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Abstract

Despite recent interest in deep generative mod-
els for scaffold elaboration, their applicability
to fragment-to-lead campaigns has so far been
limited. This is primarily due to their inabil-
ity to account for local protein structure or a
user’s design hypothesis. We propose a novel
method for fragment elaboration, STRIFE that
overcomes these issues. STRIFE takes as in-
put Fragment Hotspot Maps (FHMs) extracted
from a protein target, and processes them to
provide meaningful and interpretable structural
information to its generative model, which in
turn is able to rapidly generate elaborations
with complementary pharmacophores to the
protein. In a large-scale evaluation, STRIFE
outperforms existing, structure-unaware, frag-
ment elaboration methods in proposing highly
ligand efficient elaborations. In addition to
automatically extracting pharmacophoric infor-
mation from a protein target’s FHM, STRIFE
optionally allows the user to specify their own
design hypotheses.

Introduction

Fragment-based drug discovery (FBDD) ap-
proaches are increasingly being used for the
rational design of novel compounds.™® FBDD

campaigns aim to identify smaller-than-drug-
like molecules which bind weakly to the tar-
get and use them as a basis for developing a
high-affinity binder. Compared to traditional
design methodologies, FBDD methods have a
number of advantages. First, starting from
small fragments with low molecular weight al-
lows a greater degree of control over the phys-
ical properties of the resulting molecule than
using a drug-like small molecule as a starting
point.® They also facilitate a more efficient ex-
ploration of chemical space, with a 2005 study*
reporting that hit rates for fragment libraries
were 10-1000 times higher than standard high-
throughput screening assays. Fragment-based
approaches therefore offer a higher chance of
identifying a starting point and enhanced con-
trol over the subsequent optimisation process.
Following the identification of a set of frag-
ment hits against a target from a fragment
screen, there are three main strategies for devel-
oping a lead molecule with high binding affin-
ity:?" The first, elaboration (or growing), in-
volves selecting a single fragment and adding
functional groups to form further favourable in-
teractions with the protein. The second, frag-
ment linking, takes two fragments bound con-
currently in the same region of the protein
and designs a molecular bridge between them
such that the resulting molecule contains both
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fragments as substructures. Finally, fragment
merging requires two or more fragments to bind
in overlapping regions and involves the design
of molecules which incorporate motifs from each
fragment.

In each case, designs are currently proposed
on an ad-hoc basis by human experts who
draw on standard computational techniques
and their deep understanding of chemistry to
generate promising ideas. However, human ex-
perts may be hindered by implicit biases from
past successes and failures, and when working
with a large number of hits from a large frag-
ment screen it will not be feasible for a human
expert to objectively assess all possible elabo-
ration opportunities for suitability.

Several authors have recently proposed deep-
learning based methods to help improve the ef-
ficiency of fragment-to-lead campaigns. Graph-
based approaches for scaffold elaboration were
proposed by Lim et al.® and Li et al.”, which
provide a model with a fragment and gener-
ate a set of molecules which contain the orig-
inal fragment as a substructure, whilst Arus-
Pous et al.® proposed a SMILES-based” model,
Scaffold-Decorator, which gave the user the
ability to decide which atoms in the fragment
should be used as an exit vector, allowing
greater control over the types of elaborations
generated. However, none of the above ap-
proaches allow for the specification of a pre-
ferred elaboration size, which, combined with
their inability to account for protein struc-
ture when generating elaborations, means they
cannot ensure that elaborations made by the
model would be of an appropriate size to fit
within the binding pocket. More recently, we
proposed DEVELOP,™ a fragment-based gen-
erative model for linking and growing which
built on our DeLinker™ model. DEVELOP al-
lows the specification of pharmacophoric con-
straints and linker/elaboration length, provid-
ing a greater degree of control over the resulting
molecules. In concurrent work to DEVELOP,
Fialkovd et al.*? proposed LibINVENT, an ex-
tension to Scaffold-Decorator® which can be
used to design core-sharing chemical libraries
using only specific chemical reactions. LibIN-
VENT also allows users to generate molecules

with high 3D similarity to an existing active
molecule via reinforcement learning. However,
both DEVELOP and LibINVENT are reliant
on either a pre-existing active or human spec-
ification of pharmacophoric constraints to gen-
erate targeted sets of molecules, making them
more suitable tools for R-group optimisation
than for designing compounds against a novel
target.

Orthogonal to the generative approaches de-
scribed above, several recent papers have pro-
posed database-based approaches to compound
design. A recent method, CReM,™ is based
on the idea that a fragment within the con-
text of a larger molecule can be interchanged
with another fragment that has been observed
to have the same local context in another
molecule. CReM identifies potential elabo-
rations by searching a database of molecules
for fragments which have the same local con-
text as the specified exit vector. Other re-
cent database-based approaches incorporate
protein-specific information: FragRep'* takes
a protein and ligand as input and enumerates
modifications to the ligand by cutting the lig-
and into fragments and replaces a fragment
with similar fragments from a database which
would preserve the same protein-ligand interac-
tions, whilst DeepFrag®® uses a structure-aware
convolutional neural network to select the most
appropriate elaborations from a database of
possible elaborations.

For the task of generating molecules ‘from
scratch’, a number of authors have proposed
generative models which extract information di-
rectly from the protein. Skalic et al.1% used a
GANY to generate ligand shapes complemen-
tary to the binding pocket which were then used
to generate potential molecules by employing
a shape-captioning network. Masuda et al.'®
encoded atomic density grids into separate la-
tent representations for ligand and protein and
trained a model to generate 3D ligand densities
conditional on the protein structure, which were
then translated into discrete molecular struc-
tures. Whilst both papers demonstrated that
the ligands generated by their respective models
were dependent on the learned structural rep-
resentations, the models do not facilitate the
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specification of a design hypothesis provided
by a human expert. Kim et al.™® used water
pharmacophore models to learn the location of
key protein pharmacophores which were then
used to construct a training set of molecules
with complementary pharmacophores. Whilst
this approach would more readily integrate into
standard drug-discovery efforts, it requires the
training of a separate deep learning model for
every target, as each target requires a training
set of compounds which match the water phar-
macophores.

