1 Title

- 2 The amount range of membrane cholesterol required for robust cell adhesion and proliferation in
- 3 serum-free condition.
- 4
- 5 Shino Takii¹, Jun Wu^{2, 3}, Daiji Okamura^{1*}
- 6
- ⁷ ¹Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204
- 8 Nakamachi, Nara 631-8505, Japan
- ⁹ ²Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
- 10 75390, USA
- ³Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical
- 12 Center, Dallas, TX 75390, USA
- 13
- 14 *Corresponding author:
- 15 E-mail: dokamura@nara.kindai.ac.jp
- 16 Telephone: +81-742-43-5384
- 17 Fax: +81-742-43-8976

18 Abstract:

19	Serum-containing medium is widely used to support cell attachment, stable growth and serial
20	passaging of various cancer cell lines. However, the presence of cholesterols and lipids in serum
21	greatly hinders the analysis of the effects of cholesterol depletion on cells in culture. In this study, we
22	develop a defined serum-free culture condition accessible to a variety of different types of adherent
23	cancer cells. We tested different factors that are considered essential for cell culture and various
24	extracellular matrix for plate coating, and found cells cultured in Dulbecco's Modified Eagle's Medium
25	(DMEM) basal media supplemented with Albumin (BSA) and insulin-transferrin-selenium-
26	ethanolamine (ITS-X) on fibronectin-precoated well (called as "DA-X condition") showed comparable
27	proliferation and survival to those in a serum-containing medium. Interestingly, we observed that DA-
28	X condition could be adapted to a wide variety of adherent cancer cell lines, which enabled the analysis
29	of how cholesterol depletion affected cancer cells in culture. Mechanistically, we found the beneficial
30	effects of the DA-X condition in part can be attributed to the appropriate level of membrane cholesterol,
31	and fibronectin-mediated signaling plays an important role in the suppression of cholesterol production.
32	

33 Keywords:

34 Cholesterol, Serum-free medium, Membrane, Cell adhesion, Proliferation, Pseudopodia

35

36 Introduction:

37	Modern advances in medical and biological sciences have largely relied on the development of cell
38	culture technology(1). The ability and quality of culture medium to support cell survival, proliferation,
39	and function in vitro have a direct impact on research outcomes. Thus, it is essential to select the
40	appropriate medium when conducting cell culture experiments. It is well-established that serum-
41	containing medium provides an optimal culture condition, which is widely used to support attachment,
42	stable growth and serial passaging of various cancer cell lines in culture. However, as cell culture
43	research progressed, the need for serum-free culture media, which are expected to help overcome
44	various ethical and scientific issues, became apparent(2). Compared to serum-containing media,
45	serum-free media have advantages such as less variability between lots, more consistent, and in many
46	cases lower cost (unless expensive growth factors and cytokines are used)(3).
47	Cholesterol, an essential component of mammalian cell membranes, not only maintains cell
48	structure, but also plays an important role in other cellular functions such as biosynthesis of bile acids
49	and hormones, embryonic development, and cell proliferation(4). Most of the cellular cholesterol
50	enriches in the plasma membrane after transportation from endoplasmic reticulum, which regulates
51	cellular proliferation, differentiation, and survival. Cholesterol metabolism is known to critically

52	contributes to cancer cell proliferation, migration and invasion, and accumulation of cholesterol in
53	solid tumors is considered as the hallmark for aggressive cancers(5-9). However, given that serum
54	contains numerous cholesterols and lipids, serum-containing media are therefore not ideal for studying
55	effects of cholesterols on cancer cells in culture. Although serum-free media with optimized
56	compositions for each adherent cancer cell line are available, few of these cultures can support the
57	growth of other cancer cell types, and there is a lack of universal serum-free medium applicable to a
58	wide range of adherent cell lines. In contrast, in the field of pluripotent stem cells, the use of serum-
59	free and/or xeno-free medium has become standard(10).
60	In this study, we aimed to develop a universal serum-free culture medium broadly applicable to any
61	adherent cancer cell types. While testing various essential culture parameters including extracellular
62	matrix e, we found that growing cells in Dulbecco's Modified Eagle's Medium (DMEM) basal medium
63	containing Albumin (BSA) and insulin-transferrin-selenium-ethanolamine (ITS-X) on culture plates
64	pre-coated with fibronectin (called as "DA-X condition") showed robust cell proliferation and attached
65	cells exhibited elongated pseudopodia, which were comparable to cells grown in a serum-containing
66	medium. DA-X condition also facilitated the study of the effects of cholesterol and lipid on cancer
67	cells in vitro in a wide variety of adherent cancer cell lines. Importantly, we found that cells grown in
68	the DA-X condition maintained the right amount of membrane cholesterol important for robust cell

- 69 attachment, pseudopodia elongation and survival in serum free condition, and fibronectin-mediated
- roles in suppressing excess cholesterol production.

