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Study Importance questions: 

What is already known about this subject?  

• Metabolomics, defined as the measurement and study of circulating small 

molecules that are the substrates and products of cellular metabolism, is 

increasingly used by epidemiologists to provide a functional read-out of bulk 

cellular activity and a proxy to individual current health. This approach also 

provides insight into biological pathways linking exposures and disease.  

• In observational studies, elevated body mass index (BMI) has been 

associated with a wide range of circulating metabolites. Researchers are now 

looking to genetic epidemiological methods, such as Mendelian randomization, 

to offer insight into potential causal relationships. 

What are the new findings in your manuscript?  

• We identified 29 metabolites whose relative abundance varies with a genetic 

predisposition to higher BMI.  

• Bilirubin, a key component of the heme catabolic pathway and a potent 

antioxidant, showed the strongest association with BMI score group. 

How might your results change the direction of research or the focus of 

clinical practice? 

• Results of both Mendelian randomization and recall-by-genotype studies need 

to be combined with alternative study designs to distinguish between 

biomarkers that are intermediates on the pathway to BMI from those reflective 

of metabolic changes that result from increased adiposity.  
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• Separating causal biomarkers from non-causative biomarkers of adiposity is 

important since only the former are relevant to treatment and prevention, 

whilst both could be informative with respect to prediction and the 

downstream consequences of high BMI.  
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Abstract  

Objective: We estimated the effect of body mass index (BMI) on circulating 

metabolites in young adults using a recall-by-genotype (RbG) study design.  

Methods: An RbG study was implemented in the Avon Longitudinal Study of 

Parents and Children. Samples from 756 participants were selected for untargeted 

metabolomics analysis based on low/high genetic liability for higher BMI defined by a 

genetic score (GS). Regression analyses were performed to investigate the 

association between BMI GS groups and relative abundance of 973 metabolites.  

Results: After correction for multiple testing, 29 metabolites were associated with 

BMI GS group. Bilirubin was amongst the most strongly associated metabolites with 

reduced levels measured in individuals with the highest BMI GS (beta=-0.32, 95% 

confidence interval (CI): -0.46, -0.18, Benjamini-Hochberg (BH) adjusted p=0.005). 

We observed associations between BMI GS group and levels of several potentially 

diet-related metabolites including hippurate which had lower mean abundance in 

individuals in the high BMI GS group (beta=-0.29, 95% CI: -0.44, -0.15, BH adjusted 

p=0.008). 

Conclusions: Together with existing literature our results suggest a genetic 

predisposition to higher BMI captures differences in metabolism leading to adiposity 

gain. In the absence of prospective data, separating these effects from the 

downstream consequences of weight gain is challenging.  
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Introduction  

Despite the extensive focus in the literature, the full downstream impact of high body 

mass index (BMI) and the potential causal mechanisms by which BMI impacts a 

large number of non-communicable diseases remains unclear (1). Through a 

combination of large-scale observational studies and intervention designs, BMI has 

been established as a major risk factor for many common complex diseases, 

including type 2 diabetes mellitus, hypertension, myocardial infarction, stroke and 

several types of cancer (2–4). Whilst the precision of effect estimates describing the 

association between BMI and disease (and our confidence in them) has increased in 

line with greater sample sizes and independent replication, observational studies are 

limited by confounding, bias and reverse causation. Meanwhile, intervention studies 

(e.g., weight change protocols) designed to circumvent these conventional limitations 

have their own challenges – notably, a limited ability to alter BMI to the extent 

required to quantify an effect, and the necessarily short-term and small-scale nature 

of such interventions.  

In response to these challenges and following developments in understanding 

genetic contributions to adiposity/BMI, methods from within the field of applied 

genetic epidemiology are now in use by researchers interested in dissecting the 

relationship between BMI and health. One such approach in which genetic variants 

act as an approximation to instrumental variables to evaluate the causal effect of an 

exposure (adiposity) on an outcome (disease), is Mendelian randomization (MR). In 

MR, genetic variation fulfils the role of an instrumental variable (5) where the 

presence of variance in BMI explained by genotype is (in principle) orthogonal to 

confounding factors and where genotype is assumed to exert an effect on health 

outcome only through BMI. Whilst validating the likely causal nature of the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.21.465319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465319
http://creativecommons.org/licenses/by/4.0/


 

relationship observed between BMI and many common diseases, these studies do 

little to explain how the risk is delivered. 

The study of circulating metabolites uses various techniques to detect and measure 

low molecular weight metabolites across a range of body fluids and tissues and can 

be used to provide a functional read-out of an individual’s current health. The use of 

metabolomics in epidemiological studies is increasing and has the potential to help 

elucidate the mechanisms linking obesity and associated co-morbidities, as well as 

identifying biomarkers to facilitate intervention and treatment. To date, studies have 

shown BMI-associated changes across a range of metabolite classes, including sex 

steroids, branched-chain and aromatic amino acids, acylcarnitines and lipids (6). But 

with much of the existing literature on the metabolomic impact of adiposity being 

based on observational epidemiological analyses, gaps remain in our understanding 

of the biology underpinning the development and direct pathophysiological 

consequences of obesity. 