In this work we propose STRIFE (Structure
Informed Fragment Elaboration), a genera-
tive model for fragment elaboration which ex-
tracts interpretable and meaningful structural
information from the protein and uses it to
make elaborations. This is different to all
existing fragment-based generative approaches
which either extract information implicitly from
known ligands or do not make use of any
protein-specific information when generating
molecules. To allow straightforward integra-
tion into fragment-to-lead campaigns, STRIFE
is readily customisable; in addition to the de-
sign hypotheses extracted directly from the pro-
tein, we provide a simple-to-use functionality
which allows users to specify their own design
hypotheses and generate elaborations with the
aim of satisfying a desired pharmacophore. In a
large-scale evaluation derived from the CASF-
2016 set,?Y we show that STRIFE offers sub-
stantial improvements over existing fragment-
based models.®!¥ We further demonstrate the
applicability of STRIFE to real-world FBDD
campaigns through two fragment elaboration
tasks derived from the literature. In the first,
we make elaborations to a fragment bound to
N-myristoyltransferase, a key component in rhi-
novirus assembly and infectivity, and show that
STRIFE is able to generate several elabora-
tions that are strikingly similar to a highly
potent inhibitor.”! To demonstrate how user-
specified design hypotheses can be incorpo-
rated into STRIFE, we consider the fragment-
inspired small molecule inhibitor of tumour
necrosis factor reported by O’Connell et al.’“?,
In this example, the elaboration proposed by
O’Connell et al.”® induces a substantial move-

ment in a Tyrosine side chain. We manually
specified a design hypothesis to explore side-
chain flexibility, and successfully recovered the
elaboration proposed by O’Connell et al.?2, as
well as a range of other elaborations which were
predicted to induce a similar movement in the
Tyrosine side chain.

Methods

We present our deep generative model for frag-
ment elaboration, STRIFE, which requires the
user to specify a target protein, a bound frag-
ment, and the fragment exit vector. In our
previous work,™ we demonstrated how the
imposition of pharmacophoric constraints al-
lowed a substantial degree of control over the
types of functional groups added to a frag-
ment. STRIFE builds on the approach pro-
posed in Imrie et al.'¥ where the pharma-
cophoric constraints were extracted from ex-
isting active molecules, by extracting pharma-
cophoric constraints directly from the protein,
thereby extending its applicability to a much
broader range of targets. Pharmacophoric in-
formation is extracted by calculating a Frag-
ment Hotspot Map®* (FHM), which describes
regions of the binding pocket that are likely
to make positive contribution to binding affin-
ity. STRIFE then identifies pharmacophoric
constraints which are likely to place a pharma-
cophore within a matching hotspot region and
uses the pharmacophoric constraints to gener-
ate elaborations.

Fragment Hotspot Maps. We calculate
FHMs using the Hotspots API** which im-
plements the algorithm described by Radoux
et al.”?; in this work all FHMs were calculated
using the default parameters given by Curran
et al.?%.  An FHM is calculated as follows:
Atomic Propensity Maps are calculated using
SuperStar,“® which defines a grid covering the
protein with equally spaced points 0.5A apart,
and uses data from the Cambridge Structural
Database (CSD)?" to assign a propensity for a
given probe type at each grid point; If an inter-
action between two groups at a certain distance
and angle is particularly favourable then it will


https://doi.org/10.1101/2021.10.21.465268
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465268; this version posted October 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

occur more frequently in structures stored in
the CSD and be assigned a higher propensity
score. Once an Atomic Propensity Map has
been calculated an FHM is derived by first
weighting the scores assigned to each grid point
in proportion to how buried in the protein the
grid point is.

The FHM scores are then calculated by using
small chemical probes which take the form of an
aromatic ring with different atoms in the sub-
stituent position; for the apolar hotspot maps
the substituent is a methyl group, whilst for
the acceptor and donor hotspot maps the sub-
stituent is a carbonyl and amine, respectively.
The probes are translated to all grid points with
weighted propensity scores above 15 and ran-
domly rotated 3000 times about the center of
the substituted atom. For each pose, each atom
receives a score read from the weighted propen-
sity map and the probe scores are calculated as
the geometric mean of the atom scores; as an
atom receives a score of zero if it clashes with
the protein, the geometric mean gives a score
of 0 to any pose which clashes.

FHMSs have a number of attractive properties.
As only grid points with an above-threshold
weighted propensity score are sampled, and the
propensity scores are weighted by how buried
in the protein they are, regions of the pro-
tein which are overly exposed are unlikely to
be identified as hotspot regions. Additionally,
because probe poses which clash with the pro-
tein attain a score of zero, any region identified
as a fragment hotspot must be able to accom-
modate a molecule of reasonable size, meaning
that the risk of attempting to satisfy a pharma-
cophore identified by the FHM which cannot be
accessed by an elaboration is reduced.

FHM Processing. For a protein target,
STRIFE uses FHMs to guide the generative
model in the placement of functional groups
which can interact with the target. As the
different hotspot maps are used for different
purposes, they are processed slightly differently
(Figure [I): the acceptor and donor hotspots
are used to identify desirable pharmacophoric
constraints, whilst the apolar maps are used to
verify that the fragment is located in an ap-
propriate binding site. For the apolar maps,

we identify all grid points which have a value
greater than 1 and discard all other points.
Similarly, for the acceptor and donor maps, we
retain all grid points which have a value greater
than 10. Whilst Radoux et al.”*® reported that
values greater than 17 were generally predictive
of fragment binding, we selected 10 as a thresh-
old to obtain wider coverage; this parameter is
simple to change to restrict the search to higher
quality hotspots.