- 72 Materials and Methods:
- 73 Cell lines and culture
- 74 Cell lines using in this research were obtained from the Cell Resource Center for Biomedical Research
- 75 (Institute of Development, Aging and Cancer, Tohoku University, Japan) and maintained in 10% Fetal
- 76 Bovine Serum (Gibco, 10270)-contained DMEM medium (nacalai tesque, 08458-45) which is
- supplemented with 1x Penicillin-Streptomycin Mixed Solution (nacalai tesque, 26253-84), and
- passaged using TrypLE (Gibco, 12604013) every 4-5 days. Briefly for in RPMI-G, 2x10⁴ cells were
- seeded into one well of a 4-well plate without pre-coating in RPMI1640 medium (nacalai tesque,
- 80 3026485) supplemented with 1x ITS-G: Insulin-Transferrin-Selenium (Gibco, 41400045), 1x L-
- 81 Glutamine (nacalai tesque, 16948-04), 1x Penicillin-Streptomycin Mixed Solution. In DA-X condition
- 82 (shown as ITS-X/ DMEM/ BSA (FN) in Fig. 1a), $2x10^4$ cells were seeded into one well of a 4-well
- 83 plate pre-coated with Fibronectin in DMEM medium (High Glucose) (nacalai tesque, 08458-45)
- 84 supplemented with 1x ITS-X: Insulin-Transferrin-Selenium-Ethanolamine (Gibco, 51500056), 5
- 85 mg/mL BSA: Bovine Serum Albumin (Sigma, A3059), 1x L-Glutamine, 1x Penicillin-Streptomycin

86	Mixed Solution. DMEM/Ham's F-12 (nacalai tesque, 11581-15) was used for ITS-X/ DMEM/F-12/
87	BSA (FN) (shown in Fig. 1b). Extracellular matrix was coated on a well of 4-well cell culture plate
88	(SPL, 30004) and incubated for 1 hour at 37°C at the desired concentration, 1.25 μ g/cm ² for
89	Fibronectin (FUJIFILM, 063-05591), 1.25 µg/cm ² for Vitronectin (FUJIFILM, 220-02041), 0.5
90	µg/cm ² for Laminin511-E8 fragments: iMatrix-511 (MAX, 892011), 2% for Matrigel (Corning,
91	354234), 0.2% for Gelatin (Sigma, G1890). For optimization of serum-free culture condition for stable
92	adhesion, the combination of basal medium, supplements and extracellular matrix shown in the
93	notation in Fig. 1a at a concentration mentioned above were attempted. For inhibition of fibronectin-
94	binding and -mediated signaling, RGDS peptide (Cayman, 15359-5) as fibronectin Inhibitor was added
95	in culture at 50 μ g/mL (the solvent, DMSO, was added for control). The images of cells were collected
96	by a microscopy in phase-contrast (Keyence, BZ-X710).
97	
98	Modulation of cholesterol
99	For modulating of membrane cholesterol contents in culture, Methyl-β-cyclodextrin (MβCD) (Sigma,
100	332615) for depletion of membrane cholesterol and soluble cholesterol (Sigma, C8667) (complex of
101	M β CD and cholesterol) were added according to each purpose at 0.2 mM, 1mM and 30 μ M

102 respectively. 2x10⁴ cells maintained in 10% FBS/ DMEM were seeded onto non-coat in RPMI-G or

103	fibronectin-coated in DA-X condition well of 4-well cell culture plate. At 1 day after seeded, M β CD
104	or soluble cholesterol was added (the solvent, sterile water or EtOH, was added for control
105	respectively). For exploring of functions of cholesterol biosynthesis depending on culture medium,
106	Ro48-8071 (Cayman, 10006415), a selective inhibitor of Oxidosqualen cyclase, known as Cholesterol
107	biosynthesis inhibitor was used. 2x10 ⁴ cells maintained in 10% FBS/ DMEM were seeded onto non-
108	coat in 10% FBS/ DMEM or fibronectin-coated in DA-X condition well of 4-well cell culture plate.
109	At 1 day after seeded, Ro48-8071 was added at 1 μ M (the solvent, EtOH, was added for control).
110	
111	Qualitative estimation of membrane cholesterol
111 112	Qualitative estimation of membrane cholesterol For labeling of membrane cholesterol, cells grown on 4-well plate were fixed with 4%
112	For labeling of membrane cholesterol, cells grown on 4-well plate were fixed with 4%
112 113	For labeling of membrane cholesterol, cells grown on 4-well plate were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. The cells were washed three times in PBS,
112113114	For labeling of membrane cholesterol, cells grown on 4-well plate were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. The cells were washed three times in PBS, and then incubate with 1.5 mg/ml glycine in PBS for 10 min at room temperature to quench the
 112 113 114 115 	For labeling of membrane cholesterol, cells grown on 4-well plate were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. The cells were washed three times in PBS, and then incubate with 1.5 mg/ml glycine in PBS for 10 min at room temperature to quench the paraformaldehyde. Cells were stained with filipin working solution (0.05 mg/ml filipin III (Cayman,

RNA preparation and real-time PCR

120	Total RNAs were extracted by using Sepasol-RNA I Super G (nacalai tesque, 09379) to the
121	manufacturer's instructions. RNAs were reverse-transcribed using ReverTra Ace qPCR RT Master
122	Mix (TOYOBO, FSQ-201), and real-time PCR was performed using THUNDERBIRD SYBR qPCR
123	Mix (TOYOBO, QPS-201) in MIC qPCR (bio molecular systems). Expression levels of each gene
124	were normalized to β -ACTIN (human) expression and calculated using comparative CT method. The
125	primer sequences are shown in below: β -ACTIN-F (CTGGCACCACACCTTCTACAATG), β -
126	ACTIN-R (AATGTCACGCACGATTTCCCGC), SREBF1-F (ACAGTGACTTCCCTGGCCTAT),
127	SREBF1-R (GCATGGACGGGTACATCTTCAA), SREBF2-F (AACGGTCATTCACCCAGGTC),
128	SREBF2-R (GGCTGAAGAATAGGAGTTGCC), ACSS2-F
129	(AAAGGAGCAACTACCAACATCTG), ACSS2-R (GCTGAACTGACACACTTGGAC),
130	HMGCR-F (TGATTGACCTTTCCAGAGCAAG), HMGCR-R
131	(CTAAAATTGCCATTCCACGAGC), HM-GCS1-F (GATGTGGGAATTGTTGCCCTT),
131 132	(CTAAAATTGCCATTCCACGAGC), HM-GCS1-F (GATGTGGGAATTGTTGCCCTT), HMGCS1-R (ATTGTCTCTGTTCCAACTTCCAG), LDLR-F (ACCAACGAATGCTTGGACAAC),
132	HMGCS1-R (ATTGTCTCTGTTCCAACTTCCAG), LDLR-F (ACCAACGAATGCTTGGACAAC),

135

136 Statistical analysis

137 Statistical analysis was performed using the Student's t-test. P values < 0.05 were considered to be

138 statistically significant.