We aimed to integrate the use of genetic predictors for BMI with in-depth 

intermediate phenotyping to explore the relationship between BMI and metabolic 

health. Recall by genotype (RbG) is a study design in which participants (or samples) 

are selected from a pre-existing cohort based on genetic variation either at single 

variants or in the form of a genetic score (GS) (7). In this way, RbG exploits the 

concept of MR (i.e., the random assortment of genetic variants in offspring), enables 

greater power for a given number of samples analysed as compared to random 

selection, facilitates deep phenotyping and is typically less prone to confounding and 

reverse causality (7, 8). The aim of this RbG study was to examine the effect of BMI 

(the exposure) on circulating metabolites (the outcome) using a GS describing a high 

versus low predisposition for higher BMI.  
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Methods  

In this study, metabolomics data were derived from plasma samples collected during 

a routine research clinic conducted as part of the Avon Longitudinal Study of Parents 

and Children (ALSPAC). Individuals were selected for inclusion in the study based 

on a GS for BMI. The primary statistical analysis sought to identify metabolites 

whose levels were associated with GS group (low/high). Sensitivity analyses were 

performed to further characterise the associations observed. An overview of the 

study design is shown in Figure 1. 

 

Study participants 

ALSPAC is a prospective birth cohort of 14,541 pregnant women residing in the 

former region of Avon (UK) with expected dates of delivery from 1st April 1991 to 31st 

December 1992 (9–11) (see Supplementary Methods for a cohort summary). 

13,988 children of the initial pregnancies who were alive at one year of age, referred 

to herein as Generation 1 (G1), have been followed up with a series of 

questionnaires and phenotypic assessments carried out during clinic visits. The 

study website contains details of all the data that is available through a fully 

searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). For our analysis, plasma 

samples and phenotype data from a subset of G1 participants and selected 

phenotype data for their parents were included. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research 
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Ethics Committees (http://www.bristol.ac.uk/alspac/researchers/research-ethics/). 

Consent for biological samples was collected in accordance with the Human Tissue 

Act (2004). Informed consent for the use of data collected via questionnaires and 

clinics was obtained from participants following the recommendations of the 

ALSPAC Ethics and Law Committee at the time. 

 

Genotyping and sample selection 

A subset of ALSPAC G1 participants (N=8,953) were genotyped using the Illumina 

HumanHap550 quad chip and data imputed to the 1000 Genomes reference panel 

(Phase 1, Version 3) (for full details see Supplementary Methods). A weighted GS 

was calculated for all G1 with genetic data using a previously published set of 940 

near-independent genome-wide significant BMI-associated SNPs and their effect 

estimates (12). Following cross-matching against those G1 participants with data 

and samples collected at the age 24 years clinic visit, those with the highest and 

lowest GS were selected for inclusion in the study. In what follows, these GS-derived 

groups will be referred to as the ‘high BMI’ and ‘low BMI’ score groups, respectively. 

In total 760 samples were sent for analysis, split equally between the high BMI and 

low BMI score groups. For further details of the ‘GS derivation’ and ‘sample selection’ 

procedure see corresponding headings in the Supplementary Methods.  

 

Derivation of metabolite data 

Fasted blood samples were collected at the age 24 years clinic visit from all ALSPAC 

G1 individuals who provided informed consent. For further details of blood sampling 
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procedures see Supplementary Methods. Plasma samples were shipped on dry ice 

to Metabolon, Inc. (Durham, North Carolina, USA) for untargeted metabolomics 

analysis using established protocols. The Metabolon analysis consisted of four 

independent ultra-high-performance liquid chromatography-tandem mass 

spectrometry (UPLC-MS/MS) runs. Further details of the methodology can be found 

in Supplementary Methods and in published work (13, 14). Metabolite screening 

identified 1216 biochemicals, including 948 known and 268 unknown (at the time of 

analysis) compounds. Original scale data normalized in terms of raw area counts (as 

supplied by Metabolon) was used. 

 

Phenotype data collection  

In ALSPAC, regular clinic visits of subsets of G1 were carried out from 4 months to 

24 years old, including assessment of their basic anthropometric measures. For this 

study, data were extracted for several variables to characterise the GS-derived 

groups. To validate the performance of the GS, data were extracted from all 

available timepoints for BMI (kg/m2) (calculated as (weight (kg) / height squared 

(m2)). Data were also extracted for other measures of adiposity; this included weight 

(kg) and variables derived from a dual energy x-ray absorptiometry (DXA) scan of 

body composition, specifically, total body fat mass (kg) and total body lean mass (kg).  

According to the theory of MR and analogous to the situation in a randomised 

controlled trial, creating groups based on a GS for BMI (as opposed to using BMI 

itself), should ensure those groups do not differ in any other respect, meaning any 

downstream analyses should be free from confounding. However, in the presence of 

(unmeasured) population structure, associations can be induced between GS (and 
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therefore score group) and some of the traditional confounders of the relationship 

between BMI (as an exposure) and selected outcomes (15). Therefore, data were 

extracted for several phenotypic correlates of observed BMI to check for 

associations with score group and to evaluate the potential for them to act as 

confounders in the primary analysis. Full details of all phenotypic variables can be 

found in Supplementary Methods. 