To process the acceptor and donor maps, all
points which are less than 1.5A or greater than
5A from the fragment exit vector are discarded,
to allow for elaborations of appropriate length;
these distance thresholds were chosen to reflect
the iterative nature of a fragment-to-lead cam-
paign, where practitioners typically make a suc-
cession of small elaborations, but they can be
altered by the user to admit longer or shorter
elaborations.

A greedy clustering algorithm is employed to
identify contiguous hotspot regions as follows:
A cluster is initialised as a single point and
all unclustered points which are within 1A of
the grid point are added to the cluster. For
each point in the cluster, the distance to all
remaining unclustered points is calculated and
any points which are within 1A are added to
the cluster until no unclustered points can be
added. Once a cluster has terminated, a new
cluster is defined by selecting a single unclus-
tered point, until all points have been assigned
to a cluster. For each hotspot cluster, centroids
are defined by computing the mean position of
the points in the cluster. To reduce redundancy,
if two cluster centroids are closer than 1.5A
apart the cluster centroid corresponding to the
smaller cluster is deleted. In addition, if a clus-
ter is smaller than eight points it is removed,
unless no clusters of eight or more points exist,
in which case smaller clusters are retained.

We use the apolar maps to conduct a fi-
nal filtering step, adopting the heuristic that
a molecule which is entirely contained within
an apolar hotspot region has a better chance of
binding to the protein. Therefore, if an accep-
tor or donor cluster centroid is not contained
within a hotspot region then it is filtered out.
Additionally, if all fragment atoms are not con-
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Figure 1: Processing Fragment Hotspot Maps. a) Acceptor Hotspot Map. b) Donor Hotspot
Map. c¢) Apolar Hotspot Map. A matching pharmacophore placed within a hotspot has a chance
of making a disproportionate contribution to binding affinity. d) An unprocessed donor hotspot
map in the vicinity of the fragment of interest. e) Each sphere represents a voxel in the hotspot
map. Voxels which are too far away from the fragment exit vector are discarded. f) Voxels which
are closer to another fragment atom than the exit vector are removed. g) Voxels are clustered
based on their position. STRIFE attempts to generate elaborations such that a matching ligand
pharmacophore is in close proximity to a cluster centroid.

tained within an apolar hotspot then we con-
sider the fragment to be unsuitable for elabora-
tion and terminate the algorithm. Whilst this
might appear to be overly restrictive, in prac-
tice the apolar hotspot maps typically cover the
majority of binding sites in a target and this

filtering step can be easily negated if the user
believes that a fragment is a suitable candidate
for elaboration.

The final output of the processing scheme are
the 3D coordinates of the remaining cluster cen-
troids from the acceptor and donor maps (here-
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after “pharmacophoric points”). In the sub-
sequent molecule generation steps, our aim is
to generate elaborations which place match-
ing functional groups in close proximity to
the pharmacophoric points. Whilst the above
pipeline automates the process of defining phar-
macophoric points, we also provide a simple-to-
use functionality for users to define their own
pharmacophoric points, allowing them to pur-
sue a range of different design hypotheses (see
Methods, Customisability).

Next, we describe how STRIFE uses a set
of pharmacophoric points to generate elabora-
tions with complementary pharmacophores to
the target.

Generative Model. The generative model
employed by STRIFE is similar to our previ-
ous work, DEVELOP,* where the generative
process is based upon the Constrained Graph
Variational Autoencoder framework proposed
by Liu et al.“?, STRIFE differs from DE-
VELOP in the structural information D pro-
vided to the model when decoding molecules
(see Methods, STRIFE Algorithm). Given a
fragment, f, and structural information, D,
elaborations are generated as follows: Repre-
senting f as a graph, each node v is assigned
an h—dimensional vector representation z, and
corresponding label [, denoting the atom type
of the node. A set of K ‘expansion nodes’,
Zy,, .-, Ly, are generated by sampling from an
h — dimensional standard normal distribution
and each expansion node is assigned a label [,,
by a linear classifier which takes z,, and D as
input. The expansion nodes represent the pos-
sible atoms which may be appended to the frag-
ment.

Starting from the fragment exit vector, the
model samples a node to add to the graph from
the set of expansion nodes. To choose whether
to form a bond between node v and node u, we
use a neural network which takes as input:
=1t s, s d,., H°, H, D]

v,U 5 Py Pu)

Where:

e ¢ is the number of time steps that have
currently been taken.

o s! =[z! 1,] is the concatenation of latent
vector and label at the t* time step.

e d,, is the graph distance between u, v

e H is the average of all latent vectors at
the j™ time step.

After a new node has been added to the
graph, a gated graph neural network® is used
to update the encodings for each node, to
reflect its potentially altered neighbourhood.
This iterative approach continues until termi-
nation where the final molecule is returned.
For additional details regarding the generative

model framework, can be found in our previous
work. UL

STRIFE Algorithm. Above we described
how STRIFE uses Fragment Hotspot Maps
(FHMSs)?¥ to obtain an interpretable represen-
tation of structural information and how, given
a fragment, f, and structural information, D,
we can generate elaborations to the fragment.
Here we describe how these processes fit within
the STRIFE algorithm. In particular, we out-
line how the 3D pharmacophoric points derived
from the FHMs are converted to a representa-
tion of structural information, D, which is used
to generate elaborations.