139

140 **Results:**

141 | Development of a novel serum-free culture condition for HeLa cells

142 ITS-G/ RPMI1640 (referred to as "RPMI-G" hereafter), a defined serum-free cell culture medium

143 reported previously(11), contains ITS-G supplement composed of Insulin-Transferrin-Selenium,

144 known to support cell proliferation in reduced-serum medium. RPMI-G supported robust cell adhesion

- 145 and proliferation of several melanoma cell lines. We tested culturing HeLa cells in RPMI-G medium.
- 146 Interestingly, however, HeLa cells loosely attached to the culture plate 2~3 days after seeding, and

147 consequently could not be maintained in RPMI-G medium (Fig. 1a). To establish a simpler and more

- 148 reliable serum-free condition that can facilitate the functional analysis of cholesterol and lipid
- 149 metabolism of a number of adherent cancer cell lines including HeLa cells, we optimized the RPMI-
- 150 G medium taking consideration of several culture parameters: (1) Cell adhesion to culture plates, (2)
- 151 Cell morphology (with or without pseudopodia), and (3) Cell proliferation. We didn't consider the 152 long-term cultivability. After testing the effects of various supplements, base media and extracellular
- 153 matrix in serum-free conditions, We found ethanolamine in ITS-X, fibronectin-precoating and DMEM

154	base medium had positive effects on cell adhesion and extension of pseudopodia, and the
155	supplementation of BSA improved cell proliferation (Fig. 1a). Interestingly, we found although
156	DMEM/Ham's F-12 is widely used as a basal media for serum-free cultures(1), cell attachment was
157	markedly attenuated with the retraction of pseudopodia on day 5 while initial cell attachment and
158	growth were not affected (Fig. 1b). We also tested the effects of several extracellular matrix proteins,
159	which are widely used in pluripotent stem cells including human iPS cells (Fig. 1c)(1,2). Taken
160	together, ITS-X/ DMEM/ BSA on fibronectin pre-coated culture plates, referred to as the "DA-X
161	condition", was determined to be the optimal serum-free culture condition that supports stable
162	adhesion, extended pseudopodia and robust cell proliferation, which is comparable to 10% FBS/
163	DMEM medium condition (Fig. 1).

164

165 | The utility of DA-X condition for studying cholesterol function

It is difficult to see the early effects of cholesterol biosynthesis inhibition or depletion of membrane
cholesterol (e.g. treatment with Methyl-β-cyclodextrin) in adherent cultures, since serum even at
reduced levels contains large amounts of lipids and cholesterols. In fact, Ro48-8071, a selective
inhibitor of Oxidosqualen cyclase, had no effects on adherent HeLa cells cultured in 10% FBS/ DMEM
medium (Fig. 2a, two images at top). In sharp contrast, addition of Ro48-8071 in DA-X condition had

171	a dramatic effect, and almost all cells detached and underwent apoptosis within 48 hours (Fig. 2a, two
172	images at bottom). These results demonstrate the potential of the serum-free DA-X condition to
173	provide an appropriate culture environment for analyzing the role of lipids and cholesterols in adherent
174	cancer cell lines.
175	
176	DA-X condition as universal serum-free condition for cancer cell lines
177	The development of serum-free media that can be broadly applied to any cancer cell line is important
178	for studying the role of lipids and cholesterols in the survival and proliferation of cancer cells. Next,
179	we performed side-by-side comparison of RPMI-G medium and DA-X condition in terms of cell
180	adhesion, pseudopodia and proliferation using representative human cancer cell lines derived from
181	different organs and tissues (Fig. 2b and 2c). Cancer cells maintained in 10% FBS/ DMEM medium
182	were switched to culture in serum-free conditions RPMI-G and DA-X, and phase contrast images were
183	recorded on day 5 to monitor cell viability, attachment, morphology, and proliferation. In general, we
184	found DA-X condition was more reliable than RPMI-G to support cell survival and proliferation with
185	pronounced elongated pseudopodia in tested cell lines (Fig. 2b and 2c). Cell proliferation and
186	attachment of SH-SY5Y (neuroblastoma) and PC-3 (prostatic cancer) in DA-X condition was
187	comparable to those in RPMI-G. Although HepG2 (hepatoma) and SW620 (colon cancer) in DA-X