 

Statistical analysis 

An overview of the statistical analysis is provided in Figure 2. In all analyses, the low 

BMI score group was treated as the reference such that estimated effects represent 

the difference in the high BMI group relative to the low BMI group. All analyses were 

conducted in RStudio (16) using R v4.0.2 (17). 

 

Metabolite processing 

We processed the raw (original scale) data received from Metabolon (N=760 

samples) in preparation for statistical analysis using an in-house pipeline developed 

in R (17). Data were filtered based on a series of quality metrics (e.g., missing data). 

Except for those in the xenobiotic class (as annotated by Metabolon) metabolites 

with more than 20% missing values were excluded from the analysis. Following 

these exclusions, missing data were imputed using a random-forest based method 

and imputed data transformed using a rank-based normal transformation (RNT). In 

the case of xenobiotics (metabolites not produced by the human body), those 

with >20% missing were transformed to presence/absence (P/A) binary phenotypes 
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such that missing values were replaced with 0 and recorded (non-zero) abundance 

measures replaced with 1. Xenobiotics were treated in this way because of their 

typically high level of missingness (or absence), which is both expected and 

biologically relevant given their (predominantly) exogenous origins. Xenobiotics 

present in <11 samples were excluded from downstream analyses on the basis that 

any statistical analyses would not be robust. A detailed description of this pre-

analysis processing can be found in Figure 2 and in Supplementary Methods. This 

procedure left 973 metabolites for analysis, including 905 continuous metabolites 

and 68 xenobiotics transformed to P/A. 

 

Characterisation of recall groups 

Between-group differences in our phenotype of interest, BMI (kg/m2), the previously 

described adiposity traits and potential confounders, including technical covariates, 

were assessed. The normal distribution of continuous variables was checked by a 

Shapiro-Wilk test and between-group differences assessed using a Student’s (two-

sample, two-sided) t-test assuming unequal variance. In the case of BMI and weight, 

between-group differences were evaluated at different ages, ranging from four 

months to 24 years (when the samples used in this study were collected). Between-

group differences in body composition measures were assessed based on DXA 

scans conducted during the age 24 years clinic. Between-group differences of 

continuous variables that could confound the primary analysis were also assessed 

by t-test. A Fisher’s exact test for count data was applied to test for possible 

association of group with binary and categorical variables.  
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Primary analysis - association of metabolites with recall group 

To identify metabolite levels that differed between the low BMI and high BMI score 

groups, mean abundance was compared between groups using regression models. 

In Model 1, the post-imputation RNT metabolites were analysed within a linear 

regression framework [metabolite ~ BMI.score.group]. The R2 from the model was 

used as an indication of the variance explained by score group. Log2 median fold 

change calculated as the ratio of median abundance (untransformed and unimputed) 

in the high BMI score group divided by median abundance in the low BMI score 

group was used to indicate relative effect sizes.  

In Model 2, metabolites in the xenobiotic class with high levels of missingness and 

previously transformed to P/A traits, were analysed within a logistic regression 

framework [metabolite ~ BMI.score.group]. In this case, the variance explained by 

the model was estimated using the ‘rsq’ function in the R package of the same name 

(18). A Benjamini-Hochberg (BH) correction was applied to adjust the p-values 

obtained from each of these analyses (Model 1 and Model 2) for multiple testing.  

 

Sensitivity analyses 

Several sensitivity analyses were carried out to aid interpretation and to further 

characterise the associations observed in the primary analysis. These analyses were 

restricted to the subset of BMI score group associated metabolites (BH p<0.05) 

output from Model 1. A full description of the methods used can be found under 

corresponding headings in Supplementary Methods. 
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Extension of primary association analyses: Model 1 was extended to a multivariate 

model in which any potential confounder that had previously been shown to be 

associated with score group was fitted as an independent fixed effect alongside 

score group.  

Metabolite correlation analysis: A hierarchical clustering approach was applied to the 

subset of associated metabolites to identify redundancy in the data (i.e., where 

associated metabolites were highly correlated and likely representing the same 

biological signal). A reduced set of ‘representative’ metabolites was derived forming 

the focus for the next steps.  

Association of metabolites with measured BMI: Linear regression analyses were 

conducted to evaluate the direct association between measured BMI (at the age 24 

years clinic) and the subset of BMI score group associated metabolites with BMI 

score group, sex and age fitted as covariates in a multivariate linear model 

[metabolite ~ BMI + BMI.score.group + sex + age]. In order to investigate the 

consistency of the BMI effect across the two groups, the same model was also fitted 

with an interaction term [metabolite ~ BMI * BMI.score.group + sex + age] and within 

each BMI score group separately [metabolite ~ BMI + sex + age]. 

 

Results  

After filtering based on a series of pre-defined quality metrics, the study sample 

consisted of samples from 750 G1 individuals with abundance measures for 973 

metabolite traits (905 continuous and 68 presence/absence traits). Details of the 

exclusions made are shown in Figure 2 and described in Supplementary Methods 
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(‘Metabolite data processing’). The phenotypic characteristics of all G1 individuals 

who attended the age 24 years clinic as compared to the study sample (after QC) 

are presented in Table 1. Both recall groups were consistent with the overall cohort 

in terms of age and sex distribution, whilst adiposity traits showed expected 

differences (see below for details). 