The structural information D can be pro-
vided to the generative model in two differ-
ent forms: The first is a coarse-grained phar-
macophoric representation, where the model is
simply provided with a vector containing the
number of Hydrogen Bond Acceptors, the num-
ber of Hydrogen Bond Donors, and the num-
ber of Aromatic groups. The desired phar-
macophoric profile of the generated elabora-
tions can also be more precisely specified by
adding the predicted path distances (the length
of the shortest sequence of atoms connecting
two points) from the exit vector to the phar-
macophore, providing a greater degree of con-
trol over the types of elaborations made by the
model. STRIFE utilises both of these represen-
tations of pharmacophoric information at differ-
ent stages of the algorithm: In the Exploration
phase (Figure [2h), STRIFE uses the coarse-
grained representation to generate a wide range
of elaborations, which are then assessed for
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suitability. In the Refinement phase (Figure
2b), fine-grained pharmacophoric profiles are
derived from the most suitable elaborations and
are used to generate further elaborations. Ad-
ditional details are provided below and in the
Supplementary Information.

In a standard fragment elaboration campaign,
where practitioners typically work in an itera-
tive way, making small elaborations to a frag-
ment which is then optimised before making ad-
ditional elaborations to the optimised molecule.
In this paper we demonstrate STRIFE gen-
erating elaborations which place a pharma-
cophore close to a single pharmacophoric point
at a time. For example, if the set of phar-
macophoric points contains one donor and one
acceptor, STRIFE will attempt to produce a
set of elaborations which include a donor in
close proximity to the donor pharmacophoric
point and a set of elaborations which place
an acceptor in close proximity to the accep-
tor pharmacophoric point, but will not attempt
to satisfy both pharmacophoric points simulta-
neously. STRIFE is capable of attempting to
satisfy multiple pharmacophoric points simul-
taneously, but this is not recommended unless
the pharmacophoric points have been manually
specified or inspected by the user, as it may
not be possible to simultaneously satisfy certain
combinations of pharmacophores with a single
elaboration. After obtaining a series of pharma-
cophoric points from the FHM, STRIFE pro-
ceeds as follows:

Exploration Phase. STRIFE aims to gener-
ate a set of elaborations which contain func-
tional groups in close proximity to a pharma-
cophoric point. To facilitate this, for each phar-
macophoric point we predict the atom-length
distance between the fragment exit vector and
the pharmacophoric point using a trained sup-
port vector machine.?” The atom-length predic-
tion is then used to control the length of elabo-
rations proposed by STRIFE, whilst the phar-
macophoric profile of the generated molecules is
controlled by the coarse-grained representation
representation described above. As the coarse-
grained pharmacophoric profile doesn’t specify
a desired path distance between the exit vec-
tor and the ligand pharmacophore, we obtain a

broad range of different elaborations. The elab-
orations are filtered (see Supplementary Infor-
mation) and docked using the constrained dock-
ing functionality in GOLD,"? where the struc-
ture of the fragment is provided as the con-
straint. Each molecule is docked 10 times and
the top-ranked pose selected. For each top-
ranked pose, we compute the distance between
the 3D pharmacophoric point and a matching
pharmacophore in the molecule. We then iden-
tify all molecules where the resulting distance
is less than 1.5A and select the five molecules
for which the distance between pharmacophoric
point and ligand pharmacophore is smallest. If
less than five molecules exhibit a distance of less
than 1.5A, we select only molecules which fulfil
this criteria.

Refinement Phase. The molecules which ex-
hibit a functional group in close proximity to a
pharmacophoric point provide useful informa-
tion, as they can be used to derive the more
fine-grained representation of structural infor-
mation which specifies the path distance be-
tween the exit vector and each ligand pharma-
cophore; as such, we refer to these molecules
as “quasi-actives”, because they play a simi-
lar role to known actives in existing generative
models. Having obtained a set of quasi-actives
for each pharmacophoric point and used them
to derive a set of structural information vectors
Dy, D, ....D,, the user can either generate a
fixed number of elaborations using each D; or
request a fixed total number of elaborations,
where a structural information vector is ran-
domly sampled from {D;}! , for each elabora-
tion. As before, the generated molecules are fil-
tered and docked using the constrained docking
functionality in GOLD.?" Finally, each unique
molecule, m, is ranked by its ligand efficiency,
computed as the docking score divided by the
number of heavy atoms, allowing the user to
quickly prioritise a small number of elabora-
tions for consideration.

Customisability. Although STRIFE can
automatically extract a set of pharmacophoric
points from a protein, in a real-world drug dis-
covery setting practitioners may wish to explore
their own design hypotheses. To facilitate such
usage, we provide a simple-to-use functionality
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Use ‘quasi-actives’ to derive
fine-grained pharmacophoric
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with fine-grained
pharmacophoric profile

Dock and rank elaborations
by ligand efficiency

Figure 2: Illustration of how STRIFE generates elaborations which place pharmacophores close to
a specified pharmacophoric point. a) STRIFE first generates elaborations using a coarse-grained
pharmacophoric profile and docks them using the constrained docking functionality in GOLD.5? b)
Elaborations which placed a matching pharmacophore in close proximity to the pharmacophoric
point are used to derive a fine-grained pharmacophoric profile. STRIFE then generates elabora-
tions using those pharmacophoric profiles; the resulting molecules are docked and ranked by their

predicted ligand efficiency.

which allows a user to manually specify the lo-
cation of a pharmacophore in the context of the
protein. The tool, shown in Figure [3] loads a
lattice centered around the fragment exit vec-
tor into a molecule viewer: To manually spec-
ify their own pharmacophoric profiles, the user
simply selects the lattice points corresponding
to their desired pharmacophore location, saves
the resulting object and runs STRIFE as usual.

