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Abstract1

Summary: GWAS discovery is limited in power to detect associations that exceed the stringent2

genome-wide significance threshold, but this limitation can be alleviated by leveraging relevant3

auxiliary data. Frameworks utilising the conditional false discovery rate (cFDR) can be used to4

leverage continuous auxiliary data (including GWAS and functional genomic data) with GWAS5

test statistics and have been shown to increase power for GWAS discovery whilst controlling the6

FDR. Here, we describe an extension to the cFDR framework for binary auxiliary data (such7

as whether SNPs reside in regions of the genome with specific activity states) and introduce an8

all-encompassing R package to implement the cFDR approach, fcfdr, demonstrating its utility in9

an application to type 1 diabetes.10

11

Availability and implementation: The fcfdr R package is freely available at: https://github.12

com/annahutch/fcfdr. Scripts and data to reproduce the analysis in this paper are freely available13

at: https://annahutch.github.io/fcfdr/articles/t1d_app.html14

15
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1 Introduction16

A stringent significance threshold is required to identify robust genetic associations in GWAS17

due to multiple testing constraints. Leveraging relevant auxiliary data has the potential to boost18

statistical power to exceed the significance threshold. The conditional FDR (cFDR) is a Bayesian19

FDR measure that additionally conditions on auxiliary data to call significant associations. The20

cFDR approach was originally developed to leverage GWAS p-values from related traits, thereby21

exploiting genetic pleiotropy to increase GWAS discovery1,2,3, and has been shown to increase22

power for GWAS discovery whilst controlling the frequentist FDR11.23

Motivated by the enrichment of GWAS SNPs in particular functional genomic annotations14,24

Flexible cFDR was developed to extend the usage of the cFDR approach to the accelerating field25

of functional genomics9. However, at-present no cFDR methodology exists that permits binary26

auxiliary data, meaning that the approach cannot currently be used to leverage auxiliary data with a27

binary representation, such as whether SNPs are synonymous or non-synonymous or whether they28

reside in regions of the genome with specific activity states.29

Here we present an extension to the cFDR approach that supports binary auxiliary data and we30

thus introduce a cFDR toolbox in the form of an R package (https://github.com/annahutch/31

fcfdr) that supports various auxiliary data types. We demonstrate the utility of our methods32

and software by iteratively leveraging three distinct types of relevant auxiliary data with GWAS33

p-values for type 1 diabetes (T1D)12 to uncover new genetic associations.34

2 The cFDR framework35

Let p1, ..., pm ∈ (0,1] be a set of p-values corresponding to the null hypotheses of no association36

between the SNPs and a trait of interest (denoted by H0). Let q1, ...,qm be auxiliary data values37

corresponding to the same m SNPs. Assume that p and q are realisations of random variables P,Q38

satisfying:39

(P|H0)∼U(0,1)

P ⊥⊥ Q|H0.

(1)
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The cFDR is defined as the probability that a random SNP is null for the trait given that the40

observed p-values and auxiliary data values at that SNP are less than or equal to values p and q41

respectively1,2. Bayes theorem and standard probability rules are used to derive:42

cFDR(p,q) = Pr(H0|P ≤ p,Q ≤ q)

=
Pr(P ≤ p|H0,Q ≤ q)×Pr(H0|Q ≤ q)

Pr(P ≤ p|Q ≤ q)

=
Pr(P ≤ p|H0,Q ≤ q)×Pr(Q ≤ q|H0)Pr(H0)

Pr(P ≤ p,Q ≤ q)
.

(2)

To construct a conservative estimator of the cFDR, approximate Pr(P ≤ p|H0,Q ≤ q)≈ p (from43

property 1; note that if property 1 holds and P is correctly calibrated then this approximation is an44

equality) and Pr(H0)≈ 1 (since associations are rare in GWAS):45

cFDR
∧

(p,q) =
p×Pr(Q ≤ q|H0)
∧

Pr(P ≤ p,Q ≤ q)
∧, (3)

where ̂ is used to denote that these are estimates under the assumption H0 ⊥⊥ Q|P. The methods46

used to estimate the cumulative densities in equation (3) vary across approaches. In the original47

cFDR approach they are estimated using empirical cumulative density functions1,10,11 whilst in48

Flexible cFDR they are estimated using kernel density estimation9.49

However, the cFDR
∧

values do not directly control the FDR10. Instead, a method proposed by50

Liley and Wallace11 can be used to generate v-values, which are essentially the probability of51

a newly-sampled realisation (p,q) of P,Q attaining an as extreme or more extreme cFDR
∧

value52

than that observed, given H0. The v-values are therefore analogous to p-values and can be used in53

any conventional error-controlling multiple testing procedure that allows for slightly dependent54

p-values (e.g. the Benjamini-Hochberg procedure). The derivation of v-values also allows for the55

method to be applied iteratively to incorporate additional layers of auxiliary data.56

