 173 

(41, 42), we have the unique opportunity to monitor the emergence of this pathogen and take action 174 

early enough to limit its spread. Although the origin and long-term population impacts of Nb 175 

remain unknown, its genomic similarity with other pathogenic EIFDs, capacity to spread in the 176 

wild, and detectable survivals costs, combined with its repeated emergence across the country and 177 

broad host range, highlight the critical need to closely monitor this pathogen in Australian 178 

ecosystems. 179 

  180 
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Materials and Methods 181 

Study system 182 

The population of Eastern water dragons has been monitored since 2010, with frequent 183 

behavioral surveys and regular catching during the active season, (i.e. early September to late 184 

April). During behavioral surveys (2-3 times per week), individuals’ behavior and GPS position 185 

were recorded and photographs taken to allow later identification based on unique scale patterns 186 

(see (17)). Individuals were also caught during 1-2 weeks catching events in the years 2013, 2014, 187 

and yearly since 2016. Morphometric measurements, head and body photographs and DNA 188 

samples (blood or tip of the tail) were taken, and unique PIT-tags were inserted in their right upper 189 

hind leg. EWD are sexually dimorphic, males being overall larger than females, with more 190 

developed jaw and dorsal crest and a red ventral coloration (43). Age class (adult vs. juvenile) was 191 

determined for each breeding season using a combination of approaches (snout-vent length when 192 

individuals were caught; general appearance when individuals were not caught) and taking into 193 

account individuals’ observation history (individuals being considered adults after 3 years (43)). 194 

Disease diagnosis was based on the presence or absence of characteristic skin lesions (15), which 195 

observers were trained to recognize from season 9 (2018-2019) onwards. Individuals’ disease 196 

status before season 9 was hence determined retrospectively using pictures from behavioral 197 

surveys and catching (75-100% for the latter). From season 9 onwards, disease status was assessed 198 

directly in the field during behavioral surveys and catching (65-92% for the latter). From February 199 

2020 onwards, disease severity was rated for captured individuals using scores ranging from 0 (no 200 

lesions, not diseased) to 5 (severely diseased, Table S3). 201 

  202 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465237doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465237
http://creativecommons.org/licenses/by/4.0/


 

11 

 

Genome annotation and comparative analysis 203 

The genomes of N. barbatae, O. ophidiicola and C. queenslandicum were annotated using 204 

the Funannotate (v1.7.4) gene prediction pipeline (https://funannotate.readthedocs.io/). Genomes 205 

were firstly screened for repeats using custom generated databases for each species using 206 

RepeatModeler (v2.0.1) and masked using RepeatMasker (v4.1.0; http://www.repeatmasker.org).  207 

Repeat masked assemblies were then cleaned and sorted before initial gene prediction using 208 

GeneMark-ES (v4.65) (44). Protein sequences from high-quality fungal genomes used in this study 209 

were used for protein-to-genome alignments as evidence for gene predictors AUGUSTUS (45), 210 

SNAP(46), and Glimmer (47) before being passed to EVM (48) to build consensus gene structures.  211 

All other predicted protein sequences were downloaded directly from GenBank (Table 1). The 212 

newly annotated gene models were evaluated for completeness using BUSCO (v5) (49) in protein 213 

mode against the ascomycota_odb10 database (Table  S4). 214 

Gene families within each fungal genome were identified from searches of the protein-coding 215 

sequences for Pfam (50) domains to assign gene function. We used HMMER (v3.1) (51) 216 

(hmmscan) to search the Pfam A database (release 32.0) for 4312 different domains of 16 different 217 

species of fungi. To test for significantly expanded gene families, a Fisher’s exact test was then 218 

conducted iteratively using R (52), comparing the number of counts in Pfam families found in an 219 

individual genome, normalised by the total gene count for that species, against the background, 220 

which we defined as the average of the counts in the remaining species. Multiple testing corrections 221 

were done using the FDR method in R for all calculated p-values. A Pfam domain was considered 222 

expanded if it showed a corrected p-value < 0.05. Counts of each domain were collated for each 223 

species with domains that occurred multiple times in a protein sequence being counted only once. 224 