 

Characterisation of recall groups 

At the age 24 years clinic when the samples were collected, the mean (standard 

deviation, SD) BMI of individuals in the low BMI score group was 23.4 (3.7) kg/m2, 

falling within the ‘normal weight’ range as defined by the World Health Organisation 

(18.5kg/m2 to <25kg/m2). In contrast, the mean BMI of individuals in the high BMI 

score group, 26.1 (5.2) kg/m2, fell within the ‘pre-obesity’ range (25kg/m2 to 

<30kg/m2). Differences were also observed in weight and in both total fat mass and 

total lean mass at this timepoint (Table 1). Temporal analyses showed that the 

between-group differences in BMI emerged at about four years of age then 

increased rapidly until participants reached around 13 years of age and somewhat 

more slowly thereafter (Figure 3 and Supplementary Table S1); a similar pattern 

was observed in weight (Figure S1 and Supplementary Table S1). There was little 

evidence for an association between BMI score group and most potential 

confounders tested (Supplementary Table S2). BMI score group showed modest 

association with parental (mothers and mother’s partners) social class 

(Supplementary Table S2) but with no clear direction of effect across categories 

(Supplementary Figure S2).  
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Association of metabolites with recall group 

Overall, we observed relatively small differences across a wide range of molecules 

with median log2 fold changes typically in the range -0.5 to 0.5 and a slight bias 

towards decreased abundances in the high BMI score group (Figure 4).  Of the 905 

metabolites tested in Model 1, 29 were associated with BMI score group (BH p<0.05), 

25 of which had annotations available from Metabolon (as of February 2020) (Table 

2) (see Supplementary Table S3 for full results). 25 of 29 (86%) had lower mean 

abundance in the high BMI score group compared to the low BMI group. The four 

metabolites that show the greatest evidence for association with BMI score group 

were bilirubin and bilirubin degradation products from the “Haemoglobin and 

Porphyrin Metabolism” pathway. A total of 11 metabolites assigned to this pathway 

appeared in the list of associated metabolites, including biliverdin. Score group 

allocation explained 2.6% of the variation in the abundance of the most strongly 

associated bilirubin degradation product. Four metabolites showed a positive 

association with high BMI score group, including two forms of sphingomyelin and 

metabolonic lactone sulfate. For the 29 associated metabolites, within-group 

distributions of metabolite levels were visualised using box and whisker plots with the 

original (unimputed abundance) data after mean centring and scaling as input 

(Supplementary Figure S3). 

Of the 68 xenobiotic metabolites (expressed as P/A traits) tested in Model 2, one 

metabolite, 2-acetamidophenol sulfate, had evidence for association with BMI score 

group. This metabolite was present less often in the plasma samples of individuals 

from the high BMI GS group (OR=0.59, 95%CI: 0.44,0.79, BH p=0.03). For full 

results of 68 metabolites from the logistic analysis see Supplementary Table S4. 
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Sensitivity analyses 

Characterisation of the score groups indicated some association with mother’s and 

mother’s partner’s social class. Therefore, in sensitivity analyses, these variables 

were fitted alongside score group in a multivariate model for the 29 metabolites with 

BH p<0.05 in the primary analysis. Score group effect estimates from the 

multivariate model (Supplementary Table S5) were similar to those from Model 1 

(Pearson’s correlation, r=0.99).  

Metabolite correlation analysis grouped the 29 metabolites associated with score 

group in Model 1 into 15 clusters, each with a representative metabolite (Table 2). 

The largest cluster consisted of 11 biochemicals including two forms of bilirubin, 

seven bilirubin degradation products, biliverdin and succinimide. There were 12 

single metabolite clusters. Of the 15 representative metabolites, 12 were associated 

with measured BMI (p<0.05) in a multivariate linear model with BMI and BMI score 

group fitted alongside age and sex, whilst 14 had effect estimates that were 

directionally concordant with their BMI score group association as derived in Model 1 

(Supplementary Table S6 and Supplementary Figure S4).  

Lower plasma levels of bilirubin degradation product (C16H18N2O5 (1)) (beta=-0.02, 

95%CI: -0.033,-0.006, p=5.94x10-3), hippurate (beta=-0.02, 95%CI: -0.033,-0.008, 

p=1.37x10-3), perfluorooctanesulfonate (PFOS) (beta=-0.02, 95%CI: -0.036,-0.012, 

p=1.03x10-4), tridecenedioate (C13:1-DC)* (beta=-0.05, 95%CI: -0.062,-0.035, 

p=7.54x10-12) and cortisone (beta=-0.06, 95%CI: -0.079,-0.050, p=3.28x10-17) as 

well as higher levels of sphingomyelin (d18:2/16:0, d18:1/16:1)* (beta=0.07, 95%CI: 

0.049,0.080, p=3.10x10-16) and metabolonic lactone sulfate (beta=0.10, 95%CI: 
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0.077,0.120, p=4.74x10-18) were associated with higher measured BMI and showed 

the same direction of association with measured BMI in both recall groups (a 

direction that was also concordant with the BMI score group association from the 

main analysis) (Figure 5 and Supplementary Table S6). Fitting an interaction term 

(measured BMI * BMI score group) in the model provided some evidence to support 

a difference in the measured BMI effect by BMI score group for bilirubin degradation 

product, C16H18N2O5 (1) (p=0.048) and tridecenedioate (C13:1-DC)* (p=0.046). 