188	condition showed comparable proliferation when compared to that in RPMI-G, they exhibited more
189	evident adhesion and pseudopodia in cells than those in RPMI-G. In the other lines including A549
190	(lung cancer), Panc-1 (pancreatic cancer), HeLa (cervical cancer), MCF-7 (breast cancer), cell survival
191	and proliferation were observed only under DA-X condition but not in RPMI-G. Taken together, we
192	demonstrate the efficacy in culturing (at least for 5 days without passaging) a number of adherent
193	cancer cell lines in the serum-free DA-X condition, which holds great potential for analyzing role of
194	lipids and cholesterol in these cells (Fig. 2).
195	
196	Varied cholesterol content in serum-free culture medium condition
170	varied endester of content in serum-nee culture meanum condition
190	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol
197	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol
197 198	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol biosynthesis in several adherent melanoma cell lines, which enabled unperturbed cell adhesion and
197 198 199	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol biosynthesis in several adherent melanoma cell lines, which enabled unperturbed cell adhesion and proliferation (11). While testing the hypothesis that cells grown in the DA-X condition have increased
197 198 199 200	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol biosynthesis in several adherent melanoma cell lines, which enabled unperturbed cell adhesion and proliferation (11). While testing the hypothesis that cells grown in the DA-X condition have increased fatty acid and cholesterol production through upregulation of biosynthesis-related genes when
197 198 199 200 201	RPMI-G, a defined serum free cell culture medium, supports de novo fatty acid and -cholesterol biosynthesis in several adherent melanoma cell lines, which enabled unperturbed cell adhesion and proliferation (11). While testing the hypothesis that cells grown in the DA-X condition have increased fatty acid and cholesterol production through upregulation of biosynthesis-related genes when compared to the RPMI-G culture medium, we surprisingly found that the amount of cholesterol in the

205	in RPMI-G when compared with 10% FBS/ DMEM as previously reported (Fig. 3b)(11). Together,
206	these results lead us to hypothesize that cells grown in RPMI-G medium are prone to detach due to the
207	excess of membrane cholesterol, DA-X condition provides benefit for stable cell adhesion in part due
208	to lowered membrane cholesterol content.
209	
210	Range of optimal membrane cholesterol for stable cell adhesion
211	To determine whether there is an appropriate range of membrane cholesterol for stable cell adhesion
212	in serum-free medium condition, we modulate the membrane cholesterol levels in both RPMI-G and
213	DA-X conditions to see their effects on cell adhesion. Augmentation and depletion of membrane
214	cholesterol were achieved by supplementation with soluble cholesterol and Methyl-β-cyclodextrin
215	(referred to as "MβCD" below), respectively (Fig. 3c, d). Depletion of cellular membrane cholesterol
216	by MβCD in RPMI-G (Fig. 3a, b) resulted in a significant improvement in cell adhesion (Fig. 3c). In
217	contrast, under DA-X conditions, both increase and depletion of membrane cholesterol led to the

- 218 attenuation of cell adhesion accompanied by the retraction of elongated pseudopodia (Fig. 3d). These
- results suggest that the excess of membrane cholesterol in RPMI 1640 medium may have caused cell
 death due to compromised cell adhesion, and the beneficial effects of the DA-X condition may due to
- 221 the appropriate amount of membrane cholesterol achieved by the suppression of cholesterol

222 biosynthesis-related gene expression (Fig. 3)(12).

223

224	Involvement of fibronectin in the suppressing genes needed for cholesterol biosynthesis
225	To determine the molecular mechanisms by which expression of cholesterol biosynthesis-related
226	genes were suppressed in DA-X condition, we inhibited fibronectin-binding and -mediated signaling
227	by the addition of RGDS peptide(2,13,14), and quantified the expression levels of cholesterol
228	biosynthesis-related genes by quantitative PCR analysis (Fig. 4a, b). Inhibition of fibronectin with
229	RGDS peptide in DA-X condition resulted in not only different cell morphology (Fig. 4a) but also
230	significant up-regulation of cholesterol biosynthesis-related genes (Fig. 4b). Therefore, fibronectin-
231	binding or -mediated signaling play important roles in the suppression of cholesterol production in
232	DA-X condition.
233	
234	Discussion:
235	Here, we show that the amount of cholesterol in the cell membrane greatly affects cell attachment
236	and pseudopodia formation, and eventually the survival of cells under serum-free conditions.
237	Furthermore, functional analysis by modulating membrane cholesterol content in RPMI-G and DA-X

238 conditions revealed that there is the appropriate range of membrane cholesterol for stable cell

239	attachment, pseudopodia formation, and proliferation in serum-free medium condition (Fig. 3c, d and
240	4c). We demonstrated that cells grown in the DA-X culture condition maintained the right amount of
241	cholesterol in cell membrane in part through extracellular matrix (fibronectin) signaling. The positive
242	results seen using eight representative human cancer cell lines suggest that the DA-X condition serves
243	as a universal serum-free culture condition that support pseudopodia formation, robust cell attachment
244	and proliferation prior to cell passaging. This contrasts with conventional serum-free media, which are
245	typically developed and optimized for each cell types. We therefore believe the DA-X culture
246	condition can serve as a powerful platform for clarifying the role of cholesterol in different cancer
247	cells(1).
247 248	cells(1). We also demonstrated that supplementation of Ro48-8071 in DA-X condition had profound effects
248	We also demonstrated that supplementation of Ro48-8071 in DA-X condition had profound effects
248 249	We also demonstrated that supplementation of Ro48-8071 in DA-X condition had profound effects on cell detachment and viability (Fig. 2a). Statin, inhibitors of HMG-CoA reductase, has also shown
248 249 250	We also demonstrated that supplementation of Ro48-8071 in DA-X condition had profound effects on cell detachment and viability (Fig. 2a). Statin, inhibitors of HMG-CoA reductase, has also shown to inhibit cancer cell proliferation and increase apoptosis(8,15,16), which seems dependent on cell
248 249 250 251	We also demonstrated that supplementation of Ro48-8071 in DA-X condition had profound effects on cell detachment and viability (Fig. 2a). Statin, inhibitors of HMG-CoA reductase, has also shown to inhibit cancer cell proliferation and increase apoptosis(8,15,16), which seems dependent on cell attachment since similar effects were not observed in acute lymphoid leukemia grown in suspension

cells (Fig. 3a, b), which is consistent with what was seen in other type of serum-free conditions (17).