Heatmap was generated using the package pheatmap with data normalised using the scale function 225 

in R. Protein sequences were aligned using Muscle (v3.8.425) (53) and phylogenetic inference 226 
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made using FastTree (v2.1.12) (54) built in to the commercially available Geneious Prime 227 

(v2021.1.1) software.   228 

Drivers and spatiotemporal dynamics of infection 229 

To investigate the phenotypic and spatiotemporal predictors of fungal infection, we 230 

constructed spatiotemporal autocorrelation models using the Integrated Nested Laplace Algorithm, 231 

implemented in the `inla` package in R (55). These models fitted binary fungal infection as a 232 

response variable, where an individual was coded as a 1 if it had previously been diagnosed with 233 

fungal infection, and a 0 otherwise. All covariates were categorical, and included Age class (3 234 

levels: Adult, Juvenile, and Unknown); Sex (2 levels: Female and Male); Field season (9 levels: 235 

one for each sampling year 2012-2021). The model used a binomial logit error distribution: 236 

Fungus (0/1) ~ Season + Sex + Age 237 

We first fitted these fixed effects as a “Base” model. To investigate spatiotemporal patterns 238 

of infection, we then added Stochastic Partial Differentiation Equation (SPDE) random effects 239 

using individuals’ mean map locations in a given season (“annual centroids”). This random effect 240 

models two-dimensional patterns of the response variable based on distances between individuals 241 

using Matérn correlation (56, 57) The “Spatial” model used a static field, where the spatial 242 

distribution of infection was modelled to be unchanging across the study period; the 243 

“Spatiotemporal” model allowed this field to change from year to year, using an autoregression 244 

(AR1) correlation across years, to examine how the infection’s distribution changed over the 245 

course of the study period. We compared these three models using deviance information criterion 246 

(DIC) as a measure of model fit to investigate whether spatiotemporal correlation significantly 247 

improved the model.  248 

  249 
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Survival costs 250 

To investigate the survival costs of infection, we fitted a binomial survival model, where 251 

survival was coded based on whether the individual was seen in a subsequent year (we hence 252 

excluded the most recent year, 2019). The model was specified as follows: 253 

Survived (0/1) ~ Season + Sex + Cohort + ActiveFungus 254 

Following this model, we used a subsampling routine that allowed us to reduce extraneous 255 

variation in survival by compensating for the low proportion of infected individuals in the study 256 

period (120/1151=10.4%) and for the unknown age of infected individuals. We 1) assigned each 257 

individual a cohort based on the first season that they were observed in the population; 2) selected 258 

the 101 individuals that were ever observed with an infection between 2012 and 2018; and 3) age 259 

matched each diseased individual with a random non-diseased individual from their cohort. 260 

Between 2018 and 2020, six diseased individuals that were caught in a very poor condition were 261 

euthanized. These individuals were hence excluded from these analyses.  Having subsampled the 262 

population, we then ran the same model as before. This protocol was repeated 1000 times to ensure 263 

an even and different selection of non-diseased individuals and survival effect estimates. 264 

We summarized the findings from these models by predicting survival probability for each 265 

individual and comparing these values between uninfected and infected individuals. To produce 266 

conservative estimates, we randomly drew one effect estimate from each model’s fungal effect 267 

estimate posterior distribution and used these estimates to predict the survival probability for all 268 

infected and uninfected individuals. We then took the mean survival probability for these groups 269 

of individuals and subtracted the infected individuals’ survival probability from those of the 270 

uninfected individuals to estimate a survival cost of infection.  271 
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Table 1. Details of the fungal species used in the comparative analysis. 

Species  Division Order Family Host  Disease 
GenBank 
Accession 

Genome 
Size 
(MB) 

Genome 
N50 
(Kb) 

Number 
predicted 
proteins 

Nannizziopsis barbatae Ascomycota  Onygenales Onygenaceae Reptiles Dermatomycoses GCA_014964245.1 31.543 6,192 8,012* 

Ophidiomyces ophiodiicola Ascomycota  Onygenales Onygenaceae Snakes  Ophidiomycosis (snake fungal disease) GCA_002167195.1 21.865 1,499 6,983* 

Uncinocarpus reesii Ascomycota  Onygenales Onygenaceae  - Non-pathogenic GCF_000003515.1 22.349 5,232 7,760 