Model Training. We trained our generative
models using a training set derived from the
subset of ZINCB2 randomly selected by Gémez-
Bombarelli et al.?3. For each molecule, we ob-
tained a series of fragment-ligand pairs by enu-
merating all cuts of acyclic single bonds which
were not part of functional groups. The re-
sulting training set comprised approximately
427,000 examples. The same hyperparameters
were used for training as in our previous work.™

Experiments. We assessed the ability of
our model to make appropriate elaborations

using a test set derived from the CASF-2016
set.20 This test set was constructed using the
same procedure used to generate our training
set and initially comprised 237 examples. As
our aim was to assess the ability of our model
to learn from the structural information sup-
plied by the FHMs, we excluded from our test
sets examples where the ground-truth molecule
was not contained within an apolar hotspot
region and examples where no suitable phar-
macophoric points could be identified by the
Hotspots algorithm. In addition, we filtered
examples where STRIFE was unable to identify
any quasi-actives. These filtering steps removed
109, 26 and 1 examples from the test set respec-
tively, leaving a final test set of 101 examples (a
full list is given in Table S1). Whilst the filter-
ing steps outlined above removed a substantial
proportion of examples from our test set, the
initial test set was constructed by fragmenting
the ground truth ligand without consideration
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Figure 3: Example of how the pharmacophoric points provided to STRIFE can be customised
using the molecule viewer PyMOL.®I A lattice of points are centered about the fragment exit
vector (denoted by the grey atom), and the user simply selects the point(s) they wish to denote
as a pharmacophoric point and saves them in an SDF file. The red and blue points represent
an Acceptor point and Donor point, respectively. STRIFE can then be run as usual and will
attempt to make elaborations which places matching pharmacophores close to the user-specified

pharmacophoric points.

of the associated protein. As such, many of the
fragments would not have been considered suit-
able candidates for elaboration.

Using the STRIFE pipeline (Figure , we
sampled a set of 250 elaborations for each ex-
ample in the test set. We compared STRIFE
to three baselines: The model published by
Artis-Pous et al.®, “Scaffold-Decorator”, the
database-based CReM, and a truncated ver-
sion of the STRIFE algorithm (STRIFEyg)
which generated elaborations from the coarse-
grained model (essentially only conducting the
Exploration phase from Figure [2h and omitting
the Refinement phase). We provided CReM
with the same set of 250k molecules we used
to derive the training sets for STRIFE, which
was converted into a database of fragments
using CReM’s fragmentation procedure. The
Scaffold-Decorator model was trained using the
same set of examples as the STRIFE generative
models.

Evaluation Metrics. For our experiments
on the CASF test set, we report several stan-
dard 2D metrics in line with those reported in

our previous work: ™

e Validity: Proportion of generated
molecules which could be parsed by RD-
Kit®¥ and for which at least one atom was
added to the fragment.

e Uniqueness: The proportion of distinct
molecules generated by the model, calcu-
lated as the number of distinct molecules
divided by the total number of molecules.

e Novelty: The proportion of generated
molecules for which the elaboration was
not included in the model training set.

e Passed 2D Filters: The proportion of
generated molecules which passed a set
of 2D filters. A generated molecule was
filtered out if the SAScore® of the gener-
ated molecule was higher (harder to syn-
thesise) than the SAScore associated with
the fragment, if the elaboration contained
a non-aromatic ring with a double bond
or if the molecule failed to pass any of the
pan-assay interference (PAINS)H0 filters.
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We did not compute the proportion of unique
or novel associations proposed by CReM, as
CReM does not allow the specification of a
desired number of elaborations: CReM re-
turns the set of elaborations contained in the
database deemed ‘reasonable’, meaning that all
elaborations proposed by CReM are by design
unique. Similarly, as CReM proposes molecules
from a fixed vocabulary of possible elabora-
tions, none of the elaborations proposed by
CReM could be considered novel.

To assess the ability of STRIFE to generate
elaborations capable of forming promising in-
teractions with the target, we used the con-
strained docking functionality in GOLD"Y to
dock each generated ligand 10 times and cal-
culated the docking score of the top-ranked
pose for each ligand. To mitigate the ten-
dency of classical scoring functions to favour
larger molecules over smaller ones,*” we cal-
culated the ligand efficiency of each molecule
by dividing the docking score by the num-
ber of heavy atoms. To account for the vari-
ation in docking scores across different tar-
gets, we standardise the ligand efficiencies at-
tained by a model on a specific example to
have zero mean and unit variance, applying
the same transformation to the ground truth
ligand efficiency. For the j™ example, we
compute ASLE, ; = SLE, ; — SLEq7;, where
SLE,; is the average standardised ligand ef-
ficiency of the top a ranked molecules and
SLE¢gr,; is the standardised ligand efficiency
of the corresponding ground truth. If « is
specified as greater than the total number
of elaborations for which the ligand efficiency
was computed (as only molecules which pass
the 2D filters are docked), we use the aver-
age standardised ligand efficiency of all such
molecules. We average over all examples to ob-
tain ASLE,, %Zyzl ASLE, ;. ASLE, (Stan-
dardised Ligand Efficiency Improvement) only
considers a subset of the molecules generated
by each model, mirroring how a large number
of molecules produced by a generative model
would be assessed in a real-world fragment-to-
lead campaign, where it is unlikely that a hu-
man expert would manually inspect hundreds
of lowly ranked molecules.
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As CReM is unable to return a fixed number
of elaborations, we calculated three sets of sum-
mary statistics for CReM, each using a different
subset of the test set. In all cases, if CReM re-
turned more than 250 elaborations for a specific
example, we sampled a set of 250 elaborations
from the larger set:

e The set of examples for which CReM re-
turned 250 elaborations (n = 45).

e The set of examples for which CReM re-
turned 50 or more elaborations (n = 62).

e The set of examples for which CReM re-
turned at least one elaboration (n = 82).