We observed that marked increase of membrane cholesterol content in RPMI-G cultured

HeLa

256	Cells in these conditions are prone to detachment and cell apoptosis. Enrichment of cholesterol in the
257	lipid raft of membrane in cancer cells make them more sensitive to cholesterol depletion and induces
258	anoikis like cell death(18), suggesting that there is a close relationship between the amount of
259	membrane cholesterol in cancer cells and cell survival in serum-free culture condition.
260	Finally, from the perspective of decarbonization, recently research on cultured meat is rapidly
261	progressing but most, if not all, cultures still use serum-supplemented medium. Serum-free medium
262	will be essential for the establishment of cultured meat in the future in order to reduce cost, achieve
263	consistency and minimize the impact of carbonization(19). Our study revealed that keeping the right
264	amount of membrane cholesterol is essential for cell survival and proliferation in serum-free culture
265	conditions, and we believe these results will facilitate the development of serum-free medium for
266	cultured meat.

267

268 Acknowledgment:

This work was partly supported by grants from JSPS KAKENHI Grant Number JP20K06661 (Grantin-Aid for Scientific Research (C)), Kindai University Research Enhancement Grant (21st Century Joint Research Enhancement Grant), the Cooperative Research Project Program of Joint Usage/Research Center at the Institute of Development, Aging and Cancer, Tohoku University.

273

274 **References:**

- 275 1. Yao T, Asayama Y. Animal-cell culture media: History, characteristics, and current issues.
- 276 Reproductive Medicine and Biology. 2017;16(2):99–117.
- 277 2. van der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honegger P, Knudsen LE, et al.
- 278 Optimization of chemically defined cell culture media Replacing fetal bovine serum in
- 279 mammalian in vitro methods. Toxicology in Vitro [Internet]. 2010;24(4):1053–63.
- 280 3. Butler M. Serum-free media: standardizing cell culture system. Pharmaceutical Bioprocessing.
- 281 2013;1(4):315-8.
- 282 4. Fernández C, Lobo MDVT, Gómez-Coronado D, Lasunción MA. Cholesterol is essential for
- 283 mitosis progression and its deficiency induces polyploid cell formation. Experimental Cell
- 284 Research. 2004;300(1):109–20.
- 285 5. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of
- 286 cholesterol in the development and progression of breast cancer. American Journal of
- 287 Pathology [Internet]. 2011;178(1):402–12.
- 288 6. Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation induced
- by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell

- 290 Metabolism [Internet]. 2014;19(3):393–406.
- 291 7. Dimitroulakos J, Nohynek D, Backway KL, Medley DW, Yeger H, Freedman MH, et al.
- 292 Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: A potential
- therapeutic approach. Blood [Internet]. 1999;93(4):1308–18.
- 294 8. Demierre MF, Higgins PDR, Gruber SB, Hawk E, Lippman SM. Statins and cancer
- prevention. Nature Reviews Cancer. 2005;5(12):930–42.
- 296 9. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer
- 297 cells. Oncogenesis. 2016;5(1):e189–e189.
- 298 10. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel
- 299 efficient feeder-Free culture system for the derivation of human induced pluripotent stem
- 300 cells. Scientific Reports. 2014;4:1–7.
- 301 11. Wu S, Näär AM. A lipid-free and insulin-supplemented medium supports De Novo fatty acid
- 302 synthesis gene activation in melanoma cells. PLoS ONE. 2019;14(4):1–21.
- 303 12. Lietha D, Izard T. Roles of membrane domains in integrin-mediated cell adhesion.
- 304 International Journal of Molecular Sciences. 2020;21(15):1–19.
- 305 13. Page K, Lange Y. Cell adhesion to fibronectin regulates membrane lipid biosynthesis through
- 306 5'-AMP-activated protein kinase. Journal of Biological Chemistry. 1997;272(31):19339–42.

- 307 14. Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, Adams CS.
- 308 Apoptosis and survival of osteoblast-like cells are regulated by surface attachment. Journal of
- 309 Biological Chemistry. 2005;280(3):1733–9.
- 310 15. Hoque A, Chen H, Xu XC. Statin induces apoptosis and cell growth arrest in prostate cancer
- 311 cells. Cancer Epidemiology Biomarkers and Prevention. 2008;17(1):88–94.
- 312 16. Sánchez CA, Rodríguez E, Varela E, Zapata E, Páez A, Massó FA, et al. Statin-induced
- 313 inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic
- and necrotic cell death mediated by an enhanced oxidative stress. Cancer Investigation.
- 315 2008;26(7):698–707.
- 316 17. Mishra S, Peterson K, Yin L, Berger A, Fan J, Wistow G. Accumulation of cholesterol and
- 317 increased demand for zinc in serum-deprived RPE cells. Molecular Vision.
- 318 2016;22(July):1387–404.
- 319 18. Park E-K, Park MJ, Lee S-H, Li YC, Kim J, Lee J-S, et al. Cholesterol depletion induces
- 320 anoikis-like apoptosis via FAK down-regulation and caveolae internalization. Journal of
- 321 Pathology. 2009;218(January):337–49.
- 322 19. O'Neill EN, Cosenza ZA, Baar K, Block DE. Considerations for the development of cost-
- 323 effective cell culture media for cultivated meat production. Comprehensive Reviews in Food

