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 2 

ABSTRACT 35 

Pattern recognition is a major scientific topic. Strikingly, while machine learning algorithms 36 

are constantly refined, the human brain emerges as an ancestral biological example of such 37 

complex procedure. However, how it transforms sequences of single objects into meaningful 38 

temporal patterns remains elusive. Using magnetoencephalography (MEG) and magnetic 39 

resonance imaging (MRI), we discovered and mathematically modelled an inedited dual 40 

simultaneous processing responsible for pattern recognition in the brain. Indeed, while the 41 

objects of the temporal pattern were independently elaborated by a local, rapid brain 42 

processing, their combination into a meaningful superordinate pattern depended on a 43 

concurrent global, slower processing involving a widespread network of sequentially active 44 

brain areas. Expanding the established knowledge of neural information flow from low- to 45 

high-order brain areas, we revealed a novel brain mechanism based on simultaneous activity 46 

in different frequency bands within the same brain regions, highlighting its crucial role 47 

underlying complex cognitive functions. 48 
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Introduction 59 

Pattern recognition has gathered a large interest across all scientific fields. Indeed, as a 60 

consequence of technological developments, nowadays scientists can rely on constantly 61 

growing amount of data and computational power 1,2. This has introduced new exciting 62 

opportunities, pushing research to seek complex patterns that emerged in a variety of different 63 

fields, spanning from quantum physics 3 to weather forecast 4, animal and human behavior 5,6, 64 

and medical imaging 7,8. 65 

Strikingly, while computer science constantly refines machine learning algorithms and 66 

artificial intelligence for pattern recognition, neuroscience proposes the human brain as an 67 

ancestral biological example of such complex procedure 9–11. Indeed, to guarantee survival the 68 

brain urges to invariably learn and recognize patterns. Among others, brain research findings 69 

on synchronous visual patterns detection provided major advances about the brain mechanisms 70 

underlying face and object recognition 12–15. These studies showed the key role of fusiform 71 

gyrus for face recognition and highlighted the cascade of events from primary visual cortex to 72 

higher-order associative areas underlying processing and recognition of visual objects 16,17. 73 

When investigating the neural responses to objects arranged over time, it has been 74 

demonstrated that the brain is able to automatically detect regularities in temporal patterns 75 

(sequences) of objects, even at a pre-attentive level 18–20. This research, largely carried out in 76 

the auditory domain 18, discovered automatic event-related potentials/fields (ERP/F) to deviant 77 

and standard stimuli such as N100, mismatch negativity (MMN) 18,19 and early right-anterior 78 

negativity (ERAN) 21,22. 79 

Additional studies in the context of auditory neuroscience and memory for sounds arranged 80 

over time highlighted a network of brain areas supposedly involved in storing and retrieving 81 

acoustic information, comprising auditory cortex, inferior frontal gyrus and hippocampus 23–82 
26. These works, which mainly employed functional magnetic resonance imaging (fMRI), 83 

returned pivotal results on auditory memory, and increased our knowledge on how the brain 84 

actively manipulates sounds and auditory information extended over time. Nonetheless, they 85 

did not unravel the fast-scale brain spatial-temporal dynamics responsible for conscious 86 

temporal pattern encoding and recognition. 87 

Thus, despite decades of advancements in neuroscience, several open questions remain. In 88 

particular, how does the brain transform sequences of single objects (local processing) in 89 
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meaningful temporal patterns (global processing) which are accessible to human awareness? 90 

What are the core spatial-temporal brain mechanisms behind temporal pattern recognition? 91 

To address such crucial questions, in our study we investigated the brain activity during 92 

conscious recognition of auditory patterns extended over time.  93 

 94 
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Results 96 

 97 

Experimental design and MEG sensors analysis 98 

To elaborate the ideal experimental design and stimuli, we employed the human activity that 99 

mostly acquires meaning by unfolding over time, namely music 27. Indeed, after requesting 70 100 

participants to memorize a full musical piece composed by J.S. Bach, we presented them with 101 

a set of melodic excerpts taken from the piece and a series of new variations thereof (Fig. 1A). 102 

Those excerpts represented temporal patterns built by five objects (musical tones) that were 103 

listened by the participants and labelled as ‘previously memorized’ (M) or ‘novel’ (N), using 104 

a response pad. The experiment took place while their brain activity was measured through 105 

magnetoencephalography (MEG), a powerful machine which records neural activity with 106 

excellent time resolution (1-ms precision). In the first place, after preprocessing the MEG data 107 

(see Fig. 1B and Methods for details), we analyzed the brain activity underlying recognition of 108 

M vs N by using univariate tests for each MEG sensor and time-point and corrected for multiple 109 

comparisons with cluster-based Monte-Carlo simulations (MCS). This procedure returned a 110 

large significant cluster (p < .001, cluster size k = 2117, mean t-value = 3.29, time = 0.547 – 111 

1.180 s), showing stronger brain activity for M vs N. Moreover, the brain activity recorded 112 

over the MEG channels forming such significant cluster outlined a timeseries which presented 113 

two main frequency components. As shown in Fig. S1A, the faster frequency component 114 

peaked after the presentation of each of the objects forming the pattern, while the slower 115 

frequency component accompanied the whole pattern, peaking at its end. This evidence was 116 

further supported by the computation of complex Morlet wavelet transform on all MEG sensor 117 

data, which highlighted the main contribution of 1Hz and 4Hz to the MEG signal recorded 118 

during the task (Fig. S1B). Thus, our following analyses focused on two frequency bands 119 

defined around those main frequencies: 0.1-1Hz and 2-8Hz. These bands roughly corresponded 120 

to the well-known brain waves called delta and theta, respectively 28, and were also coherent 121 

with results reported by Bonetti and colleagues 29,30. Importantly, we hypothesized that they 122 

indexed the two main processes involved in our experimental task: processing of single objects 123 

forming the temporal pattern (i - local processing) and recognizing the temporal pattern as a 124 

comprehensive superordinate object (ii - global processing). 125 

 126 

 127 
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Source reconstructed brain activity and single-object analysis 128 

MEG is a powerful tool to record whole-brain activity with excellent temporal resolution. 129 

However, the investigation of neural activity also requires reliable spatial parameters. To 130 

achieve such goal, we performed the widely adopted procedure named source reconstruction, 131 

implemented through a beamforming algorithm. As shown in Fig. 1B, we band-pass filtered 132 

the MEG continuous data in the previously mentioned frequency bands (0.1-1Hz, delta, and 2-133 

8Hz, theta). Then, independently for the two bands, the MEG data was epoched and co-134 

registered (Fig. 1C) with the structural images of the participants’ brains (structural weighted 135 

T1) obtained from magnetic resonance imaging (MRI). Finally, using beamforming, we 136 

reconstructed the neural sources of the MEG signal in an 8-mm space, returning 3559 brain 137 

sources (voxels) and the timeseries showing their activity over time (see Fig. 1C and Methods 138 

for details).  139 

The reconstructed brain activity of each participant was submitted to first-level analysis, which 140 

was conducted employing general linear models (GLMs). Such models were computed for 141 

each time-point and brain voxel, returning the main effect (contrasts of parameters estimate 142 

(COPEs)) of M and N as well as their contrast 31. These results were submitted to second level 143 

(group-level) analysis, employing one-sample t-tests with spatially smoothed variance 144 

obtained with a Gaussian kernel (full-width at half-maximum: 50 mm). This analysis returned 145 

the group-level statistics over all participants for each time-point and brain voxel, 146 

independently for our two frequency bands. 147 

Then, we aimed to investigate the brain activity underlying the local processing of each of the 148 

objects forming the temporal pattern (theta) as well as the simultaneous global processing of 149 

the whole pattern (delta). Thus, we computed 10 (five tones x two frequency bands) cluster-150 

based MCS on the group-level results averaged over the five time-windows corresponding to 151 

the duration of the musical tones. The MCS analysis comprised 1000 permutations and a cluster 152 

forming threshold of p < .05 (from the group-level analysis). Since we computed this analysis 153 

10 times, we corrected for multiple comparisons by dividing the standard MCS α level (= .05) 154 

by our 10 comparisons, resulting in an updated MCS α = .005 (i.e. clusters of significant group-155 

level results in the original data were significant if their sizes were larger than the 99.5% of the 156 

cluster sizes of the permuted data; see Methods for additional details). 157 

Notably, different results emerged for the two frequency bands. Brain activity for delta was 158 

stronger for M vs N, especially during processing of the last three objects of the pattern. As 159 
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depicted in Fig. 1D and S2, such activity delineated a widespread brain network underlying 160 

the global processing of the pattern, involving brain regions related to memory and evaluative 161 

processes such as cingulate gyrus, hippocampus, insula, frontal operculum and inferior 162 

temporal cortex (MCS p < .001). Conversely, brain activity for theta was overall stronger for 163 

N vs M and mainly involved auditory cortices (MCS p < .001). Statistics of the peak significant 164 

brain voxels for both frequencies are reported in Table 1, while extensive results are described 165 

in Table S1. 166 

 167 

 168 

 169 

 170 

Fig. 1. Experimental design, source reconstruction and single-object contrasts. (A) After listening to a full 171 
musical piece composed by J.S. Bach, participants were presented with a set of melodic excerpts taken from the 172 
piece and a series of new variations thereof. Those excerpts represented temporal patterns built by five objects 173 
(musical tones) that where labelled by the participants as ‘previously memorized’ (M) or ‘novel’ (N) using a 174 
response pad. (B) During the task, participant’s brain activity was recorded through MEG. The neural data was 175 
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preprocessed, bandpass-filtered in two frequency bands (0.1-1Hz and 2-8Hz) and epoched. (C) Graphical 176 
depiction of source reconstruction, computed independently for the two frequency bands considered in the study. 177 
Notably, the slower band (0.1-1Hz) indexed the recognition of the whole pattern (global processing), while the 178 
faster band (2-8Hz) showed the neural responses to each object of the pattern (local processing). (F). Contrasts 179 
revealed stronger brain activity for M vs N in 0.1-1Hz (red), especially for third, fourth and fifth objects. Such 180 
difference was localized in a large brain network comprising cingulum, inferior temporal cortex, frontal 181 
operculum, insula and hippocampal areas. Conversely, contrasts for 2-8Hz returned an overall stronger activity 182 
for N vs M (blue), especially in the auditory cortex. 183 