We present the results for the first set in Ta-
ble[l|and compare the results between the three
subsets in the Supplementary Information (Ta-
ble S2): in the case where we included all exam-
ples with at least one elaboration, the ASLE,
values were substantially degraded by the sub-
set of examples where only a small number of
elaborations were proposed.

Results and Discussion

We assessed the ability of STRIFE to pro-
pose elaborations to fragments by incorporating
meaningful pharmacophoric information into
the generative process. Through a large scale
evaluation on a test set derived from the CASF-
2016 set,”? we show that STRIFE is able to
generate a wide range of chemically valid elab-
orations, many of which were not contained in
the training set. In addition, in terms of gen-
erating elaborations which exhibit high ligand
efficiency, STRIFE substantially outperforms
existing computational methods for fragment
elaboration,® illustrating the advantages of
incorporating structural information into the
generative model. We demonstrate the appli-
cability of STRIFE to real-world fragment-to-
lead campaigns using two case studies derived
from the literature; in particular, we show how
STRIFE can be used to explore design hypothe-
ses including side-chain movement.
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Table 1: Comparison of CReM, Scaffold-Decorator, STRIFEyg and STRIFE on the CASF test
set (see Methods, Evaluation Metrics for definitions of the metrics). Bold indicates the best value

obtained across the different methods.

Metric CReM Scaffold-Decorator STRIFEyr STRIFE
Valid 100% 99.98% 99.5% 98.96%
Unique N/A 32.78% 56.96% 37.31%
Novel N/A 4.23% 55.65% 49.21%
Pass 2D filters 66.06% 98.2% 73.81% 75.38%
ASLEs -0.029 0.1 0.44 0.512
ASLEs -0.489 -0.222 0.078 0.164
ASLE g -0.992 -0.572 -0.316 -0.228

Large Scale Experiments. Our experi-
ments on the CASF set demonstrate the ben-
efits of including structural information in the
generative process (Table . All methods gen-
erated chemically valid elaborations in more
than 99% of cases, illustrating their ability to
apply basic valency rules. Scaffold-Decorator,
the SMILES-based, structure-unaware gener-
ative model proposed by Arts-Pous et al.®,
generated the smallest proportion of unique
molecules (33%). STRIFEyg, a truncated ver-
sion of the STRIFE algorithm which terminates
before the Exploration phase so doesn’t account
for the location of fragment hotspots, gener-
ated a greater proportion of unique elaborations
(57%) than STRIFE (37%). However this is to
be expected as the Refinement phase of the al-
gorithm attempts to sample elaborations from
a greatly reduced chemical space compared to
the Exploration phase.

[lustrating its ability to generalise beyond
the information provided in the training set, al-
most half (49%) of the elaborations proposed by
STRIFE were not contained in the training set.
By contrast, only 4% of the elaborations gen-
erated by Scaffold-Decorator were novel, sug-
gesting that it relies more heavily on the train-
ing set when making elaborations. Almost
all of the elaborations proposed by Scaffold-
Decorator (98%) passed the set of 2D filters,
compared to 75% of elaborations generated by
STRIFE and 74% by STRIFEyNg. As nearly
all of the elaborations proposed by Scaffold-

11

Decorator were contained in the training set,
which itself was filtered to remove undesirable
elaborations, the high pass rate of 2D filters is
unsurprising.

On ASLE, which assesses the ability of mod-
els to generate elaborations which are more
ligand efficient than the ground truth ligand,
models that incorporate structural informa-
tion proposed more ligand efficient elabora-
tions. When considering the top 20 elabo-
rations, the elaborations generated by CReM
(ASLEyy = —0.029) and Scaffold-Decorator
(ASLEy = 0.1) were on average less ligand
efficient than the ground truth, in contrast
to STRIFEygr (ASLEy = 0.44) and STRIFE
(ASLEs 0.512). These results indicate
that the fine-grained pharmacophoric profiles
extracted during the Refinement phase allow
STRIFE to generate more ligand efficient elabo-
rations, as the model more often generates elab-
orations which place pharmacophores in close
proximity to a pharmacophoric point. We ob-
served the same trend when the top 50 and 100
elaborations were considered, although in this
case the average ligand efficiency obtained by
all models was lower than the ground truth lig-
and efficiency. We show how ASLE, varies for
different values of a in the Supplementary In-
formation (Figure S3).

In terms of the proportion of all generated
elaborations which were more ligand efficient
than the ground truth, STRIFE achieved the
largest number, with 26% of elaborations ob-
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(b)

Figure 4: Fragment elaboration case study. (a) Left: Crystal structure (PDB ID 5048) of the
fragment bound to P.vivax NMT. Right: Crystal structure (PDB ID 506H) of the optimised
compound bound to Human NMT1. The trimethylpyralzole facilitates an interaction with the
residue S319. (b) Processed pharmacophoric points from the Fragment Hotspot Map calculated on
P.vivax NMT. The orange spheres correspond to hydrogen bond acceptor points whilst the purple
sphere corresponds to a hydrogen bond donor point. (c¢) The elaboration proposed by Mousnier
et al.2l (left) compared to several elaborations proposed by STRIFE which satisfied the same design
hypothesis (right). The number underneath each elaboration corresponds to the rank assigned to
it by STRIFE. (d) Docked pose of one of our elaborations, which appears to be capable of forming
the same hydrogen bond interaction with S319.