There was less evidence to support an association of measured BMI with levels of 3-

hydroxy-2-ethylpropionate, pregnenolone sulfate, O-sulfo-L-tyrosine and 

glycocholenate sulfate (Supplementary Figure S5 and Supplementary Table S6). 

Plots for the representative metabolites not shown in Figure 5 can be found in 

Supplementary Figure S5. 

 

Discussion  

In this study, we characterised the metabolic profile associated with low/high genetic 

liability for higher BMI using an RbG framework. The mean difference in BMI 

between the low and high BMI score groups increased from early childhood, 

reaching a maximum of 2.8 kg/m2 (95% CI: 2.1, 3.4) at time of sampling when 

individuals were on average 24.5 years of age. This observation reflects differences 

in the ability of the GS to capture variation in BMI at different ages as shown 

previously in the same cohort (19). We identified 29 metabolites associated with BMI 

GS group allocation. In most cases, associated metabolites were seen at lower 

levels in the high BMI score group, with the largest effects seen for bilirubin, 

hippurate and tridecenedioate. Two sphingomyelin metabolites were seen at 
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increased abundance in the high BMI score group. The potential relevance of a 

selection of these metabolites to health and disease is explored in Supplementary 

Table S7. 

Conventionally, MR and RbG approaches are an attempt at isolating the causal 

contribution of modifiable exposures, such as BMI, to chosen outcomes. However, 

when the outcome is also a biological intermediate that may itself be directly proxied 

by (elements of) the genetic predictor used to capture variance in the exposure, as is 

the case with metabolites, the assumptions underpinning the causal inference no 

longer hold. Holmes and Davey Smith have previously described seven scenarios 

which could underpin observed associations between a genetic risk score for 

disease and potential biomarkers (20). The scenarios, all of which we propose could 

equally apply to the present study, include both ‘real’ GRS-to-trait associations 

(which are therefore informative with respect to underlying biology) and associations 

that represent potential artifacts. Whilst others have concluded that the majority of 

metabolic perturbations seen in obesity are a response to increased adiposity itself 

rather than shared genetic mechanisms (21), our results and those of Hsu et al. (22), 

suggest forward causal connections (i.e., metabolites involved in pathways leading 

to changes in BMI) may exist. Whilst both sets of metabolic pathways, cause and 

effect, may be informative with respect to predicting the risk of developing obesity-

associated comorbidities, only the former is likely to be of therapeutic relevance for 

the prevention of obesity. It is within this context that we go on to discuss our 

findings in more detail.  

Bilirubin showed the strongest association with BMI score group allocation and, 

together with its associated degradation products, formed the largest cluster of 

associated metabolites. Bilirubin is a key component of the heme catabolic pathway 
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and a potent antioxidant, and in this study was found in lower abundance in the high 

BMI score group. Although bilirubin is not amongst the metabolites most commonly 

associated with BMI and adiposity (23), circulating levels of the metabolite have 

previously been found to be associated both with adiposity and indicators of 

metabolic health (in a concordant direction to what we observe) in an observational 

setting (21, 24–27). Recent experimental work, including animal studies, support an 

active role for bilirubin in improving cardiorenal and metabolic dysfunction, pointing 

to a range of potential mechanisms including activation of nuclear receptors for 

burning fat (28) and the reduction of inflammation in adipose tissues (based on 

biliverdin administration to high-fat diet-induced obese mice) (29). However, results 

from MR studies aimed at improving causal inference in the role of bilirubin in a 

number of diseases have yet to provide robust evidence of a causal contribution 

(30–35).  

Elevated levels of branched chain amino acids (BCAAs) (leucine, isoleucine and 

valine), as well as some of their tissue metabolites, have been consistently detected 

in individuals with obesity (23). There is evidence from MR that supports a causal 

effect of BMI on circulating BCAA (based on N=12,644) (26) as well as downstream 

effects of BCAA on disease such as type 2 diabetes (36). In this study, we saw little 

evidence for higher levels of these metabolites in the high BMI score group as 

compared to the low BMI group (Model 1 betas range from 0.015 to 0.073 with 

unadjusted p-values from 0.32 to 0.84). Whilst this may seem at odds with existing 

MR evidence, it is not totally unexpected given the level of inconsistency in the wider 

literature. For instance, studies conducted in children have failed to observe a 

positive relationship between BMI and BCAA (37, 38) whilst results from a 

bidirectional MR provided evidence for a causal effect of valine on BMI (22). 
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However, the apparent instrument-dependent nature of the findings in the latter (22) 

point to heterogeneity in the underlying biology. Levels of circulating BCAA are also 

known to be influenced by dietary intake (39) and a link has been proposed between 

the obesity-related rise in circulating BCAA and a decline in their catabolism in 

adipose tissue (40, 41), with further evidence suggesting that this could be tissue 

specific (42). Moreover, 3-hydroxy-2-ethylproprionate (a metabolite annotated to the 

‘Leucine, isoleucine and valine metabolism’ sub-pathway and which is a product of 

isoleucine catabolism (43)) was observed to associate with BMI GS group but not 

with measured BMI. One potential explanation for this given previously reported 

associations of 3-hydroxy-2-ethylproprionate with muscle cross-sectional area (i.e., 

with body composition) (44), is that the association seen with score group is 

underpinned by differences in lean mass between the groups. However, we are not 

well-powered to investigate this hypothesis within the current study.  