 184 

 185 

 186 
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 188 

0.1 – 1 Hz 2 – 8 Hz 

Brain area Hemisph t MNI coordinates Brain area Hemisph t MNI coordinates 

   x y z    x y z 

Tone 1 

Rolandic Ope R 4.44 42 -30 16 Cing Mid R 4.48 2 2 40 

Heschl R 4.26 42 -30 8 Cing Mid R 4.23 2 10 40 
Temporal 

Sup R 4.16 50 -30 16 Cing Mid L 4.17 -6 2 40 

Temporal 
Sup R 4.04 42 -38 16 Cing Mid R 4.16 2 10 32 

Tone 2 

Frontal Sup L 4.00 -14 34 40 Tempr Pol Sup R -3.88 34 10 -32 

Frontal Sup L 3.98 -14 34 32 Tempr Pol Sup R -3.46 26 10 -32 

Frontal Sup L 3.92 -14 26 40 Front Inf Ope L -3.45 -38 2 24 

Frontal Sup L 3.78 -14 42 40 Tempr Pol Mid R -3.37 42 10 -32 

Tone 3 

Precuneus R 3.89 2 -46 48 Temporal Sup R -3.30 50 -22 8 

Cing Mid R 3.80 2 -38 48 Temporal Sup R -3.19 58 -22 8 
Cing Mid R 3.62 2 -22 48 Temporal Sup R -2.78 50 -22 0 

Cing Mid R 3.60 2 -30 48 Heschl R -2.67 42 -22 8 

Tone 4 
Temporal 

Mid L 5.05 -46 -6 -16 ParaHippocamp L -3.89 -22 -30 -16 

Insula L 4.93 -38 -6 -8 ParaHippocamp L -3.86 -30 -30 -16 
Temporal 

Mid L 4.81 -46 -14 -16 Tempr Pol Mid L -3.74 -46 10 -32 

Cing Mid R 4.76 2 -6 40 Tempr Pol Mid L -3.70 -38 10 -32 

Tone 5 

Insula L 5.48 -38 2 -8 Front Inf Tri R 3.41 42 26 24 

Putamen L 5.27 -30 2 -8 Putamen R 3.36 34 2 0 
Temporal 

Mid L 5.26 -46 -6 -16 Insula R 3.28 42 10 0 

Temp Pol 
Mid L 5.24 -46 2 -16 Postcentral Gyr R 3.23 34 -30 48 

Table 1. Peak brain activity underlying recognition of each object (musical tone) of the temporal sequences. 189 
Brain areas refer to the automatic anatomic labelling (AAL) parcellation labels, while t indicates the t-value 190 
obtained by contrasting known vs unknown temporal sequences. 191 

  192 
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K-means functional clustering 193 

Although returning large significant brain networks and valuable information, contrasting the 194 

brain activity in response to each object of the pattern did not fully benefit from the excellent 195 

temporal resolution of the MEG data and underestimated brain processes happening in between 196 

two or more objects of the pattern. Furthermore, computing contrasts for each time-point and 197 

brain voxel returns a large amount of data which is partially redundant and sometimes not 198 

straightforward to understand and ideal to mathematically model. Indeed, several brain sources 199 

are highly correlated because of both biological reasons involving large populations of neurons 200 

generating the signal and artificial source leakage introduced during the source reconstruction 201 
32. Thus, defining a functionally based parcellation of the brain is of great importance when 202 

aiming to synthesize and mathematically describe the spatial extent of the active brain sources 203 

as well as their activity over time. 204 

We used a so-called k-means functional clustering, which relies on the combination of k-means 205 

clustering computed both on functional and spatial information of each of the reconstructed 206 

brain voxel timeseries (Fig. 2A). In brief, first this procedure clusters the 3559 brain voxels in 207 

n functional parcels according to basic functional features, such as the absolute value of the 208 

peaks of the voxels timeseries (Fig. 2B, right) or their corresponding time-indices (Fig. 2B, 209 

left). Notably, in our study, delta presented different peaks of activity shifted over time and 210 

thus was clustered considering the time-indices of such peaks (Fig. 2B, left). Differently, theta 211 

showed very correlated activity and was therefore clustered using the absolute values of such 212 

peak activity (Fig. 2B, right). Second, each of the returned n functional parcels is further 213 

divided according to the spatial information (three-dimensional coordinates) of the brain voxels 214 

that belong to it (Fig. 2C). The whole procedure provides a final parcellation and the 215 

corresponding timeseries based on both the functional and spatial profile of each of the 216 

reconstructed 3559 brain voxels (examples of this procedure are depicted in Fig. S3, S4 and 217 

S5 and described in detail in the Methods and in Tables S2, S3, S4 and S5, S6). 218 

Here, we wanted to contrast the brain activity of M vs N over the functionally defined parcels, 219 

aiming to integrate our previous statistical analysis. Thus, the k-means functional clustering 220 

was performed on the group-level main effects of M and N averaged together. Then, to obtain 221 

the main effect of M and N for each parcel and participant, we averaged the first-level main 222 

effect of M and N (from the GLMs) over the brain voxels belonging to each of the functional 223 

parcels. This resulted in a new timeseries for each participant, functional parcel, and 224 

experimental condition (M and N). Such timeseries were submitted to univariate contrasts (M 225 

vs N), performed for each parcel and time-point (Fig. 2D1). Once again, the significant results 226 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465263
http://creativecommons.org/licenses/by-nd/4.0/


 11 

were corrected for multiple comparisons using cluster based MCS (see Methods for details). 227 

These analyses were computed independently for the two frequency bands, returning a 228 

different picture for global and local temporal pattern brain processing. Similar to our previous 229 

analysis, the strongest brain activity in the delta band was detected for M. Remarkably, the 230 

current procedure highlighted a series of sequentially active brain parcels accompanying the 231 

processing of the temporal pattern, expanding our first analysis. As shown in Figure 2E, the 232 

brain presented an initial activity in the right auditory cortex characterized by a slightly stronger 233 

power for M vs N (Fig. 2A1, parcel 1: p < .001, cluster size k = 39; mean t-value = 2.72; time 234 

from first object onset: 0-0.25s). Next, we observed neural activity in the left auditory cortex 235 

but no significant differences between experimental conditions (Fig. 2E, parcel 2). Starting 236 

between the second and third objects and peaking during the fifth object of the temporal pattern, 237 

we observed a burst of activity in the cingulate gyrus, which was stronger for M vs N (Fig. 2E, 238 

parcel 3: p < .001, k = 92; t-val = 2.73; time: 0.45-1.05s). With a slight delay, a similar profile 239 

emerged for a larger brain parcel comprising insula, the anterior part of the inferior temporal 240 

cortex, hippocampus and frontal operculum. Once again, M was largely stronger than N (Fig. 241 

2E, parcel 4: p < .001, k = 77; t-val = 2.79; time: 0.69-1.19s). Finally, peaking just before the 242 

mean reaction time for participants’ categorization of the pattern, a stronger activity in post-243 

central gyrus and sensorimotor cortex was observed for M vs N (Fig. 2E, parcel 5, main cluster: 244 

p < .001, k = 142; t-val = 2.68; time: 0.94-1.88s). 245 

Conversely, the analysis for theta band showed a number of significant clusters of stronger 246 

activity for N vs M around the sharp peaks of the timeseries. Notably, compared to our first 247 

analysis for the five objects of the temporal pattern, this second procedure clearly outlined the 248 

temporal extent of such difference, which corresponded to the last three tones of the temporal 249 

sequences. Specifically, such differences involved right (Fig. 2E, parcel 1, main cluster I: p < 250 

.001, k = 11, t-val = 3.51; time: 0.89-0.95s; II: p < .001, k = 11; t-val = 2.22; time: 1.21-1.28s) 251 

and left primary auditory cortices (Fig. 2E, parcel 2, main cluster I: p < .001, k = 12, t-val = -252 

3.70; time: 0.74-0.81s; II: p < .001, k = 12; t-val = 3.09; time: 0.87-0.95s; III: p < .001, k = 9; 253 

t-val = 2.90; time: 0.64-0.69s). With a reduced strength, similar clusters of activity have been 254 

observed for right (Fig. 2E, parcel 3, main cluster I: p < .001, k = 13, t-val = 3.08; time: 1.19-255 

1.27s; II: p < .001, k = 12; t-val = 3.61; time: 0.89-0.96s) and left secondary auditory cortex 256 

and hippocampal areas (Fig. 2E, parcel 4, main cluster I: p < .001, k = 12, t-val = -2.97; time: 257 

0.74-0.81s; II: p < .001, k = 10; t-val = 2.86; time: 0.87-0.93s) and cingulate (Fig. 2E, parcel 258 

5, main cluster I: p < .001, k = 10, t-val = 3.03; time: 0.90-0.96s; II: p < .001, k = 9; t-val = -259 
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2.29; time: 0.79-0.84s). Additional details on these contrasts are reported in Tables S7, and 260 

extensively depicted in Fig. S6 and S7. 261 

 262 

Modelling the brain activity underlying temporal pattern recognition 263 

Once the difference between M and N was largely proved and detailly described, we focused 264 

on a further aim of the study, which was to mathematically characterize the dual simultaneous 265 

brain processing happening during recognition of the previously memorized temporal patterns. 266 