324 Science and Food Safety. 2021;20(1):686–709.

325

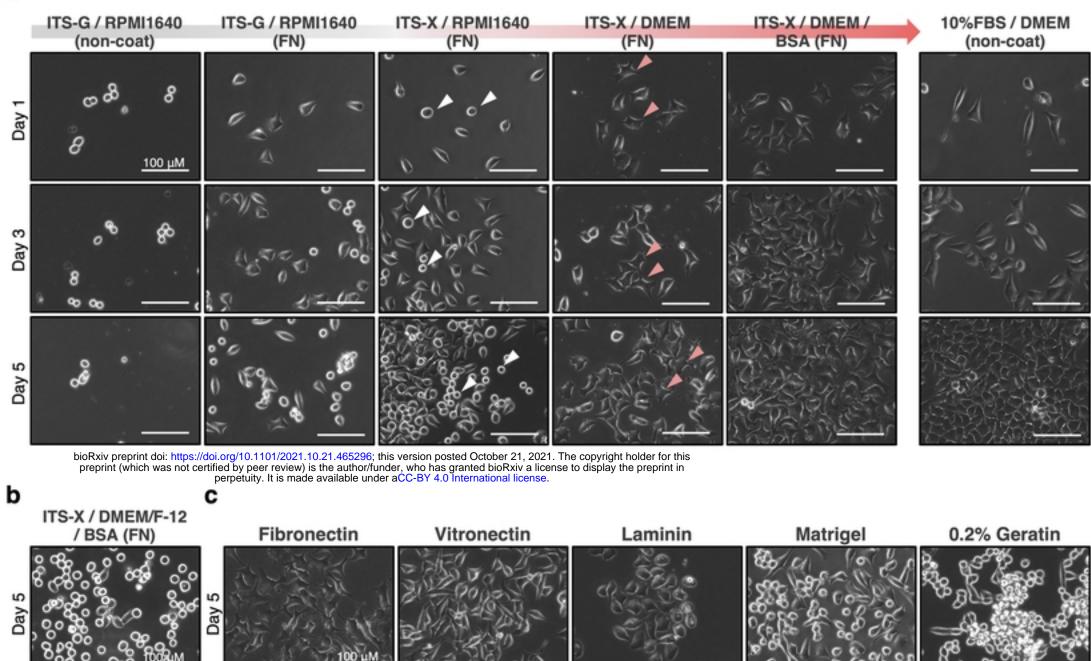
326 **Figure captions**

327	Figure 1 Optimization of novel serum-free condition on HeLa cells. a, Representative images of
328	cells in each culture condition. In screening for novel serum-free condition, 2x10 ⁴ cells of HeLa cell
329	(human cervical cancer cell line) maintained in 10% FBS/ DMEM were seeded onto each serum-free
330	media condition. Combinations of media composition and extra-cellular matrix are shown. Improving
331	stepwisely from RPMI-G with replacing the media composition resulted in establishment of the ITS-
332	X/ DMEM/ BSA on fibronectin-precoated well (called as DA-X condition), which significantly
333	improved cell adhesion, pseudopodia elongation, or proliferation. Non-coat, without any pre-coating.
334	White and pink arrowheads indicate cells with losing attachment and cells with firm elongated
335	pseudopodia, respectively. FN, fibronectin-coated. Scale bar, 100 μ m. b , Representative images of
336	cells cultured in DMEM/ Ham's F-12-based medium with ITS-X/ BSA on fibronectin-precoated well.
337	c, Representative images of cells in comparison of effect of extracellular matrix. 2x10 ⁴ cells of HeLa
338	cell maintained in 10% FBS/ DMEM were seeded onto a pre-coated well with each extracellular matrix.
339	Regarding to cell adhesion, pseudopodia elongation, or proliferation, fibronectin was shown as much
340	better than the other extracellular matrix. The effect of vitronectin was shown as comparable to that of

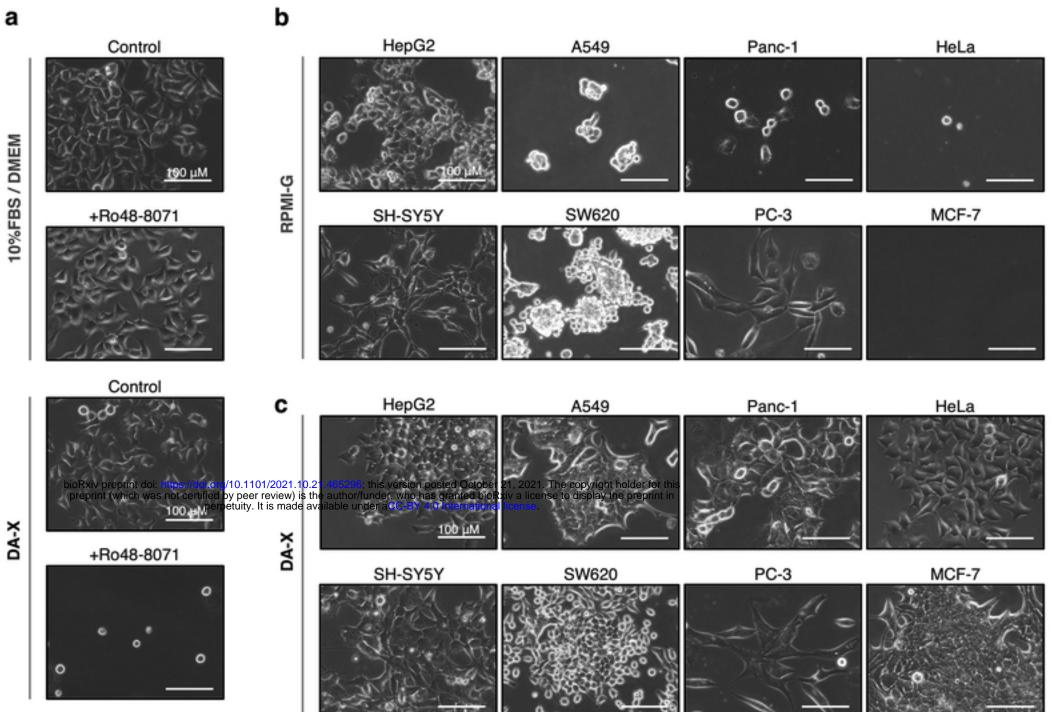
341 fibronectin in cell adhesion and cell proliferation, but not in pseudopodia elongation. Scale bar, 100
342 μm.