taining a higher ligand efficiency than the falciparum *2 Mousnier et al.?l' identified a
ground truth, compared to 22%, 17% and 12% fragment-like compound, IMP-72 (Figure [4h),
for STRIFENR, Scaffold-Decorator and CReM with weak (IC59 = 20uM ) activity against Hu-
(when considering examples with 250 elabora- man NMT1 (HsNMT1). The binding mode

tions) respectively. of IMP-72 was originally determined in NMT

Fragment-Based Design of an N- from the malaria parasite P.vivar (PvNMT),
myristoyltransferase Inhibitor. Rhinovirus but as the fragment’s key interactions involved
is a pathogen which plays a key role in compli- residues which are conserved in human NMTs,
cations arising in a variety of important respi- it was considered to be a viable starting point
ratory diseases, including asthma, chronic ob- for the development of an HsNMT1 inhibitor.
structive pulmonary disease (COPD)® and cys- ~ The authors noted that IMP-72 bound in a re-
tic fibrosis.®? Several studies?™ have reported gion complementary to a previously identified
that the host cell’s N-myristoyltransferase quinoline inhibitor,% MRT00057965, however
(NMT) supports capsid assembly and infec- closer inspection of the overlaid binding modes
tivity, making NMT a potential antiviral drug precluded a fragment merging strategy. To ad-
target. dress this the authors constructed a simplified

Following a fragment screen against NMT quinoline fragment, IMP-358, which could reca-

from the human malaria parasite Plasmodium pitulate the same interactions as MRT00057965
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(S319 in PvNMT and S405 in HsNMT1) with-
out clashing with IMP-72. Despite exhibiting
weak inhibition of HsNMT1 (17% at a con-
centration of 100uM), IMP-358 facilitated a
synergistic inhibition alongside IMP-72, with
the potency of IMP-72 increasing 300-fold for
HsNMT1 in the presence of IMP-358. The
authors developed a further compound, IMP-
917, derived by replacing IMP-358 with a
trimethylpyrazole group which was then linked
to IMP-72 with an ether linker. Compared
to IMP-72, IMP-917 exhibited a 1500-fold im-
provement in potency (ICso = 0.013uM) and
retained the key interactions made by both
IMP-72 and IMP-358. Finally, the authors
made slight modifications to the core of IMP-
917 and used the resulting compound to show
that NMT inhibition completely prevents rhi-
noviral replication without inducing cytotoxic-
ity, thereby identifying a potential drug target.

We investigated the ability of STRIFE to pro-
pose molecules that could satisfy the design hy-
pothesis put forward by Mousnier et al.?Y. In-
stead of iteratively refining the original quino-
line fragment and constructing a linker, we
viewed the task as an elaboration problem and
sought to propose elaborations which could
form interactions with S319. As input to
STRIFE, we provided the SMILES string of
IMP-72, the exit vector we wished to make
elaborations from and the crystal structure of
PvNMT (PDB ID 5048). Although our aim
was to design compounds for HsSNMT1, we did
not have access to a crystal structure of IMP-72
bound to HsNMT1 so given the high degree of
conservation of NMTs across species, we consid-
ered it preferable to use the P.vivaxr NMT as op-
posed to docking IMP72 into the crystal struc-
ture of IMP-917 in complex with HsSNMT1. We
used STRIFE to generate 250 elaborations for
IMP-72, which we docked using the constrained
docking functionality in GOLD,*" ranking each
compound by its ligand efficiency. Figure
shows the structure added to IMP-72 to cre-
ate IMP-917 and several highly ranked elab-
orations proposed by STRIFE which appear
to be capable of interacting with the Serine
residue in the same way. Despite only gener-
ating a total of 250 compounds, some of the
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molecules proposed by STRIFE bear a striking
resemblance with the trimethylpyrazole elabo-
ration proposed by Mousnier et al.?. A list of
all unique elaborations generated by STRIFE
can be found in the Supplementary Information
(Figures S4-S8)

Customisability. Whilst structure-aware
generative models are increasingly being pro-
posed, existing models incorporate such infor-
mation through a single static structure, mak-
ing them unable to account for the possibility
that a side-chain may move to interact with a
ligand. By utilising the flexible docking func-
tionality in GOLD,*Y STRIFE allows the user
to explore design hypotheses where a specified
side-chain moves; we illustrate how by consid-
ering a fragment-elaboration example from the
literature.

O’Connell et al.?? developed a small molecule
inhibitor of tumour necrosis factor (TNF), a cy-
tokine which has been shown to be a key fac-
tor in several autoimmune diseases, by mak-
ing elaborations to a weakly binding fragment.
The first elaboration allowed the formation of a
hydrogen bond between the appended pyridyl
group and the residue Y1194, which moved
substantially in order to make the interaction,
yielding a 2500-fold improvement in binding
affinity (Figure [bh).

The magnitude of the Y119 side-chain move-
ment presents a challenge for a generative
model, as it would not be possible for a
structure-aware model to predict that the side-
chain would move, and if it was predicted by
a chemist that the residue would be likely to
move to form a hydrogen bond then it would
not be possible to communicate such informa-
tion to the generative model. Whilst STRIFE
is unable to predict the movement of specific
side-chains in advance, if a human expert has
reason to believe a side-chain might move to
accommodate a ligand, it is able to generate
molecules which satisfy such a design hypoth-
esis. This can be done by manually speci-
fying a pharmacophoric point (see Methods,
Customisability) such that a ligand pharma-
cophore placed at those coordinates would be
able to interact with the residue side-chain if
it were to move in the hypothesised fashion.
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Figure 5: Visualisation of flexible docking using Hermes
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a) Fragment (yellow carbons, PDB ID:

600Y) with elaborated molecule (magenta carbons, PDB 600Z) reported by O’Connell et al.22,
The side chain of Y119 moved substantially to form a hydrogen bond. The orange sphere represents
a user-specified pharmacophoric point which we provided as input to STRIFE. b) An example of
one of the molecules generated by STRIFE that appears to satisfy the specified design hypothesis.
The molecule was docked into the fragment crystal structure (PDB ID: 600Y, magenta side-chain
is the predicted conformation) using the flexible docking functionality in GOLD, and supports the
hypothesis that the side chain might move to accommodate the ligand.