We observed associations between BMI score group and the levels of potentially 

diet-related metabolites, including hippurate and PFOS. Hippurate, or hippuric acid, 

a glycine conjugate of benzoic acid, is synthesised in the liver and kidney (45). The 

benzoic acid component is derived mainly via microbial and mammalian co-

metabolism of large polyphenolic molecules contained in, for example, fruits and 

vegetables, to a range of simpler aromatics that are then further metabolised to 

benzoic acids (45). We observed lower levels of hippurate in individuals in the high 

BMI GS group, concordant with a previous identified associations between hippurate 

levels and visceral body fat mass (27, 46). Previous literature combining data on diet 

intake, visceral fat mass and gut microbial profiling, suggests the association of 

circulating (and urine excreted) levels of hippurate with adiposity and related health 

outcomes (45), is likely to be the result of a complex interaction between diet intake, 
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microbiome diversity and composition, and adipose tissue function (27, 47). 

Individuals in the high BMI score group also had lower plasma PFOS levels. PFOS, 

as an anthropogenic organic pollutant with chemical and thermal stability, has been 

detected in drinking water and the diet (especially in fish and crustaceans) in multiple 

countries and areas across the globe and has a global toxic effect on human health 

(see Supplementary Table S7). Furthermore, several of the xenobiotics which 

appear to be present at different rates in the two groups (albeit not meeting our 

stringent threshold for association) may also be biomarkers of food consumption 

(e.g., acesulfame, betonicine, theanine). 

The associations observed between BMI score groups and these metabolites 

suggest that at least some of the genetic predisposition to increased BMI may be 

conveyed either via dietary choices or through differences in nutrient metabolism. 

Others have taken the fact that many genes associated with high BMI appear to be 

highly expressed in the central nervous system (48) (with some also having been 

linked to appetite regulation), as evidence that genetic susceptibility to obesity is 

partly attributable to appetitive phenotypes (49). Studies of the association between 

BMI-associated GS and appetite and satiety traits (50, 51) along with results of the 

current study provide some support for this hypothesis. However, behavioural traits 

such as these are known to be particularly at risk from bias even in an MR (and likely 

RbG) setting (52), where population stratification (53) or complex genetic effects not 

accounted for in these study designs, for example, dynastic effects (54) can be 

problematic given the underlying assumptions of these methods. 

The potential for reintroduction of such confounding effects (and pleiotropy) appears 

to increase with the number of variants included in the GS, either through the 

lowering of the p-value threshold used for selecting SNPs or through increasing the 
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power of association analyses such that ever smaller effects are detected with 

sufficient statistical certainty (15). In this study, the weak correlation between score 

group and social class suggests some residual confounding (due to population 

stratification) may be present. However, given the consistency in the effect estimates 

after adjusting for maternal and paternal social class, we believe the effects of any 

such confounding on our results to be small. In this study, where metabolites showed 

an association with BMI score group, we also estimated their association with 

measured BMI. Whilst in general we saw good concordance of effects estimated in 

the two analyses, given our sampling frame, the observational estimates cannot 

necessarily be extrapolated to the wider (unselected) population. Where we see 

inconsistency, this could be the result of different key sources of bias effecting the 

different analytical strategies.  

In conclusion, we used an innovative RbG study design to identify metabolites 

whose relative abundance varies with a genetic predisposition to increased BMI. We 

hypothesise that these differences may reflect gene-derived perturbations to 

biological pathways relevant to weight gain or be consequences of higher BMI itself. 

To provide a definitive answer to the question of the role of metabolites (and related 

biological pathways) in obesity, results from several different approaches with 

unrelated sources of bias, including challenge/intervention studies, need to be 

integrated. In doing so, we can begin to understand the role of different metabolic 

pathways in weight gain and related morbidity and partition metabolites according to 

whether they are likely to be causative in nature and/or reflective of metabolic 

changes that occur after increased adiposity.  
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Figure titles and legends  

 

Figure 1. Study overview. 

This study involves the first-generation offspring in the Avon Longitudinal Study of 
Parents and Children (ALSPAC) multi-generational cohort, in which 14,541 pregnant 
women resident in the South West of England were recruited in the 90s. Firstly, we 
constructed genetic scores (GS) for body mass index (BMI) for all first-generation 
offspring. Under the recall-by-genotype study design, we recalled the plasma 
samples (collected at the age 24 years clinic) of individuals with a low (yellow) or 
high (blue) BMI GS for further analysis. Then, metabolites in those plasma samples 
were quantified by Metabolon. Finally, we performed statistical analysis to compare 
the metabolites levels between the two BMI GS groups. Our results are relevant to 
understanding the role of metabolites both as intermediates on the pathway to BMI 
and from BMI to disease. 