343

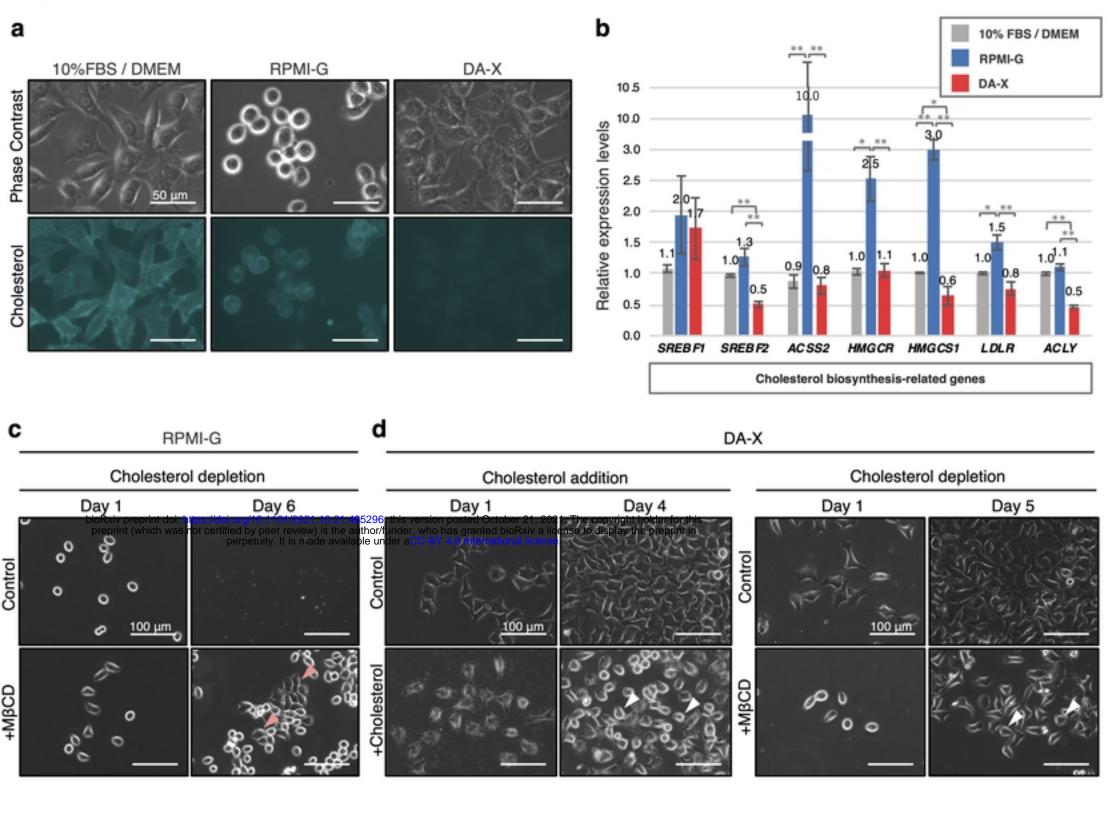
344	Figure 2 Availability of DA-X condition on analysis for cholesterol function, and in several
345	cancer lines. a, Effect of cholesterol biosynthesis inhibitor, Ro48-8071, on HeLa cells in serum-
346	containing and -free culture condition for 48 hrs. In cells grown in 10% FBS/ DMEM, Ro48-8071
347	was shown to have no effect on cell survival and even their proliferation, while almost cells cultured
348	in DA-X condition were shown to be dead. Scale bar, 100 μ m. b and c , Comparison of the effects of
349	RPMI-G medium and DA-X condition on cell adhesion, pseudopodia and proliferation in
350	representative human cancer cell lines of each organ and tissue. Images of cells cultured in RPMI-G
351	(b) and DA-X condition (c) at day 5 are shown. The number of cells at the start of culture was
352	optimized for each cell type to reach about 80% confluency at day 5 in 10% FBS/ DMEM medium
353	(the using cancer cell lines and their number of cells at the start of cultures in one well of a 4-well
354	plate are shown below). HepG2 (hepatoma, 4x10 ⁴), A549 (lung cancer, 2x10 ⁴), Panc-1 (pancreatic
355	cancer, 4x10 ⁴), HeLa (cervical cancer, 2x10 ⁴), SH-SY5Y (neuroblastoma, 4x10 ⁴), SW620 (colon
356	cancer, 4x10 ⁴), PC-3 (prostatic cancer, 3x10 ⁴), MCF-7 (breast cancer, 3x10 ⁴). Scale bar, 100 μm.
357	