Thus, we computed another round of k-means functional clustering. This time, such analysis 267 

was performed only on the group-level main effect of M, to outline a functional parcellation 268 

based on the sole recognition of previously memorized patterns. As shown in Fig. 2F, the 269 

algorithm returned similar results compared to the previous round of k-means functional 270 

clustering, but better highlighted the parcels comprising brain areas implicated in memory and 271 

evaluative processes. 272 

With regards to modelling, we hypothesized two different mathematical equations (one for 273 

each frequency band) that could describe the brain activity over our functionally defined 274 

parcels for global and local brain processes (Fig. 2D2, bottom). 275 

 276 

 277 
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 278 

 279 

Fig. 2. Source reconstruction, k-means functional clustering, contrasts and mathematical modelling. (A), (B), 280 
(C) provide a graphical depiction of the methods used, while (E), (F), (G) show actual results. (A) Graphical 281 
depiction of the source reconstruction. (B) A functional parcellation of the brain based on the activity recorded 282 
during the task was estimated. First, k-means clustering was computed on functional information of each brain 283 
voxel timeseries. Regarding the slower band (0.1-1Hz, indexing the global processing of the pattern), clustering 284 
was computed on the time indices of the maximum values of the voxels. Conversely, for the faster band (2-8Hz, 285 
indexing the local processing of each object of the pattern), clustering was performed on the maximum values of 286 
the voxels. This procedure returns a set of functional parcels. (C) A second series of k-means clustering was 287 
computed on the spatial properties of each of the functional parcels described in (B). Here, for illustrative 288 
purposes, we show only one functional parcel (outlined by the red bracket). Such procedure returned a set of new 289 
final parcels with the corresponding timeseries taking into account both functional and spatial information of 290 
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each of the brain voxels. (D1) Contrasts between memorized (M) and novel (N) temporal patterns were computed 291 
for each parcel and frequency band. (D2) Gaussian and sinusoidal functions were fitted to the timeseries of the 292 
parcels computed for M only, using the non-linear least square algorithm. (E) Contrasts between M vs N temporal 293 
patterns for the main functional brain parcels. (F) Real and predicted timeseries for M computed by fitting the 294 
mathematical equation depicted in the top column to the parcels timeseries. (G) Deepening on three main parcels 295 
(primary auditory cortex (PAC), secondary auditory cortex and hippocampal areas (SAC) and cingulate) of the 296 
local processing. The image highlights the different behavior of PAC vs SAC and Cingulate, especially in the right 297 
hemisphere. It shows that higher-order areas (SAC and Cingulate) are more implicated than lower order ones 298 
(PAC) in the generation of the P300 component in response to each sound of the pattern (as outlined by the red 299 
squares). In (E), (F), (G) graphical depiction of musical tones indicates the onset of the objects forming the 300 
temporal pattern, while the ‘+’ shows the mean reaction time of participants’ response. Colorbars refer to the t-301 
values obtained from second-level analyses. 302 

 303 

 304 
  305 
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 306 

0.1 – 1 Hz 2 - 8Hz 

Parcel # R2 a x0 σ Parcel # R2
i i ai x0i σi ci φi 

1 0,10 3,68 69,79 30,11 1 0,99 

1 -5,52 -1,18 0,05 -0,75 1,72 
2 14,82 3,72 0,75 0,16 3,40 
3 -18,24 3,75 0,27 0,21 -0,45 
4 -2,64 4,48 0,52 0,33 -7,42 
5 6,61 5,34 0,08 0,16 -7,87 

2 0,78 2,40 122,91 34,99 2 0,97 

1 -5,52 -1,18 0,05 -0,75 1,72 
2 11,84 3,78 0,79 0,16 2,55 
3 -27,29 3,73 0,29 0,19 0,09 
4 -1,65 4,52 0,66 0,33 -7,35 
5 7,06 5,39 0,07 0,16 -9,00 

3 0,92 2,12 186,79 63,61 3 0,97 

1 -5,52 -1,18 0,05 -0,75 1,72 
2 13,73 3,81 0,60 0,16 2,96 
3 -15,78 3,81 0,27 0,20 0,61 
4 -1,84 4,23 0,69 0,33 -7,90 
5 5,85 5,32 0,07 0,14 -4,29 

4 0,92 3,60 178,79 44,04 4 0,97 

1 -5,52 -1,18 0,05 -0,75 1,72 
2 8,76 3,75 0,73 0,16 2,42 
3 -19,57 3,73 0,29 0,19 0,50 
4 -1,29 4,38 0,70 0,33 -7,41 
5 4,70 5,38 0,07 0,17 -10,13 

5 0,78 2,25 232,61 52,83 5 0,96 

1 -5,52 -1,18 0,05 -0,75 1,72 
2 4,52 3,82 0,25 0,19 2,39 
3 -3,44 4,10 0,72 0,23 -1,75 
4 -5,90 4,43 0,22 0,21 2,84 
5 4,40 5,28 0,06 0,17 -10,22 

Table 2. R2 and coefficients derived from non-linear least square fitting of the equations (1) and (3) on the brain 307 
activity underlying temporal pattern recognition. i refers to the five objects (musical tones) forming the 308 
temporal patterns. Here, the parcel IDs correspond to the ones reported in Fig. 2A1 and 2A2. 309 

 310 

 311 

 312 

Regarding delta (global processing of the pattern), we used a simple Gaussian function, 313 

described as follows: 314 

 315 

 𝑓(𝑥) = 𝑎𝑒
("#"!)"
%&"  (1) 

 316 

where a modulates the amplitude of the curve, x0 shifts it over time and σ determines its width. 317 

This equation was fitted using a widely adopted non-linear least square approach, whose results 318 

are reported in Table 2 and S8 and depicted in Fig. 2F (left column), S8 and S9. This procedure 319 

returned rather good results, highlighting key similarities and differences between the parcels 320 

timeseries. As reported in Table 2, the main functional parcels returned a similar peak 321 
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amplitude (a). Conversely, the latencies of such peaks were highly different and shifted over 322 

time, as illustrated by parameter x0. Further, the width of the Gaussian function (indexed by σ) 323 

varied over the parcels. Indeed, lower-level brain areas such as right and left auditory cortices 324 

presented a reduced width compared to higher-level brain areas such as cingulate, insula, 325 

hippocampus, inferior temporal cortex and frontal operculum. This result may suggest that the 326 

transition from low- to high-order brain areas at the basis of the global processing of the pattern, 327 

is also reflected in a longer computation of the information operated by the brain. 328 

Conversely, with regards to theta (local processing of the objects forming the pattern), we 329 

hypothesized the following equation: 330 

 331 

 𝑓(𝑥) =(𝑎'𝑒
(()*	(")#"!#)"

%&#" ∗ cos	(𝑐𝑥 + 𝜑)	
,

'-.

 (2) 

 332 

where a, x0, σ describes a Gaussian function, exactly as reported for equation (1). This new 333 

equation gives rise to a sinusoidal curve that modulates its amplitude on the basis of the 334 

associated Gaussian function. As usual, c refers to the angular frequency, while φ indicates the 335 

phase. Finally, N refers to the total number of objects forming the temporal pattern. This 336 

equation was hypothesized since it produces ‘wavelet-like’ timeseries, arguably describing the 337 

well-established series of components (peaks of activity in the timeseries, e.g. P50, N100, 338 

P300, N300 33) generated by the brain in response to a sound. Indeed, such components have 339 

different latencies with respect to the sound onset and present opposite polarities (i.e. P50 and 340 

P300 are positive, while N100 and N300 are negative), giving rise to a wavelet-looking 341 

timeseries. Although well-established, it is not clear how these components relate to each other, 342 

especially when there are multiple brain sources involved and during complex cognitive 343 

processes such as recognition of temporal patterns. As done for equation (1), equation (2) was 344 

also fitted using the non-linear least square algorithm, returning good results (reported in Table 345 

2 and S8 and depicted in Fig. 2F, right column). However, in this case, the interpretation of 346 

the fitted parameters was more complicated since the brain responses to any two subsequent 347 

sounds was partially overlapping (i.e. the N300 component enhanced by the first sound 348 

occurred with a latency of approximately 320ms and overlapped with the P50 component 349 

arising after 50ms from the onset of the second sound). This fact partially altered the contour 350 

of the ‘wavelets’ and made the interpretation of the parameters less straightforward. 351 

Nevertheless, x0 showed that the center of the ‘wavelets’ was progressively shifted over time 352 
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following the onset of the sounds. Moreover, a indicated a trend of decreased absolute value 353 

over time, coherently with the reduced amplitude of the ‘wavelets’ occurring for the last sounds 354 

of the pattern.  355 

 356 

Finally, Fig. 2G illustrates that while the ‘wavelet’ response to the first sound showed very 357 

similar activity over primary (parcel i) and secondary auditory cortices, insula, hippocampal 358 

areas (parcel ii) and cingulate (parcel iii), the peaks for the following sounds showed a different 359 

trend, especially in response to the third and fourth object of the pattern. In this case, secondary 360 

auditory cortices, insula, hippocampal areas and cingulate seemed to peak before the primary 361 

auditory cortex. However, this does not indicate a faster response of those areas as it could be 362 

thought at a first sight. Indeed, looking, for example, at the peaks around 0.5 seconds (first red 363 

square in Fig. 2G), the first peak (mainly occurring for secondary auditory cortices, insula, 364 

hippocampal areas and cingulate) corresponded to the P300 component to the second sound of 365 

the pattern, while the second peak (mainly occurring for primary auditory cortex) was the P50 366 

to the third sound. An analogous phenomenon happened for the following objects of the pattern 367 

(as outlined by the other red squares). This shows that while the contribution of the primary 368 

auditory cortex was stronger for the first components (i.e. P50 and N100), which indexed 369 

lower-level processes, later components such as P300 were mainly generated by higher order 370 

areas such as secondary auditory cortices, insula, hippocampal areas and cingulate.  371 

  372 
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Discussion 373 

In this study, combining MEG and MRI, we discovered and mathematically modelled an 374 

inedited dual simultaneous processing responsible for brain recognition of temporal patterns. 375 