Under this set-up, STRIFE attempts to gener-
ate molecules with pharmacophores close to the
user-specified pharmacophoric point and uses
the flexible docking functionality in GOLDB? to
dock the molecules whilst allowing the residue
of interest to move freely; the user can then
identify high scoring elaborations which were
predicted to form the desired interaction with
the protein.

To assess the ability of STRIFE to generate
molecules which satisfied the design hypothe-
sis specified by O’Connell et al.22 we manu-
ally specified a pharmacophoric point (Figure
5a) and generated 250 elaborations using the
same procedure as for our other experiments.
To allow GOLD’s genetic algorithm to ade-
quately explore the larger solution space cre-
ated by side-chain flexibility, we generated 100
poses per molecule and used the highest scor-
ing pose to calculate the corresponding ligand
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efficiency; further details of the flexible docking
protocol can be found in the Supplementary In-
formation.

STRIFE successfully recovered the highly po-
tent pyridyl elaboration proposed by O’Connell
et al.?2| whilst also proposing a wide range of
structural analogues which appeared to be ca-
pable of making a similar hydrogen bond in-
teraction with Y1194, In particular, the most
common elaboration proposed by the model
was a pyridine with a meta substitution pat-
tern. In total, 49 of the 250 elaborations con-
tain a pyridine substructure, whilst 125 elabo-
rations included a hydrogen bond acceptor that
was also part of an aromatic group. Elab-
orations comprising a six-membered aromatic
ring with a hydrogen bond acceptor were not
scored amongst the most ligand efficient us-
ing GOLD’s PLP scoring function, which gen-
erally rated pyrazole analogues or elaborations
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with hydrophobic groups more highly. How-
ever, consistent with the observed bound crys-
tal structure, for both the ground-truth pyridyl
elaboration and several highly-ranked elabora-
tions which met the stated design hypothesis,
the side-chain of Y119* moved substantially to
accommodate the proposed elaboration; an ex-
ample is shown in Figure [5b and further details
of the elaborations proposed by STRIFE can be
found in the Supplementary Information (Fig-
ures 59, S10).

In summary, despite only making a small
number of elaborations we were able to use the
pharmacophoric information provided to make
a range of plausible elaborations which satis-
fied the specified design hypothesis. In prac-
tice, predicting if and how a side chain may
move is often extremely difficult but in such
cases STRIFE can be used to assess the plausi-
bility of such a movement and provide starting
points for a fragment-to-lead campaign.

Conclusion

We have proposed a model for fragment elab-
oration which derives meaningful information
from the target into the generative process; un-
like other generative models for fragment elabo-
ration, STRIFE can incorporate target-specific
information without using an existing active
(although information from existing actives can
easily be incorporated).

Currently, STRIFE uses information from
FHMs which guide the placement of hydrogen
bond acceptors and donors within the appended
structure. Although hydrogen bonds between
ligand and protein often lead to large improve-
ments in binding affinity, they are by no means
the only consideration when making elabora-
tions to a fragment; the framework could eas-
ily be expanded to explicitly account for prop-
erties such as hydrophobicity and aromaticity,
allowing a greater degree of control over the de-
sign process. A further limitation of the default
implementation of STRIFE is that it does not
seek to simultaneously satisfy multiple pharma-
cophoric points within a single elaboration, po-
tentially curtailing its ability to generate highly
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efficient elaborations in some scenarios. How-
ever, fragment elaboration campaigns generally
involve incrementally making small additions to
the molecule and STRIFE provide the function-
ality to attempt to simultaneously satisfy mul-
tiple pharmacophoric points (whether FHM-
derived or manually specified), should the user
wish to.

Compared to existing structure-unaware
models for fragment elaboration, the STRIFE
algorithm carries a moderate up-front compu-
tational cost in calculating an FHM and iden-
tifying the set of quasi-actives (between 30-60
minutes on a desktop computer, in most cases).
However, the most significant computational
expense when generating a large number of
elaborations is the docking of each generated
molecule to estimate its ligand efficiency. As
the quasi-actives only need to be identified once
for a given fragment, the computational cost
associated with STRIFE is therefore broadly
comparable to other methods when generating
large sets of molecules.

Although STRIFE is capable of being applied
with minimal user input, one area which re-
quires user specification is the choice of frag-
ment and the associated exit vector. In prac-
tice, screening a fragment library may reveal
dozens of weakly binding hits, yielding a large
set of fragment-exit vector pairs to be ex-
plored; STRIFE could readily sample exhaus-
tively from each fragment and exit vector, how-
ever a future avenue of research would be to
develop a prioritisation scheme capable of iden-
tifying promising starting points for a fragment-
to-lead campaign, to allow a more efficient al-
location of resources.

An advantage of the representation of struc-
tural information that STRIFE extracts from
the target is that it is extremely easy for a user
to interpret. Whilst this is useful in allowing
the user to understand why STRIFE generates
the kinds of elaborations it does for a specific
target, it also allows the user to easily specify
their own design hypotheses. As such, we hope
that STRIFE will be useful both in cases where
a practitioner wishes to automatically generate
a set of elaborations to a fragment bound to
a novel target and in cases where they wish
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to rapidly enumerate a set of elaborations that
conform to a specific design hypothesis and can
be used as a basis for further designs.

Code and Data Availability.

STRIFE is available to download at https:
//github.com/oxpig/STRIFE. The default im-
plementation of STRIFE is dependent on the
commercial CSD Python API for calculating
FHMs and carrying out constrained docking
with GOLD. Users without access to the CSD
Python API can still use STRIFE by man-
ually specifying Pharmacophoric Points (see
Methods, Customisability) and using alterna-
tive docking software.

SMILES strings of the molecules used to train
the generative models and path length model
can be accessed in the STRIFE github repos-
itory, as can the structures used for the large
scale evaluation.
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