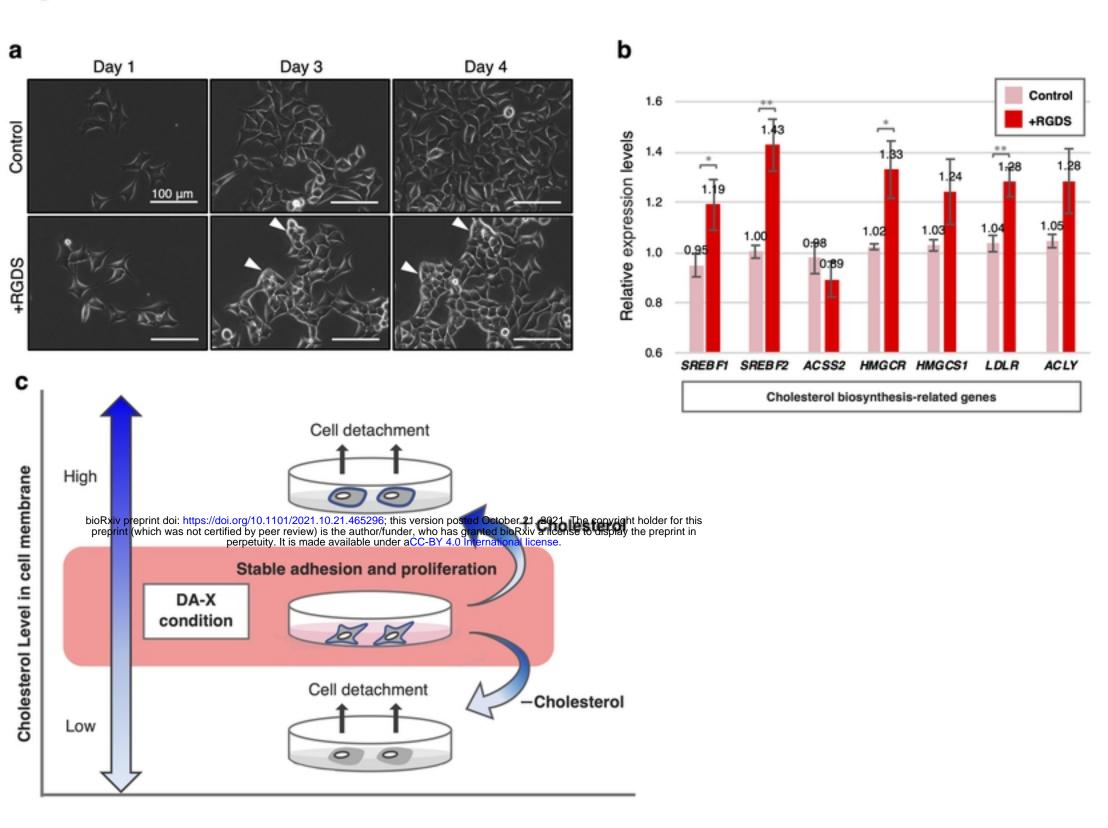

358	Figure 3 Required cholesterol level on membrane optimized by DA-X condition in HeLa cells.
359	a, Cholesterol labeling with filipin fluorescence staining in each culture condition. Cells were cultured
360	in 10% FBS/ DMEM, RPMI-G, DA-X condition for 2 days, and then applied for the staining. Signals
361	of fluorescence were enriched in membrane of cells regardless of culture condition, and the intensity
362	was strong in 10% FBS/ DMEM and RPMI-G, but quite faint in DA-X condition. Images for filipin
363	staining were obtained using the same exposure time. Scale bar, 50 μ m. b , Quantitative PCR analysis
364	of expression of de novo cholesterol biosynthesis-related genes. Cells cultured in each condition for 2
365	days, and collected for further gene expression analysis. Error bars indicate s.d. (n=3, biological
366	replicates). t-test, $**p < 0.01$ and $*p < 0.05$. c, Enhancement of cell adhesion and proliferation by
367	depletion of membrane cholesterol with Methyl- β -cyclodextrin (M β CD) in RPMI-G culture medium.
368	Pink arrowheads indicate cells with firm elongated pseudopodia. d, Effects of excess and depletion of
369	membrane cholesterol on cell adhesion by addition of soluble cholesterol and M β CD in DA-X
370	condition. At day 4 and 5, attenuated cell adhesion with the retraction of pseudopodia was widely
371	observed not only in addition of cholesterol, but also in depletion of membrane cholesterol with $M\beta CD$.
372	Scale bar, 100 μ m. White arrowheads indicate cells with losing attachment.
373	

374 Figure 4 | Involving fibronectin in down-regulation of cholesterol biosynthesis-related genes


375	expression in DA-X condition. a, Representative images of HeLa cells under RGDS peptide
376	treatment in DA-X culture condition. After exposed to RGDS peptide for 3 days, retracting the
377	pseudopodia of cells was observed accompanied by tightly association between neighbor cells. Scale
378	bar, 100 μ m. White arrowheads indicate cells with the retraction of pseudopodia. b , Quantitative PCR
379	analysis of expression of de novo cholesterol biosynthesis-related genes. HeLa cells exposed to RGDS
380	peptide for 4 days under DA-X condition were collected for further gene expression analysis. Error
381	bars indicate s.d. (n=3, biological replicates). t-test, $*p < 0.01$ and $*p < 0.05$. c, Schematic
382	representation summarizing the appropriate range of cholesterol contents on cell membrane in serum-
383	free medium condition for cell adhesion and proliferation.

Takii *et al.*




Takii *et al.*

Takii et al.

Takii *et al.*