Indeed, on the one hand the single objects forming the pattern were independently elaborated 376 

by a rapid (theta band), oscillatory, local processing driven by sensorial cortices. 377 

On the other hand, the combination of the single objects into a meaningful superordinate 378 

pattern depended on a simultaneous global, slow (delta band) processing involving a 379 

widespread network of sequentially active high-order brain areas.  380 

 381 

Our findings revealed that the dual simultaneous processing required by the brain to recognize 382 

temporal patterns involved a widespread network of brain areas largely related to memory, 383 

attention, audition, and decision-making. Such brain areas were hippocampus 34, cingulate 384 

gyrus 35, inferior temporal cortex 36, frontal operculum 37,38, insula 39, and primary and 385 

secondary auditory cortex 40. Notably, both processes (global and local) involved 386 

approximately the same brain regions but depended on different frequencies of the neural 387 

signal. Furthermore, as conceivable, the local processing relied mainly on sensorial cortices 388 

(e.g. auditory cortex), while the global processing presented a wider recruitment of higher-389 

order brain areas such as cingulate, inferior temporal cortex and hippocampus. 390 

Strikingly, temporal pattern recognition occurred through a cascade of progressively slower 391 

events rewiring a chain of low- to high-order brain regions, as formally described by our 392 

modelling. This evidence, observed for delta band, may indicate that the brain progressively 393 

constructs a meaningful understanding of the unfolding temporal pattern by recruiting a 394 

hierarchical pathway of subsequently active regions. Conversely, theta band activity showed a 395 

complementary profile. Indeed, its activity peaked slightly after each object of the temporal 396 

sequence. Such evidence suggests that, while delta band may be implicated in achieving a 397 

comprehensive understanding of the whole pattern (global processing), theta may elaborate 398 

independently its objects (local processing). Notably, previous research described global and 399 

local processing mainly in terms of different locations of the neural signal (i.e. primary 400 

sensorial cortices preceded higher-order brain areas in the elaboration of incoming stimuli 401 
16,17). Conversely, in our study we showed that the same brain regions operated these two 402 

processes (global and local) at the same time, using two concurrent frequency bands. 403 
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Further, previous research on memory for music and auditory sequences showed the 404 

involvement of large brain networks 23–26, but did not reveal any dual simultaneous processing 405 

nor detailly described the dynamical, rapid change of the brain areas’ activity in relation to the 406 

development of the auditory stimuli. Moreover, the majority of such studies employed fMRI, 407 

a powerful tool which returns excellent spatial resolution but lacks temporal accuracy 41. On 408 

another note, recent studies on musical memory benefitting from the excellent temporal 409 

resolution of MEG focused on different features of memory, mainly investigating working 410 

memory paradigms and retention of musical information 42,43. In conclusion, on the one hand 411 

our study highly confirmed and refined classic results on auditory and musical memory. On 412 

the other hand, it proposed a novel mechanism used by the brain to extract meaning from 413 

temporal sequences, shedding new light on the brain strategies to process, and become aware 414 

of the complexity of the external environment. 415 

Another crucial evidence emerged from our study relates to the differential strength of the brain 416 

signal observed for the two frequency bands in relation to our experimental conditions (M and 417 

N). Indeed, while delta band presented a stronger power for the memorized patterns, theta 418 

showed greater responses for the novel ones. This finding may be seen in light of the predictive 419 

coding theory 44,45, which posits that the brain is constantly updating internal models to predict 420 

environmental information. Here, when the brain is recognizing the temporal patterns (e.g. 421 

around tones number two and three of our sequences), it might formulate better predictions of 422 

the upcoming, previously memorized, objects completing the patterns. Thus, such objects 423 

would require a lower local processing, as we observed experimentally. Interestingly, although 424 

mainly localized in primary auditory cortex, the neural sources of theta band activity were also 425 

placed in hippocampal areas, secondary auditory cortex, insula, and cingulate. As previously 426 

mentioned, this evidence suggests that roughly the same brain regions generated two 427 

simultaneous frequency bands characterized by a very different functional profile, indexing the 428 

local and global processing of the temporal pattern. On top of this, with regards to local 429 

processing, our results show that the elaboration of each sound gave rise to a wavelet-like 430 

timeseries with three main peaks (components). Here, the lower-level elaboration of the sounds 431 

indexed by the first components (i.e. P50 and N100 46) originated mainly in the primary 432 

auditory cortex. Conversely, later components such as P300 46 were generated especially by 433 

higher order areas such as secondary auditory cortices, insula, hippocampal regions and 434 

cingulate. Remarkably, such phenomenon became more evident following the unfolding of the 435 
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temporal pattern, suggesting that a progressively more refined elaboration of the single objects 436 

is essential for the brain to comprehend the meaning of the whole temporal pattern. 437 

Finally, our findings related and expanded concepts of the notorious two-stream hypothesis of 438 

the brain 47,48. Such conceptualization proposed two main pathways for high-order elaboration 439 

of visual and auditory information. On the one hand, the ventral stream leads from sensorial 440 

areas (e.g. visual and auditory cortices) to the medial temporal lobe, processing features mainly 441 

associated to object recognition 48,49. On the other hand, the dorsal stream brings information 442 

from sensory cortices to the parietal lobe, elaborating spatial features of the stimuli 50. 443 

Coherently with such hypothesis, our results highlighted several brain regions of the ventral 444 

stream that are implicated in recognition processes, such as hippocampal areas, frontal 445 

operculum, and inferior temporal cortex. Remarkably, our results further expanded previous 446 

knowledge on the two-stream hypothesis by providing at least three crucial remarks. The brain 447 

recognition of temporal patterns presented unique spatial-temporal features which were not 448 

shared with the identification of single elements or synchronous patterns (i). In addition to the 449 

brain regions involved in the two-stream hypothesis, our findings showed the privileged role 450 

of cingulate gyrus to achieve temporal pattern recognition (ii). Finally, the recognition of 451 

sequential patterns unfolding over time involved a dual simultaneous processing of the same 452 

objects, which the brain interpreted concurrently as individual pieces of information (local 453 

processing) and elementary parts of a larger reality (global processing) (iii). 454 

 455 

In conclusion, in our study we achieved a rather profound understanding of the brain 456 

mechanisms underlying conscious recognition of temporal patterns. Indeed, we discovered and 457 

mathematically modelled a rapid (theta band), oscillatory, local processing driven by sensorial 458 

cortices responsible for the elaboration of the single objects (sounds) forming the pattern. 459 

Additionally, our findings suggested that the combination of such single objects into a 460 

meaningful superordinate pattern depended on a simultaneous global, slow (delta band) 461 

processing involving a widespread network of sequentially active high-order brain areas. By 462 

showing that nearly the same brain regions operated two processes at the same time using two 463 

concurrent frequency bands, our results unravelled the brain mechanisms underlying temporal 464 

pattern recognition and proposed a novel understanding of the strategies adopted by the brain 465 

to elaborate the complexity of the external environment. 466 

 467 

  468 
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Methods 469 

 470 

Participants 471 

The study comprised 70 volunteers: 36 males and 34 females (age range: 18 – 42 years old, 472 

mean age: 25.06 ± 4.11 years). All participants were healthy and reported no previous or 473 

current alcohol and drug abuse. Moreover, they were not under any kind of medication, 474 

declared that they did not have any previous neurological or psychiatric disorder, and reported 475 

to have normal hearing. Furthermore, their economic, educational and social status was 476 

homogeneous. 477 

All the experimental procedures were carried out complying with the Declaration of Helsinki 478 

– Ethical Principles for Medical Research and were approved by the Ethics Committee of the 479 

Central Denmark Region (De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-480 

72-411-17). 481 

 482 

Experimental design and stimuli 483 

To detect the brain signature of temporal pattern recognition, we used an old/new paradigm 51 484 

auditory recognition task during magnetoencephalography (MEG) recording. First, 485 

participants listened to four repetitions of a MIDI homo-rhythmic version of the right-hand part 486 

of the whole prelude BWV 847 in C minor composed by J.S. Bach (total duration of about 10 487 

minutes). Second, they were presented with 80 brief musical excerpts lasting 1250 ms each and 488 

were asked to state whether each excerpt belonged to the prelude by Bach (‘memorized’ pattern 489 

(M), old) or it was a variation of the original patterns (‘novel’ pattern (N), new) (Fig. 1A). 490 

Forty excerpts were taken from the Bach’s piece and 40 were novel. In the following analysis 491 

we used only the correctly recognized trials (mean correct M: 78.15 ± 13.56 %, mean reaction 492 

times (RT): 1871 ± 209 ms; mean correct N: 81.43 ± 14.12 %, mean RT: 1915 ± 135 ms). Both 493 

prelude and excerpts were created by using Finale (MakeMusic, Boulder, CO) and presented 494 

with Presentation software (Neurobehavioural Systems, Berkeley, CA). After the acquisition 495 

of the MEG data, in the same or another day, participants’ brain structural images were 496 

acquired by using magnetic resonance imaging (MRI). 497 

 498 

Data acquisition 499 

We acquired both MRI and MEG data in two independent sessions. The MEG data was 500 

acquired by employing an Elekta Neuromag TRIUX system (Elekta Neuromag, Helsinki, 501 
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Finland) equipped with 306 channels. The machine was positioned in a magnetically shielded 502 

room at Aarhus University Hospital, Denmark. Data was recorded at a sampling rate of 1000 503 

Hz with an analogue filtering of 0.1–330 Hz. Prior to the measurements, we accommodated 504 

the sound volume at 50 dB above the minimum hearing threshold of each participant. 505 

Moreover, by utilizing a three-dimensional digitizer (Polhemus Fastrak, Colchester, VT, USA), 506 

we registered the participant's head shape and the position of four headcoils, with respect to 507 

three anatomical landmarks (nasion, and left and right preauricular locations).  508 