Figure 2. Overview of statistical analysis. 

‘Raw data’ is the original scale data normalized in terms of raw area counts (as 
supplied by Metabolon). Data were prepared for statistical analysis by first filtering 
samples and metabolites based on a series of quality metrics and then applying 
imputation and re-scaling procedures as appropriate. SD = standard deviations; QC 
= quality control; BMI = body mass index; GS = genetic score. 

Figure 3. Mean differences in BMI between the high and low BMI score groups. 

Error bars represent the standard errors of mean differences in weight. Sample size 
ranges from 108 (at age 31 months) to 743 (at age 24 years). Test results are given 
for a Students (two-sample, two-sided) t-test. ***: p-value < 0.001; **: p-value < 0.01; 
*: p-value < 0. For full results see Supplementary Table S1. 

Figure 4. Volcano plot depicting the association between circulating 
metabolites and BMI score group.  

Points are coloured by super-pathway. Log2 median fold change calculated as the 
ratio of median abundance (untransformed and unimputed) in the high BMI score 
group divided by median abundance in the low BMI score group. P-values used to 
derive -log10(p) are those from the linear regression analysis. All points above the 
dashed line have a Benjamini-Hochberg adjusted p-value <0.05. Solid grey lines 
indicate the density of points. A representative selection of metabolites of known 
identity are labelled.  

*: Indicates a compound that has not been confirmed based on a standard. 

Figure 5. Relationship between selected BMI score group associated 
metabolites and measured BMI.  
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Based on measured BMI at age 24 years clinic visit. Yellow = low BMI score group; 
blue = high BMI score group. ��������  is the measured BMI effect (CI95% = 95% 
confidence interval), extracted from multivariate linear model fitted in all individuals 
[metabolite ~ BMI + BMI.score.group + sex + age]. Where there was evidence that 
including an interaction term improved the fit of the model, the measured BMI effect 
(adjusted for age and sex) is given for each BMI score group separately (���	_��� , 

���	_���). In the plots, solid lines denote the predicted univariate within score group 
relationship between BMI and metabolite with a 95% confidence interval denoted by 
shading. 
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Tables 

Table 1. Characteristics of participants based on data collected at the age 24-year clinic.  

  All attendinga (N=4019) Low BMI group (N=373) High BMI group (N=377) Between-group 
difference in 

proportion (OR)/ 
mean [95% CI], p b   Mean/n St. Dev./% Mean/n St. Dev./% Mean/n St. Dev./% 

Sex 
Male 1505 37.4% 148 39.7% 150 39.8% 1.00 [0.74,1.36], 

p=1.00 Female 2514 62.6% 225 60.3% 227 60.2% 

Age (years) 
Male 24.5 (n=1505) 0.80 24.6 (n=148) 0.80 24.5 (n=150) 0.73 -0.05 [-5.85,5.76]c, 

p=0.99 Female 24.5 (n=2514) 0.82 24.4 (n=225) 0.75 24.4 (n=227) 0.81 

BMI (kg/m2) 
Male 24.9 (n=1460) 4.44 23.8 (n=148) 3.46 26.2 (n=150) 4.66 2.78 [2.12,3.43], 

p=3.79x10-16 Female 25.0 (n=2479) 5.42 23.1 (n=222) 3.79 26.1 (n=223) 5.62 

Weight (kg) 
Male 80.6 (n=1495) 15.3 78.5 (n=148) 12.6 85.3 (n=150) 17.1 8.01 [5.72,10.3], 

p=1.56x10-11 Female 68.8 (n=2481) 15.8 63.4 (n=223) 10.8 72.1 (n=223) 16.4 

Total fat 
mass (kg) 

Male 20.6 (n=1459) 9.77 18.6 (n=146) 7.94 23.4 (n=144) 10.8 5.67 [4.26,7.07], 
p=1.17x10-14 Female 25.1 (n=2403) 11.1 21.0 (n=217) 7.79 27.3 (n=212) 10.9 

Total lean 
mass (kg) 

Male 56.9 (n=1459) 7.55 57.2 (n=146) 7.05 59.1 (n=144) 8.20 2.12 [0.60,3.63], 
p=6.33x10-03 Female 41.2 (n=2403) 5.41 40.0 (n=217) 4.46 42.1 (n=212) 5.04 

BMI = body mass index; OR = odds ratio; a Summary statistics based on all those who attended the age 24 years clinic; b results from a 
Student’s two-sample two-sided t-test to compare means in the high BMI group as compared to the low BMI group. In the case of sex, a 
Fisher’s test was performed to test for a difference in the proportion of males versus females in the two groups and the results presented 
as an odds ratio; c the test for a difference in mean age was conducted based on age in weeks at the age 24 years clinic.   
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Table 2. List of identified metabolites associated with BMI score group.  