Coccidioides immitis Ascomycota  Onygenales Onygenaceae Humans Coccidioidomycosis (valley fever) GCA_004115165.2 27.474 3,797 7,815 

Chrysosporium queenslandicum Ascomycota  Onygenales Onygenaceae  -  Non-pathogenic GCA_001430955.1 32.335 173 11564* 

Microsporum canis Ascomycota  Onygenales Arthrodermataceae Humans, animals  Dermatophytosis GCF_000151145.1 23.263 2,919 8,765 

Trichophyton rubrum Ascomycota  Onygenales Arthrodermataceae Humans  Dermatophytosis GCF_000151425.1 22.530 2,156 8,706 

Trichophyton equinum Ascomycota  Onygenales Arthrodermataceae Humans, horses  Dermatophytosis GCA_000151175.1 24.158 397 8,676 

Nannizzia gypsea Ascomycota  Onygenales Arthrodermataceae Humans, animals  Dermatophytosis, onychomycosis GCF_000150975.2 23.272 3,227 8,921 

Paracoccidioides brasiliensis  Ascomycota  Onygenales Ajellomycetaceae Humans  Paracoccidioidomycosis GCF_000150735.1 29.952 2,149 8,390 

Blastomyces dermatitidis  Ascomycota  Onygenales Ajellomycetaceae Humans, animals  Blastomycosis GCA_000151595.1 73.633 400 11,443 

Pseudogymnoascus destructans  Ascomycota  Incertae sedis Pseudeurotiaceae Bats  White-nose syndrome GCF_001641265.1 35.818 1,168 9,405 

Saccharomyces cerevisiae  Ascomycota  Saccharomycetales Saccharomycetaceae  - Non-pathogenic GCF_000146045.2 12.157 924 6,002 

Candida albicans Ascomycota  Saccharomycetales Saccharomycetaceae Humans Candidiasis GCF_000182965.3 14.282 2,231 6,030 

Aspergillus fumigatus Ascomycota  Eurotiales Trichocomaceae Humans  Aspergillosis GCA_000002655.1 29.384 3,948 9,630 

Cryptococcus neoformans Basidiomycota Tremellales Tremellaceae Humans Cryptococcosis GCF_000091045.1 19.051 4,438 6,863 

Batrachochytrium dendrobatidis Chytridiomycota Rhizophydiales Batrachochytriaceae  Amphibians  Chytridiomycosis GCF_000203795.1 24.315 1,484 8,677 

* Gene annotations produced in this study.        
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Fig. 1. Comparative genomic analysis of N. barbatae with other fungal species. (A) Gene 

family size comparison of putative proteases and other proteins implicated in fungal virulence. 

Protein families significantly expanded in N. barbatae are marked with *. (B) Phylogenetic 

relationship of the trypsin domain-containing protein sequences identified in this study, red text, 

N. barbatae proteins; blue text, O. ophidiicola proteins.  
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Fig. 2. Spatial distribution and temporal spread of N. barbatae infection within the 

population. These are represented as the spatial distribution of the spatial random effect from the 

Spatial model (A) and the annually stratified Spatiotemporal model (B), respectively. The spatial 

effects were estimated using a stochastic partial differentiation equation (SPDE) in an integrated 

nested Laplace approximation (INLA) model. Adding these SPDE components substantially 
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improved model fit. In (A), points represent individuals’ average annual locations. The axes in (B) 

are identical to those in (A), with the labels removed for plotting clarity. In (A), the spatial effect 

is categorized into eight quantiles to facilitate visualization over a range of prevalence values. 
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Fig.3. Survival effects of N. barbatae infection in the population. Survival effects of the disease 

are estimated using a full-population model (A), and an approach combining model uncertainty 

and subsampling regime uncertainty (B, C, D). The second approach provided estimates of 

survival effects across all subsamples (B) and survival costs (C) and probabilities (D) of diseased 
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vs. non-diseased individuals. The large black points represent means across all 1000 replicates. 

The text at the top of panel C displays the effect estimate for the survival cost across all models, 

with 95% credibility intervals in brackets and the P value. The error bars represent the 95% 

credibility intervals. 
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