The location of the headcoils was registered during the entire recording by using a continuous 509 

head position identification (cHPI), allowing us to track the exact head location within the 510 

MEG scanner at each time-point. We utilized this data to perform an accurate movement 511 

correction at a later stage of the data analysis. 512 

The recorded MRI data corresponded to the structural T1. The acquisition parameters for the 513 

scan are reported as follows: voxel size = 1.0 x 1.0 x 1.0 mm (or 1.0 mm3); reconstructed matrix 514 

size 256×256; echo time (TE) of 2.96 ms and repetition time (TR) of 5000 ms and a bandwidth 515 

of 240 Hz/Px. At a later stage of the analysis, each individual T1-weighted MR scan was co-516 

registered to the standard MNI brain template through an affine transformation and then 517 

referenced to the MEG sensors space by using the Polhemus head shape data and the three 518 

fiducial points measured during the MEG session. 519 

 520 

Data pre-processing 521 

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was pre-522 

processed by MaxFilter 52 for attenuating the interference originated outside the scalp by 523 

applying signal space separation. Within the same session, Maxfilter also adjusted the signal 524 

for head movement and down-sampled it from 1000 Hz to 250 Hz. 525 

The data was converted into the SPM format and further analyzed in Matlab (MathWorks, 526 

Natick, Massachusetts, United States of America) by using OSL, a freely available toolbox that 527 

relies on a combination of FSL 53, SPM 54 and Fieldtrip 55, as well as in-house-built functions. 528 

The data was then high-pass filtered (0.1 Hz threshold) to remove frequencies that were too 529 

low for being originated by the brain. A notch filter (48-52 Hz) was applied to correct for 530 

possible interference of the electric current. The data was further down-sampled to 150 Hz and 531 

few parts of the data, altered by large artifacts, were removed after visual inspection. Then, to 532 

discard the interference of eyeblinks and heart-beat artefacts from the brain data, independent 533 

component analysis (ICA) was used to decompose the original signal in independent 534 

components. Then, the components that picked up eyeblink and heart-beat activities were first 535 
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isolated and then discarded. The signal was rebuilt by using the remaining components 56 and 536 

then epoched in 80 trials (one for each musical excerpt) lasting 3500 ms each (with 100ms of 537 

pre-stimulus time that was used for baseline correction) (Fig. 1B). 538 

 539 

Univariate tests and Monte-Carlo simulations over MEG sensors 540 

Although our primary focus was on the MEG source reconstructed brain data, a first analysis 541 

on MEG sensors data was computed, coherently with state-of-the-art recommendation about 542 

best practice in MEG analysis 57. 543 

Thus, according to a large number of MEG and electroencephalography (EEG) task-related 544 

studies 57, we averaged the trials over conditions, obtaining two final mean trials, for M and N, 545 

respectively. Then, we combined each pair of planar gradiometers by root sum square. 546 

Afterwards, we performed a t-test for each time-point in the time-range 0 – 2.500 seconds and 547 

each combined planar gradiometer, contrasting M vs N. To correct for multiple comparisons, 548 

we computed Monte-Carlo simulations (MCS) 58 with 1000 permutations on the clusters of 549 

significant results emerged from the t-tests. We considered significant the original clusters that 550 

had a size bigger than the 99.9% maximum cluster sizes of the permuted data. Additional 551 

details on this widely used procedure can be found in Bonetti and colleagues 29,30. This analysis 552 

returned a large and robust difference between experimental conditions. Moreover, the brain 553 

activity recorded over the MEG channels forming the significant cluster outputted by the MCS 554 

analysis outlined a timeseries which presented two main frequency components. As shown in 555 

Fig. S1A, the faster frequency component peaked after the presentation of each of the objects 556 

forming the pattern, while the slower frequency component accompanied the whole pattern, 557 

peaking at its end. This evidence was further supported by the computation of complex Morlet 558 

wavelet transform 59 on all MEG sensor data, which highlighted the main contribution of 1Hz 559 

and 4Hz to the MEG signal recorded during the task (Fig. S1B). Thus, our following analyses 560 

in source reconstructed space focused on two frequency bands defined around those main 561 

frequencies: 0.1-1Hz and 2-8Hz. These bands roughly corresponded to the well-known brain 562 

waves called delta and theta, respectively 60, and were also coherent with results reported by 563 

Bonetti et al. 29. Importantly, we hypothesized that they indexed the two main processes 564 

involved in our experimental task: processing of single objects forming the temporal pattern (i 565 

- local processing) and recognizing the temporal pattern as a comprehensive superordinate 566 

object (ii - global processing). 567 

 568 

 569 
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Source reconstruction 570 

MEG is a powerful tool to record whole-brain activity with excellent temporal resolution. 571 

However, the investigation of neural activity also requires spatial parameters. To achieve a 572 

reasonably accurate information about the brain sources that generated the MEG signal, an 573 

inverse problem must be solved. Indeed, from MEG recording we know the power of the neural 574 

signal outside the head, but we do not know which brain sources generated it. Moreover, we 575 

possess only 102 triplets of MEG sensors, while the active brain sources that could be distinctly 576 

recorded by the MEG are much more numerous. To solve this problem, state-of-the-art source 577 

reconstruction methods have been used (Fig. 1C and Fig. 2A) 61,62. Importantly, the source 578 

reconstruction algorithm has been computed independently for the two frequency bands 579 

involved in the study (0.1 – 1 Hz and 2 – 8 Hz (Fig. 1C). Specifically, the following steps were 580 

implemented. First, the continuous data (before the epoching) was band-pass filtered into the 581 

two frequency bands. Second, the filtered data (independently for the two bands) was epoched. 582 

Third, the epoched data was submitted to the source reconstruction algorithm described below. 583 

Such algorithm involves two subsequent steps: (i) designing a forward model; (ii) computing 584 

the inverse solution. The forward model is a theoretical model which considers each brain 585 

source as an active dipole and describes how the unitary strength of such dipole would be 586 

reflected over all MEG sensors (in our case we utilized both magnetometers and planar 587 

gradiometers) 62. Here, we employed an 8-mm grid which returned 3559 dipole locations 588 

(voxels) within the whole brain. After co-registering individual structural T1 data with fiducials 589 

(information about head landmarks), the forward model was computed by adopting a widely 590 

used method called “Single Shell”, presented in details by 63. The output of such computation, 591 

also referred to as leadfield model, was stored in matrix L (sources x MEG channels). In the 592 

few cases where structural T1 was not available, we performed the leadfield computation using 593 

a template (MNI152-T1 with 8-mm spatial resolution). 594 

The second step of the source reconstruction is to compute the inverse solution (i.e. to estimate 595 

the generators of the neural signal on the basis of the brain activity recorded with MEG). In 596 

our study, we chose the beamforming, which is one of the most popular and effective 597 

algorithms available in the field 61,62. This procedure uses a different set of weights sequentially 598 

applied to the source locations for isolating the contribution of each source to the activity 599 

recorded by the MEG channels for each time-point 61,64. On a more technical level, the inverse 600 

solution based on beamforming can be described by the following main steps. 601 

First, the data recorded by MEG sensors (B) at time t, can be described by the following 602 

equation (1): 603 
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 604 

 𝐵(/) = 𝐿 ∗ 𝑄(0#,/) + Ɛ (1) 

 605 

Where L is the above-described leadfield model, Q is the dipole matrix carrying the activity of 606 

each active dipole (q) over time and Ɛ is noise (see Huang and colleagues 65 for more details). 607 

Thus, to solve the inverse problem, we have to compute Q. Using the beamforming, such 608 

procedure revolves around the computation of weights that are applied to the MEG sensors at 609 

each time-point, as shown for the single dipole q in equation (2): 610 

 611 

 𝑞(/) = 𝑊2 ∗ 𝐵(/) (2) 

 612 

Indeed, to gain q, the weights W should be computed (the subscript T refers to transpose 613 

matrix). To do so, the beamforming relies on the matrix multiplication between L and the 614 

covariance matrix between MEG sensors (C), computed on the concatenated experimental 615 

trials. Specifically, for each brain source n, the weights Wn are computed as follows: 616 

 617 

 𝑊(0) =	 (𝐿(0)2 ∗ 	𝐶#. ∗ 𝐿(0))#. ∗ 	𝐿(0)2 ∗ 	𝐶#. (3) 

 618 

To be noted, the computation of the leadfield model was done for the three main orientations 619 

of each brain source (dipole), according to Nolte 63. However, before computing the weights, 620 

the orientations have been reduced to one by using the singular value decomposition algorithm 621 

on the matrix multiplication reported in equation (4). This procedure is widely adopted to 622 

simplify the beamforming output 65,66. 623 

 624 

 𝐿 = 	𝑠𝑣𝑑(𝑙2 ∗ 	𝐶#. ∗ 𝑙)#. (4) 

 625 

Here, l represents the leadfield model with the three orientations, while L the resolved one-626 

orientation model that was used in (3). 627 

Finally, with regards to the coding implementation of such algorithms, we have used Matlab 628 

toolboxes such as OSL, FieldTrip, SPM (functions for MEEG preprocessing and SPM 629 

beamforming toolbox) and FSL. Moreover, those codes were complemented by in-house-built 630 

scripts and functions. 631 
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Importantly, as already highlighted above, the analyses reported in the following paragraphs 632 

have been computed independently for the two frequency bands considered in the study. 633 

 634 

Brain activity for each element of the temporal sequence 635 

First, we wanted to detect the brain activity underlying each object of our temporal patterns 636 

(Fig. 1D, Fig. S2, Table 1 and Table S1). Here, we computed the absolute value of the 637 

reconstructed time-series since we were interested in the absolute strength of the signal, and 638 

we wanted to avoid the sign ambiguity introduced by source reconstruction procedures. 639 

To perform first-level analysis for each participant, we employed general linear models 640 