Metabolite Subpathway Beta (95% CI) BH p Clustera 

bilirubin degradation product, C16H18N2O5 (1) Hemoglobin and Porphyrin Metabolism -0.32 (-0.47,-0.18) 0.005 1** 

bilirubin (Z,Z) Hemoglobin and Porphyrin Metabolism -0.32 (-0.46,-0.18) 0.005 1 

bilirubin (E,Z or Z,E)* Hemoglobin and Porphyrin Metabolism -0.31 (-0.45,-0.17) 0.007 1 

bilirubin degradation product, C16H18N2O5 (2) Hemoglobin and Porphyrin Metabolism -0.30 (-0.44,-0.16) 0.007 1 

biliverdin Hemoglobin and Porphyrin Metabolism -0.30 (-0.44,-0.16) 0.007 1 

hippurate Benzoate Metabolism -0.29 (-0.44,-0.15) 0.008 2 

tridecenedioate (C13:1-DC)* Fatty Acid, Dicarboxylate -0.29 (-0.43,-0.15) 0.010 3** 

sphingomyelin (d18:2/16:0, d18:1/16:1)* Sphingomyelins 0.28 (0.14, 0.42) 0.015 4** 

3-decenoylcarnitine Fatty Acid Metabolism (Acyl Carnitine, Monounsaturated) -0.28 (-0.42,-0.13) 0.015 3 

perfluorooctane sulfonate (PFOS) Chemical -0.27 (-0.42,-0.13) 0.015 5 

O-sulfo-L-tyrosine Chemical -0.26 (-0.41,-0.12) 0.024 6 

sphingomyelin (d18:2/14:0, d18:1/14:1)* Sphingomyelins 0.26 (0.12,0.40) 0.024 4 

bilirubin degradation product, C17H18N2O4 (2) Hemoglobin and Porphyrin Metabolism -0.26 (-0.40,-0.12) 0.024 1 

bilirubin degradation product, C17H18N2O4 (3) Hemoglobin and Porphyrin Metabolism -0.26 (-0.40,-0.12) 0.027 1 

bilirubin degradation product, C17H18N2O4 (1) Hemoglobin and Porphyrin Metabolism -0.26 (-0.40,-0.11) 0.027 1 

3-hydroxy-2-ethylpropionate Leucine, Isoleucine and Valine Metabolism -0.25 (-0.39,-0.11) 0.031 7 

glycocholenate sulfate* Secondary Bile Acid Metabolism -0.25 (-0.39,-0.11) 0.032 9 

cortisone Corticosteroids -0.25 (-0.39,-0.11) 0.033 10 

3-hydroxydecanoylcarnitine Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) -0.24 (-0.38,-0.10) 0.040 3 

succinimide Chemical -0.24 (-0.38,-0.10) 0.040 1 

bilirubin degradation product, C17H20N2O5 (1) Hemoglobin and Porphyrin Metabolism -0.24 (-0.38,-0.10) 0.044 1 

bilirubin degradation product, C17H20N2O5 (2) Hemoglobin and Porphyrin Metabolism -0.24 (-0.38,-0.10) 0.047 1 

metabolonic lactone sulfate Partially Characterized Molecules 0.23 (0.09,0.38) 0.049 12 

3-hydroxyoctanoylcarnitine (1) Hemoglobin and Porphyrin Metabolism -0.23 (-0.37,-0.09) 0.049 3 
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Metabolite Subpathway Beta (95% CI) BH p Clustera 

pregnenolone sulfate Pregnenolone steroids -0.23 (-0.37,-0.09) 0.049 14 

Model fitted: metabolite ~ BMI.score.group (low BMI group as reference group). Model run on rank-based normal transformation (RNT) 
metabolite data. Beta represents change in normalised standard deviation units. Metabolites ordered by their Benjamini-Hochberg (BH) 
adjusted p-values from the lowest to the highest. 
BH = Benjamini-Hochberg; CI = confidence interval. 
*: Indicates a compound that has not been confirmed based on a standard. 
**: Representative metabolite for clusters consisting of more than one metabolite. 
a: Metabolite clusters assigned by iPVs (clusters 8, 11, 13 and 15 contain a single unidentified metabolite each) 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted O
ctober 23, 2021. 

; 
https://doi.org/10.1101/2021.10.21.465319

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.10.21.465319
http://creativecommons.org/licenses/by/4.0/


Figure 1  
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Figure 2 
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1,216 metabolites
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Sample filter
Exclude if: missingness > 20% (N=0), or,

total peak area > ± 5SD from the mean (N=1), or,
principal component position > ± 5SD from the mean (N=2), or, 

consent withdrawal (N=3), or duplicate (N=4).

Metabolite filter
Exclude if: non-xenobiotics with missingness > 20% (N=211), or 

xenobiotic present in <11 samples (N=32).

905 metabolites with missingness ≤20% 
Missing data imputation by Random Forest and 

data transformed by rank-based normal 
transformation

68 xenobiotic metabolites with high 
missingness 

Data transformed to 
presence/absence (P/A) form

Statistical analysis by linear 
regression model

25 metabolites associated with BMI GS 
group

Statistical analysis by logistic 
regression model

1 metabolite associated with BMI GS 
group

Metabolite correlation analysis 
13 representative metabolites

Post hoc analysis
With z-scored metabolite levels, further 

examine the association between 
metabolites and measured BMI
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Figure 3 
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Figure 4 
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Figure 5 
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