Since binary auxiliary data can only take two values, we introduce an alternative methodology57

called “Binary cFDR” which is based on finding optimal rejection regions to derive v-values58

(see Supplementary Methods for full details on the Binary cFDR methodology). We show in a59

simulation-based analysis that applying Binary cFDR iteratively over informative auxiliary data60

3
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increases power whilst controlling the frequentist FDR (Supplementary Results, Supplementary61

Fig. 2).62

3 R package and T1D application63

We present an R package that implements both Flexible cFDR and Binary cFDR, named fcfdr64

(https://github.com/annahutch/fcfdr), and demonstrate its utility in an application to T1D65

which is fully reproducible (see https://annahutch.github.io/fcfdr/articles/t1d_app.66

html).67

We used p-values from an Immunochip study of T1D12 as our primary data set. In the first iteration68

we used Flexible cFDR to leverage Immunochip p-values for a genetically related trait, rheumatoid69

arthritis (RA)6 (Fig. 1A). In the second iteration we used Binary cFDR to leverage data measuring70

SNP overlap with regulatory factor binding sites5,8,7 (Fig. 1B) and in the third iteration we used71

Flexible cFDR to leverage average enhancer-associated H3K27ac fold change values derived from72

ChIP-seq experiments conducted in T1D-relevant cell types4 (Fig. 1C) (see Supplementary Methods73

for full details on the data).74

Our implementation of cFDR identified 101 SNPs as newly genome-wide significant (FDR ≤75

3.3e−06 which corresponds to p ≤ 5e−08; Supplementary Methods). These SNPs had relatively76

small p-values for RA (median p = 0.007 compared with median p = 0.422 in full data set), were77

more likely to be found in regulatory factor binding sites (mean binary value was 0.406 compared78

to 0.234 in full data set) and had larger H3K27ac fold change values in T1D-relevant cell types79

(median fold change value was 1.44 compared with 0.576 in full data set). Similarly, 45 SNPs80

were identified as newly not significant (i.e. they were significant in the original GWAS data set81

but became not significant after applying cFDR). These SNPs had relatively high p-values for RA82

(median p = 0.620), were less likely to be found in regulatory factor binding sites (mean binary83

value was 0.044) and had smaller H3K27ac fold change values in T1D-relevant cell types (median84

fold change value was 0.431).85

The original GWAS identified 38 significant genomic regions (based on our definition of genomic86

regions, see Supplementary Methods). All of these were found to be significant in the cFDR analysis,87

which additionally identified 4 genomic regions that were newly significant (with lead variants:88

4
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Figure 1: Summary of cFDR results for T1D application. “FDR values” were obtained from the
raw p-values and v-values from each iteration of the cFDR approach using the Benjamini-Hochberg
procedure. Top panel shows FDR values before and after (A) iteration 1 (B) iteration 2 and (C)
iteration 3 of the method, coloured by the value of the auxiliary data (p-values for RA in iteration 1,
DGF annotation values in iteration 2 and average H3K27ac fold change values relative to expected
background counts in iteration 3). (D) Manhattan plot of (−log10 transformed) FDR values. Green
points indicate the four lead variants that were newly FDR significant after cFDR. Black dashed line
at FDR significance threshold (FDR = 3.3e−06; which was the maximum FDR value amongst
SNPs with raw p-values ≤ 5e−08 - see Supplementary Methods). y-axis has been truncated in
panel (D) to aid visualisation.
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rs1052553, rs3024505, rs6518350 and rs13415583). Three of these SNPs had small p-values for89

RA (rs1052553: RA p= 0.007; rs6518350: RA p= 0.06161 and rs13415583: RA p= 1.913e−0690

whereas rs3024505 had RA p = 0.6008) and two of these SNPs had high H3K27ac fold change91

values (rs3024505 had 87.4th percentile and rs6518350 had 72.7th percentile of H3K27ac fold92

change values). Two of the lead variants overlapped regulatory factor binding sites (rs105255393

and rs3024505). When using a larger Immunochip study of T1D for validation (16,159 T1D cases94

compared to 6,670)13, we found that three out of the four lead variants were present and that95

these had smaller p-values in the validation GWAS data set than the discovery GWAS data set:96

rs1052553 had p = 1.649e−15, rs3024505 had p = 9.127e−14, rs13415583 had p = 4.764e−0997

in the validation data set13 compared to p = 8.156e−08, p = 6.394e−08 and p = 1.062e−0798

respectively in the discovery data set12.99

4 Conclusion100

We have described a novel implementation of the cFDR approach that supports binary auxiliary101

data and have introduced an all-encompassing R package, fcfdr, that can be used to implement102

the cFDR approach for a wide variety of auxiliary data types. We have demonstrated the versatility103

of this tool in an application to T1D where we uncovered new genetic associations.104
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