(GLMs). Such models were computed on the source reconstructed data for each time-point and 641 

brain source 31. The GLMs returned the main effect (contrasts of parameters estimate (COPEs)) 642 

of M and N as well as their contrast. These results were submitted to a second-level analysis, 643 

employing one-sample t-tests with spatially smoothed variance obtained with a Gaussian 644 

kernel (full-width at half-maximum: 50 mm) 65. 645 

Here, we were interested in observing the different brain activity underlying recognition of M 646 

vs N temporal sequence, independently for each frequency band and object forming the 647 

sequence (musical tone). Thus, we computed 10 (five tones x two frequency bands) cluster-648 

based Monte-Carlo simulations (MCS) on the second level (group-level) analysis results 649 

averaged over the five time-windows corresponding to the duration of the musical tones. The 650 

MCS analysis comprises 1000 permutations and a cluster forming threshold of p < .05 (from 651 

the second-level t-tests). Specifically, the MCS test consisted of detecting the spatial clusters 652 

of significant values in the original data. Then, such data was permuted and the spatial clusters 653 

of the permuted significant values were detected. This procedure was computed several times 654 

(e.g. 1000) and gave rise to a reference distribution of cluster sizes detected for each 655 

permutation. Finally, the original cluster sizes were compared to the reference distribution. The 656 

original clusters were considered significant if the cluster sizes of the permuted data were 657 

bigger than the original cluster sizes less times than the MCS α level. In this case, since we 658 

computed the analysis 10 times, we corrected for multiple comparisons by dividing the 659 

standard MCS α level (= .05) by 10, resulting in an updated MCS α = .005 (i.e. original clusters 660 

were significant if their sizes were larger than the 99.5% of the permuted cluster sizes). 661 

 662 

 663 

 664 

 665 
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K-means functional clustering 666 

Contrasting the brain activity in response to each element (musical tone) forming the temporal 667 

sequence is an effective procedure to obtain a general understanding of the brain functioning 668 

underlying the discrete processing of the sequence. 669 

However, this strategy does not fully benefit of the excellent temporal resolution of the MEG 670 

data and underestimate brain processes that may happen in between two or more objects of the 671 

sequence. Furthermore, computing contrasts for each time-point and brain source returns a 672 

large amount of data which is partially redundant and sometimes not straightforward to 673 

understand and ideal to mathematically model. Indeed, several brain sources are highly 674 

correlated because of both biological reasons involving large populations of neurons generating 675 

the signal and artificial source leakage introduced during the source reconstruction 32. Thus, 676 

defining a functionally based parcellation of the brain may be of great importance when aiming 677 

to synthesize and mathematically describe the spatial extent of the active brain sources as well 678 

as their activity over time. 679 

To overcome these issues, we adopted a so-called k-means functional clustering, consisting of 680 

a series of k-means clustering algorithms 67 performed on functional and spatial information of 681 

each of the reconstructed brain sources (voxels) timeseries. 682 

Specifically, as a first step this algorithm computed a clustering on basic functional parameters 683 

such as peak values and the corresponding indices of the voxels timeseries. We refer to this 684 

step as functional clustering. This procedure returned a set of independent parcels grouped 685 

according to the functional profiles of the brain voxels. Indeed, such parcels could either 686 

contain voxels that peaked approximately at the same time (Fig. 2B, left) or with similar 687 

absolute strength (Fig. 2B, right). As conceivable, clustering on the maximum timeseries 688 

indices is suggested when the brain activity is localized in different regions at different times. 689 

Conversely, when the activity is highly correlated over most of the brain voxels, clustering 690 

should be done on maximum timeseries values and would help to identify the core generators 691 

of the neural signal. In this study, delta (global processing of the pattern) presented different 692 

peaks of activity shifted over time and thus was clustered considering the time-indices of such 693 

peaks. Differently, theta (local processing of the pattern) showed very correlated activity and 694 

was therefore clustered using the absolute values of such peak activity. As widely done in 695 

clustering analysis 68, also in our case it was beneficial to compute the clustering algorithm on 696 

a sequential set of k clusters (from k = 2 to k = 20). Then, the best clustering solution was 697 

decided on the basis of well-known evaluation strategies (heuristics) such as the elbow 698 

method/rule 69  and the silhouette coefficient 70. The elbow method consists in plotting the sum 699 
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of squared errors (SSE) of the elements belonging to the clusters with respect to the cluster’s 700 

centroids, as a function of the progressively more numerous cluster solutions. Then, the method 701 

suggests to visually identify the “elbow” of the curve as the number of clusters to use. The 702 

silhouette coefficient is a value (ranging from -1 to +1) showing the similarity of an element 703 

with its own cluster (cohesion) when compared to other clusters (separation). A high silhouette 704 

coefficient value indicates that the element is well matched to its own cluster and poorly to the 705 

neighboring clusters. As conceivable, if most of the elements present a high value, the 706 

clustering configuration is appropriate. We reported a further graphical example of this method 707 

in Fig. S3. 708 

Once the best functional clustering solution is decided, a second clustering with regards to 709 

spatial information should be computed (spatial clustering, Fig. 2C). Indeed, brain activity is 710 

mainly described by two parameters, spatial locations, and variation over time. Clustering the 711 

original brain voxels into distinct functional parcels may return large parcels involving a 712 

network of spatially separated brain areas that are e.g. active at the same time. Thus, to define 713 

a better parcellation, it is beneficial to conduct clustering analysis also on the spatial 714 

coordinates of each of the functional parcels. In our study, we considered the three-dimensional 715 

spatial coordinates (in MNI space) of the voxels forming each of the functional parcels. This 716 

clustering computation was performed for a sequential set of k clusters solutions (from k = 2 717 

to k = 10), for one parcel at a time. As for the functional clustering, we evaluated the best 718 

solution for the spatial clustering by using the elbow rule and the silhouette coefficient. The k-719 

means functional clustering was complete once this procedure was performed on all functional 720 

parcels, suggesting an effective parcellation for the experimental task based on both functional 721 

and spatial information (examples are reported in Fig. S4, Table S2 and S3 for 0.1-1 Hz and 722 

Fig. S5, Table S4, S5 and S6 for 2-8 Hz). As a last step, the timeseries of the brain voxels 723 

belonging to each parcel were averaged together to provide a final timeseries for the parcel. 724 

As follows, we provide a few conceptual remarks related to this algorithm and to the current 725 

study that should be highlighted. 726 

First, the k-means functional clustering has to be computed on source reconstructed brain data. 727 

However, such data can be either the timeseries outputted by the source reconstruction or the 728 

timeseries of the statistics computed on the source reconstruction. Moreover, the algorithm can 729 

be computed independently for each participant or on the group level statistics. Further, the 730 

brain data in input can either be the broadband data or the data reconstructed in selected 731 

frequency bands. Moreover, in the likely case of having more than one experimental condition, 732 

as conceivable, the algorithm can be computed on each condition independently or on the 733 
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aggregated (e.g. averaged) conditions. The best procedure cannot be defined a priori for every 734 

study and highly depends on the specific aims of the project. In our case, since the main aim 735 

of the algorithm was to define functional parcellations with timeseries that best represented the 736 

brain functioning among the whole population, we decided to work on the group level statistics. 737 

With regards to experimental conditions, we have computed different runs of the k-means 738 

functional clustering. Indeed, to statistically compare the timeseries of each parcel for the two 739 

experimental conditions of our task, we performed the clustering algorithm on the main effects 740 

of the two conditions averaged together. Instead, when aiming to mathematically describe the 741 

timeseries of each parcel for a specific experimental condition (e.g. M), the clustering 742 

algorithm has been computed on such condition only. Further, in relation to the frequency 743 

bands, we performed one computation of the clustering algorithm for each of the two frequency 744 

bands involved in our study. In the case of 0.1-1 Hz, we worked with absolute values of the 745 

reconstructed brain sources timeseries since they did not present any complete cycle of the 746 

oscillation, considering their absolute strength as sufficient. Conversely, when dealing with 2-747 

8 Hz, the timeseries presented several complete oscillations and thus computing their absolute 748 

values would lead to lose important information. We resolved the sign ambiguity introduced 749 

by the source reconstruction by referencing the sign of the timeseries to the well-known 750 

negative polarity of the N100 emerged in response to the first tone of the pattern. Then, we 751 

computed the statistics and the subsequent k-means functional clustering on the timeseries 752 

which maintained their original double polarity.  753 

Second, when dealing with real data, an “ideal” clustering solution may often not be existent, 754 

and the elbow method and silhouette coefficients may return slightly contradictory results and 755 

controversial conclusions. This is a quite usual limitation of clustering algorithms that, 756 

however, should not be necessarily interpreted as a threatening issue. Indeed, for instance, if 757 

the elbow method and silhouette coefficients indicate as the best solutions a series e.g. three 758 

subsequent ks but without clearly stating one single k, it is reasonable to expect very similar 759 

results among the three different k solutions. Thus, although this would suggest that an ideal k 760 

is probably not existent, it should be noted that any different choice of the suggested ks should 761 

not lead to a huge affection or misinterpretation of the final results. On the contrary, stating 762 

that an “ideal” solution may often not exist does not mean that clustering algorithms will 763 

invariably return a valid output. Indeed, such techniques are designed to always provide results, 764 

even in the cases where there are no reasons for clustering the data. With regards to the brain, 765 

extremely poor clustering solutions would be achieved when brain sources are all very similar 766 

in terms of functional and spatial profile. This should not happen if the data is acquired with 767 
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properly designed experimental tasks, but it should always be born in mind as a realistic 768 

possibility. Importantly, in such a case, the elbow method and silhouette coefficients would not 769 

return any clear indication regarding the ideal number k of clusters and the clustering algorithm 770 

would therefore be highly not recommended. 771 

Third, it is important to state that the clustering procedure that we described here has been 772 

developed for task-related MEG data and would not properly work for resting state scenarios 773 

where other algorithms such as principal component analysis (PCA) 71 may be more 774 

appropriate. 775 

Fourth, to increase the strength of the clustering algorithm, it may be beneficial to zero the 776 

activity of few poorly active brain sources timeseries before computing the functional k-means 777 

clustering. This action would help the clustering procedure and may provide some beneficial 778 

effects for the definition of the functional parcellation. 779 

 780 

Contrasts over time for each parcel 781 

Here, the k-means functional clustering was performed on the group-level main effects of M 782 

and N averaged together. Then, to obtain the main effect of M and N for each parcel and 783 

participant, we averaged the first-level main effect of M and N (from the GLMs) over the brain 784 

voxels belonging to each of the functional parcels. This resulted in a new timeseries for each 785 

participant, functional parcel, and experimental condition (M and N). Such timeseries were 786 

submitted to univariate contrasts (M vs N; Fig. 2D1, methods, and Fig. 2E, S6 and S7, results). 787 

Specifically, for each parcel and time-point, we computed one two-sample t-test (threshold p 788 

< .05) contrasting the main effect of M vs N. Then, we corrected for multiple comparison by 789 

using a two-dimensional MCS approach with 1000 permutations. First, temporal clusters of 790 

significant results emerged from the t-tests were individuated. Second, significant results were 791 

permuted along the time dimension and clusters of such permuted results were identified. This 792 

procedure was computed 1000 times, giving rise to a reference distribution of cluster sizes of 793 

permuted results. Such distribution has been compared with the clusters size of the original 794 

data. Significant clusters in the original data were the ones whose size was bigger than the 795 

99.9% of permuted cluster sizes (MCS p < .001). More details on this widely adopted statistical 796 

procedure can be found in Bonetti and colleagues 29,72. As done for the other analyses, such 797 

operation was observed for both frequency bands investigated in the study (Fig. 2 and Table 798 

S7). 799 

 800 

 801 
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Curve fitting 802 

Besides comparing our two experimental conditions, a main aim of our study was to 803 

mathematically describe the timeseries of the brain activity associated to recognition of 804 

temporal patterns (Fig. 2D2, methods, and Fig. 2F, S8 and S9, results). Indeed, we believe that 805 

to properly understand a scientific phenomenon, a mathematical description of such 806 

phenomenon should be provided, as commonly done in many branches of science. In addition, 807 

this procedure is a first essential step to develop future generative models that will not only 808 

describe the brain activity but simulate and perturbate its nature. 809 

Thus, we computed another round of k-means functional clustering. This time, such analysis 810 

was performed only on the group-level main effect of M, to outline a functional parcellation 811 

based on the sole recognition of previously memorized patterns. Once again, this procedure 812 

was computed independently for the two frequency bands considered in the study. 813 

Then, to describe the dual simultaneous brain processing happening during recognition of 814 

temporal patterns, we hypothesized two different mathematical equations (one for each 815 

frequency band). 816 

Regarding the slower frequency band included in our study (0.1-1Hz), we used a simple 817 

Gaussian function, described as follows: 818 

 819 

 𝑓(𝑥) = 𝑎𝑒
("#"!)"
%&"  (5) 

 820 

where a modulates the amplitude of the curve, x0 shifts it over time and σ determines its width. 821 

In a few cases, we employed a modified version of the equation (5), which is basically a 822 

summation of three Gaussian functions shifted over time, as described as follows: 823 

 824 

 𝑓(𝑥) =(𝑎'𝑒
("#"!#)"
%&#"

3

'-.

 (6) 

 825 

 826 

Arguably, this frequency indexed the recognition process of the full temporal pattern (global 827 

processing), as suggested by the brain areas involved and by the timing of their activations. 828 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465263
http://creativecommons.org/licenses/by-nd/4.0/


 32 

Conversely, with regards to the second frequency described in our study (2-8Hz) which 829 

supposedly reflected the brain processing of each object of the temporal sequence (local 830 

processing), we hypothesized the following equation: 831 

 832 

 833 

 𝑓(𝑥) =(𝑎'𝑒
(()*	(")#"!#)"

%&#" ∗ cos	(𝑐𝑥 + 𝜑)	
,

'-.

 (7) 

 834 

where a, x0, σ describes a Gaussian function, exactly as reported for equation (5) and equation 835 

(6). However, in this case, the Gaussian function can be ‘skewed’ by log(x) and is multiplied 836 

by a cosine function. This new equation gives rise to a sinusoidal curve that highly modulates 837 

its amplitude based on the associated Gaussian function. As usual, the parameter c refers to the 838 

angular frequency, while φ indicates the phase. Finally, N refers to the total number of objects 839 

(musical tone) forming the temporal pattern. 840 

In all cases, the best parameters were fitted using the Python function curve_fit, which employs 841 

the widely adopted non-linear least squares method 73. Table 2 and S8 reports the results of 842 

such analysis. In the few cases where no values are reported, the fitting of the equations were 843 

not possible since the timeseries referred to brain areas that were essentially not activate during 844 

our experimental tasks. 845 

  846 
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Data availability 847 
 848 

The codes are available at the following link: https://github.com/leonardob92/LBPD-1.0.git, 849 

while the multimodal neuroimaging data related to the experiment are available upon 850 

reasonable request. 851 

 852 

  853 
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SUPPLEMENTARY MATERIALS 1069 

 1070 

As follows, supplementary materials related to this study and organized as supplementary 1071 

figures (i) and tables (ii). In the cases when the supplementary tables were too large to be 1072 

conveniently reported in the current document, they have been reported in Excel files that can 1073 

be found at the following link: 1074 

https://www.dropbox.com/sh/sax1yzjqn897hxm/AAC8hWFE8IcyJgRCrJ2gu-bNa?dl=0) 1075 
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 1077 
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 1079 
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SUPPLEMENTARY FIGURES 1083 

 1084 

 1085 

Fig. S1. MEG sensors waveform and power spectra 1086 

The left plot shows the significantly different brain activity during recognition of ‘memorized’ vs ‘novel’ temporal 1087 
sequences. The waveforms represent the average over the combined planar gradiometers forming the significant 1088 
cluster emerged from the analysis, while the grey area illustrates the temporal extent of such significant difference. 1089 
The complementary two plots show the power spectra computed by using complex Morlet wavelet transform on 1090 
all MEG channels. The two plots illustrate the power spectra computed for progressively narrower bands. 1091 
Together with the waveforms, these plots highlight the main contribution of the two frequency bands analyzed in 1092 
the study: 0.1-1 Hz and 2-8 Hz (roughly corresponding to the well-known brain waves named delta and theta, 1093 
respectively). 1094 
  1095 
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 1096 

 1097 

Fig. S2. Brain activity underlying the single objects of the temporal patterns 1098 

Significant clusters of brain activity reconstructed in the time-windows corresponding to the five objects of the 1099 
temporal patterns (as illustrated in the first row by the red tones). The brain activity shows the main effects for 1100 
our experimental conditions (‘memorized’ and ‘novel’) and frequency bands (0.1-1Hz and 2-8Hz). The colorbars 1101 
indicate one-sample t-values computed for each spatial location and time-point and then corrected with cluster-1102 
based permutation tests. 1103 
 1104 
  1105 
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 1106 

 1107 

Fig. S3. Description of the k-means functional clustering (A) The brain activity is recorded during the 1108 
recognition of temporal patterns. Such activity, reconstructed in 3559 brain sources, is the input for the k-means 1109 
functional clustering to define a discrete functionally based parcellation. (B) A functional k-means clustering is 1110 
performed. Such procedure consists of computing a series of k k-means clustering solutions (e.g. from k = 2 to k 1111 
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= 20) on the functional profile of the brain sources timeseries. In our study, we proposed two simple functional 1112 
features: the time-index of the peak activity or the actual peak activity value of each brain source timeseries. The 1113 
example reported in the figure shows clustering on time-indices of peak activity. The first plot shows the heuristic 1114 
named elbow rule which helps to define the best k solution by plotting the sequential sum of squared errors (SSE) 1115 
of the different cluster solutions (with k = 2:20). Here, it is visible how the SSE reduces its change rate around k 1116 
= 6 (as indicated by the circle). Notably, when computing k-means clustering on randomized data, the SSE is 1117 
higher for randomized vs real data, especially around k = 6, suggesting that the real data should be indeed clustered 1118 
in six different clusters. As an alternative, the subsequent plot shows the Silhouette value for each k, representing 1119 
how well each element (brain source time-index) is representative of the cluster to which it belongs. Ideally, those 1120 
two heuristics should be considered together to define the best k. The plot on the right shows the brain source 1121 
peak value indices in a violin-scatter fashion, while the plot below provides the same information with time on 1122 
the x-axis and different colors for the six identified clusters to increase readability. (C) Brain representation of 1123 
functional k-means clustering results (functional brain parcels). (D) A spatial k-means clustering is performed on 1124 
each of the functional brain parcels to define a final parcellation considering both brain functional and spatial 1125 
information. This procedure uses k-means clustering on the spatial coordinates of each of the brain sources 1126 
belonging to each functional parcel (as shown especially by the plot of the elbow rule for all the six functional 1127 
parcels). Then, to provide a specific example, the figure focuses on the third functional parcel (indicated by the 1128 
red brace), whose plots for Silhouette heuristics are reported. (E) Graphical depiction of spatial parcels 1129 
computation (bottom plot) for the third functional parcel (top plot). (F) Example of few final ‘k-means functional’ 1130 
parcels and corresponding timeseries, obtained by averaging the timeseries of each brain source belonging to the 1131 
parcel. 1132 

 1133 
 1134 
  1135 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465263
http://creativecommons.org/licenses/by-nd/4.0/


 47 

 1136 

 1137 

Fig. S4. Functional parcellation for 0.1-1 Hz frequency band 1138 

Full parcellation returned by the k-means functional clustering computed on the indices of the brain activity peaks 1139 
of all 3559 brain reconstructed sources. This parcellation was computed for the brain activity underlying 1140 
recognition of memorized temporal patterns. The red brackets show the parcels that are reported in Fig. 2. 1141 
 1142 
 1143 
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 1145 

 1146 

Fig. S5. Functional parcellation for 2-8 Hz frequency band 1147 

Full parcellation returned by the k-means functional clustering computed on the brain activity peak values of the 1148 
timeseries of all 3559 brain reconstructed sources. This parcellation was computed for the brain activity 1149 
underlying recognition of memorized temporal patterns. The red brackets show the parcels that are reported in 1150 
Fig. 2. 1151 
  1152 
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 1153 

Fig. S6. Full-parcellation contrasts between ‘memorized’ vs ‘novel’ temporal patterns in 0.1-1 Hz 1154 
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Full parcellation and corresponding timeseries returned by the k-means functional clustering computed on the 1155 
indices of the brain activity peaks of all 3559 brain reconstructed sources. In this case, the parcellation was 1156 
computed for the averaged brain activity underlying recognition of ‘memorized’ and ‘novel’ temporal patterns. 1157 
The brain parcels are numbered progressively with decreasing size (i.e. number of brain sources belonging to each 1158 
parcel). The graphical depiction of musical tones indicates the onset of the objects forming the temporal pattern, 1159 
while the ‘+’ shows the man reaction time of participants’ response. Grey areas illustrate the significantly different 1160 
time-windows between M and N. In the waveform plots, the solid line corresponds to the mean brain activity, 1161 
while the dash line to the correspondent standard errors. The red brackets show the parcels that are reported in 1162 
Fig. 2. 1163 
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 1165 

Fig. S7. Full-parcellation contrasts between ‘novel’ vs ‘memorized’ temporal patterns in 2-8 Hz 1166 

Full parcellation and corresponding timeseries returned by the k-means functional clustering computed on the 1167 
brain activity peak values of the timeseries of all 3559 brain reconstructed sources. In this case, the parcellation 1168 
was computed for the averaged brain activity underlying recognition of ‘memorized’ and ‘novel’ temporal 1169 
patterns. The brain parcels are numbered progressively with decreasing size (i.e. number of brain sources 1170 
belonging to each parcel). The graphical depiction of musical tones indicates the onset of the objects forming the 1171 
temporal pattern, while the ‘+’ shows the man reaction time of participants’ response. Grey areas illustrate the 1172 
significantly different time-windows between N and M. In the waveform plots, the solid line corresponds to the 1173 
mean brain activity, while the dash line to the correspondent standard errors. The red brackets show the parcels 1174 
that are reported in Fig. 2. 1175 
 1176 
 1177 
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 1178 

Fig. S8. Full-parcellation fitting for ‘memorized’ temporal patterns in 0.1-1 Hz 1179 

All parcels whose timeseries were describable by a Gaussian function are reported in this figure. In a few cases, 1180 
it was not possible to fit the equations since the timeseries showed a very small and scattered activity over time. 1181 
This happened when those brain areas were not involved in the experimental task. For instance, this was the case 1182 
of a large occipital parcel that, as conceivable, did not play any role in recognition of auditory sequences. The 1183 
depicted parcels and corresponding timeseries were returned by the k-means functional clustering computed on 1184 
the indices of the brain activity peaks of all 3559 brain reconstructed sources. This parcellation was computed for 1185 
the brain activity underlying recognition of memorized temporal patterns (see Methods for details). The brain 1186 
parcels are numbered progressively with decreasing size (i.e. number of brain sources belonging to each parcel). 1187 
The graphical depiction of musical tones indicates the onset of the objects forming the temporal pattern, while the 1188 
‘+’ shows the man reaction time of participants’ response. In the waveform plots, the solid line corresponds to the 1189 
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actual brain activity, while the dash line to the predicted timeseries obtained by using non-linear least square 1190 
fitting. The red brackets show the parcels that are reported in Fig. 2. 1191 
 1192 
 1193 
  1194 
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 1195 

Fig. S9. Full-parcellation fitting for ‘memorized’ and ‘novel’ temporal patterns in 2-8 Hz 1196 

All parcels whose timeseries were describable by a skewed Gaussian function multiplied by a sinusoidal function 1197 
are reported in this figure. Only in one case which regarded a large occipital parcel, it was not possible to fit the 1198 
equation since the timeseries showed a very small and scattered activity over time. This happened since, as 1199 
conceivable, the occipital cortex did not play any role in the processing and recognition of auditory sequences. 1200 
The depicted parcels and corresponding timeseries were returned by the k-means functional clustering computed 1201 
on the brain activity peak values of the timeseries of all 3559 brain reconstructed sources. The two parcellations 1202 
reported in the figure were computed for the brain activity underlying the recognition of either the ‘memorized’ 1203 
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(left column) or the ‘novel’ temporal patterns (right column) (see Methods for details). The brain parcels are 1204 
numbered progressively with decreasing size (i.e. number of brain sources belonging to each parcel). The 1205 
graphical depiction of musical tones indicates the onset of the objects forming the temporal pattern, while the ‘+’ 1206 
shows the man reaction time of participants’ response. In the waveform plots, the solid line corresponds to the 1207 
actual brain activity, while the dash line to the predicted timeseries obtained by using non-linear least square 1208 
fitting. The red brackets show the parcels that are reported in Fig. 2. 1209 
  1210 
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SUPPLEMENTARY TABLES 1211 

 1212 

 1213 

Table S1. Brain activity underlying recognition of temporal patterns (single-object) 1214 

Extensive brain sources activity underlying recognition of each object (musical tone) of the temporal patterns. 1215 
Results are reported for recognition of ‘memorized’ (M) and ‘novel’ (N) sequences independently as well as for 1216 
their contrasts. Brain areas refer to the automatic anatomic labelling (AAL) parcellation labels, while t indicates 1217 
the t-value obtained by contrasting M vs N temporal sequences. 1218 
 1219 

Table S2. Functionally-based parcellation for recognition of ‘memorized’ patterns – 0.1-1 Hz 1220 

Description of the brain sources belonging to each of the parcels returned by the k-means functional clustering. 1221 
For each source, the table reports a descriptive label (referring to automatic anatomic labelling (AAL) 1222 
parcellation), hemisphere, MNI coordinates, and maximum t-value registered in the source timeseries. 1223 
 1224 

Table S3. Functionally-based parcellation for recognition of ‘memorized’ and ‘novel’ patterns – 0.1-1 Hz 1225 

Description of the brain sources belonging to each of the parcels returned by the k-means functional clustering. 1226 
In this case, the clustering algorithm has been performed on the brain activity averaged over experimental 1227 
conditions (‘memorized’ and ‘novel’). For each source, the table reports a descriptive label (referring to automatic 1228 
anatomic labelling (AAL) parcellation), hemisphere, MNI coordinates, and maximum t-value registered in the 1229 
source timeseries. 1230 
 1231 

Table S4. Functionally-based parcellation for recognition of ‘memorized’ patterns – 2-8 Hz 1232 

Description of the brain sources belonging to each of the parcels returned by the k-means functional clustering 1233 
performed for ‘memorized’ patterns. For each source, the table reports a descriptive label (referring to automatic 1234 
anatomic labelling (AAL) parcellation), hemisphere, MNI coordinates, and maximum t-value registered in the 1235 
source timeseries. 1236 
 1237 

Table S5. Functionally-based parcellation for recognition of ‘novel’ patterns – 2-8 Hz 1238 

Description of the brain sources belonging to each of the parcels returned by the k-means functional clustering 1239 
performed for ‘novel’ patterns. For each source, the table reports a descriptive label (referring to automatic 1240 
anatomic labelling (AAL) parcellation), hemisphere, MNI coordinates, and maximum t-value registered in the 1241 
source timeseries. 1242 
 1243 
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Table S6. Functionally-based parcellation for recognition of ‘memorized’ and ‘novel’ patterns – 2-8 Hz 1244 

Description of the brain sources belonging to each of the parcels returned by the k-means functional clustering. 1245 
In this case, the clustering algorithm has been performed on the brain activity averaged over experimental 1246 
conditions (‘memorized’ and ‘novel’). For each source, the table reports a descriptive label (referring to automatic 1247 
anatomic labelling (AAL) parcellation), hemisphere, MNI coordinates, and maximum t-value registered in the 1248 
source timeseries. 1249 
 1250 

Table S7. Brain activity underlying recognition of temporal patterns (k-means functional clustering) 1251 

Contrasts between brain activity underlying recognition of ‘memorized’ vs ‘novel’ temporal patterns. Here, the 1252 
contrasts have been performed on the timeseries of the parcels returned by the k-means functional clustering 1253 
computed on the brain activity averaged over experimental conditions. The table provides results for both 1254 
frequencies (0.1-1. Hz and 2-8 Hz). Further, for each parcel, it reports size (k), p-value corrected by Monte-Carlo 1255 
simulations, temporal extent, and averaged t-value of the significant clusters. 1256 

 1257 

Table S8. Fitted coefficients over all parcels’ timeseries (non-linear least square) 1258 

R2 and coefficients derived from non-linear least square fitting of the equations (5), (6) and (7) reported in the 1259 
Methods section on the brain activity underlying temporal pattern recognition. In a few cases, it was not possible 1260 
to fit the equation since the timeseries showed a very small and scattered activity over time. This happened when 1261 
those brain areas were not involved in the experimental task. For instance, this was the case of a large occipital 1262 
parcel that, as conceivable, did not play any role in recognition of auditory sequences. The reported parcels were 1263 
returned by the k-means functional clustering computed either on the indices or on the actual brain activity 1264 
maximum values of all 3559 brain reconstructed sources. This parcellation was computed for the brain activity 1265 
underlying recognition of ‘memorized’ temporal patterns for 0.1-1 Hz and ‘novel’ temporal patterns for 2-8 Hz 1266 
only (see Methods for details). 1267 

 1268 

 1269 

 1270 

 1271 

 1272 

 1273 

 1274 

 1275 
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