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Abstract 21 

Gene expression analysis at the single-cell scale by next generation sequencing has 22 

revealed the existence of clonal dissemination in cancer metastasis. The current spatial 23 
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analysis technologies elucidate the heterogeneity of cell-cell interactions in situ; 24 

however, further analysis is needed to elucidate the nature of tumor heterogeneity. To 25 

reveal the expressional heterogeneity and cell-cell interactions in primary tumors and 26 

metastases, we performed transcriptomic analysis of microtissues dissected from a 27 

triple-negative breast cancer (TNBC) cell line MDA-MB-231 xenograft model by our 28 

automated tissue microdissection punching technology. This multiple-microtissue 29 

transcriptome analysis revealed that there were existed three cell-type clusters in the 30 

primary tumor and axillary lymph node metastasis, two of which were cancer stem 31 

cell-like clusters (CD44/MYC-high, HMGA1-high). The CD44/MYC-high cluster showed 32 

aggressive proliferation with MYC expression. The HMGA1-high cluster exhibited 33 

HIF1A activation and upregulation of ribosomal processes. Furthermore, we developed 34 

a cell-cell Interaction (CCI) analysis to investigate the ligand-receptor interactions 35 

(cancer cell to stroma and stroma to cancer cell) in each spot. The CCI analysis 36 

revealed the interaction dynamics generated by the combination of cancer cells and 37 

stromal cells in primary tumors and metastases. Two cancer stem cell-like populations 38 

were also detected by the scRNA-seq analysis of TNBC patients. In addition, the gene 39 

signature of the HMGA1-high cancer stem cell-like cluster has the potential to serve as 40 

a novel biomarker for diagnosis. The mixture of these multiple cancer stem cell-like 41 

populations may cause differential anticancer drug resistance, increasing the difficulty 42 

of curing this cancer.  43 
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Introduction 44 

Breast cancer cells metastasize to multiple distant organs, such as the axillary lymph 45 

nodes, lungs, bone, liver, and brain (Nakayama et al, 2021; Obenauf & Massague, 46 

2015). In particular, metastasis to axillary lymph nodes is an indicator of cancer grade in 47 

breast cancer patients (Giuliano et al, 2011). Most breast cancer tissues, including 48 

distant metastases, exhibit genetic heterogeneity (McGranahan & Swanton, 2017). 49 

Single-cell analyses have revealed that cancer cells evolve through the acquisition of 50 

genomic mutations in the primary tumor and metastases (Echeverria et al, 2018; Yates 51 

et al, 2017). Most previous analyses have been performed using isolated cancer cells 52 

and stromal cells from cancer tissues. Thus, the cell-cell interactions between cancer 53 

cells and stromal cells remains to be analyzed. In recent studies, the current single-cell 54 

analysis and spatial transcriptome technologies reveal the heterogeneity of cell-cell 55 

interactions between cancer cells and stromal cells in situ (Andersson et al, 2021; Wu et 56 

al, 2021); however, further analysis is needed to elucidate the nature of tumor 57 

heterogeneity. 58 

 Comprehensive gene expression analysis of metastases harvested from 59 

approximately 500 specimens in a various cancer types and metastatic organs 60 

(MET500 cohort) have suggested that metastatic tissues could be divided into several 61 

categories (e.g. proliferative or EMT-like/inflammatory) (Robinson et al, 2017). In 62 

particular, some samples were found to show signatures of more than one category, 63 

suggesting that these samples had micro intraheterogeneity. To clarify such 64 

heterogeneity, microtissue sectioning using the laser capture microdissection has often 65 
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been performed (Civita et al, 2019). This method has several disadvantages, however, 66 

including the laborious and time-consuming nature of sample handling and a high risk of 67 

RNA degradation. Thus, in previous work, we developed a system involving automated 68 

tissue microdissection punching followed by transcriptomic analysis of the tumor 69 

microtissue (Yoda et al, 2017). To analyze the expressional heterogeneity in 70 

microtissues from the primary tumor and axillary lymph node metastases, we performed 71 

analysis of the spatial microtissue transcriptome in the triple-negative breast cancer 72 

(TNBC) cell line MDA-MB-231 xenograft model. We focused on the expression profiles 73 

of known metastasis-promoting genes and cancer stem cell markers in dissected 74 

microtissues.  75 

 76 

 77 

Results  78 

Sampling microtissues from primary tumors and axillary lymph node metastases 79 

in MDA-MB-231 xenografts 80 

Primary tumors and axillary lymph node metastases were harvested from NOD-SCID 81 

mice with MDA-MB-231-parent-Venus cell line xenografts. We subjected the sliced 82 

tissues to microtissue dissection by an automated tissue microdissection punching 83 

system (Figure 1A). RNA was successfully recovered from the microtissues collected at 84 

93 spots in the primary lesion and 44 spots in axillary lymph node metastases using a 85 

microtissue automatic sampling device (Figure 1B). In samples of this size, although the 86 

number of cells present in the tumor tissue varies, it can be inferred that several to 87 
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approximately 10-30 cells are present in each spot (Yoda et al., 2017). RNA-seq 88 

analysis was performed on the total RNA extracted from each spot. We checked the 89 

quality of the fastq files by FASTQC. Total RNA samples contained RNA from human 90 

cancer cell lines and RNA from mouse stromal cells in the tumor microenvironment. 91 

Therefore, the obtained sequences were mapped to both the human reference genome 92 

and the mouse reference genome by HISAT2 (Kim et al, 2019). Protein-coding genes 93 

(human: 19961 genes, mouse: 22050 genes) were extracted as transcripts per million 94 

(TPM) for spatial transcriptome analysis with Seurat (Butler et al, 2018; Stuart et al, 95 

2019) (Figure 1C, Supplementary Figure S1A, S1B and S1C). 96 

 97 

Analysis of microtissue transcriptomes 98 

The clustering analysis and UMAP plots showed 3 clusters of cancer cells (transcripts 99 

mapped to the human reference genome) and 4 clusters of stromal cells (transcripts 100 

mapped to the mouse reference genome) in the microspots dissected from primary 101 

tumors and axillary lymph node metastases (Figure 2A and B). Next, we evaluated the 102 

expression of cancer stem cell markers to focus on cell–cell interactions in the 103 

metastatic stem cell niche (Oskarsson et al, 2014). We found that human cancer 104 

clusters showed specific gene expression patterns for high mobility group AT-Hook1 105 

(HMGA1), CD44, and MYC (Figure 2C). Consequently, these human clusters were 106 

named HMGA1-high, CD44/MYC-high, and Marker-low. Mouse stromal clusters 107 

showed specific gene expression patterns for transthyretin (Ttr), Cd3d (T-cell marker), 108 

membrane spanning 4-domains a1 (Ms4a1, B-cell marker), and inhibin subunit beta A 109 
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(Inhba; a subunit of both activin and inhibin) (Figure 2D). Ttr and Inhba were highly 110 

expressed in their respective specific clusters (Supplementary Table S2). Therefore, 111 

these mouse clusters were named Ttr-high, Tcell-like, Inhba-high, and Bcell-like. CD44 112 

was broadly expressed in all human clusters; however, HMGA1 was expressed in only 113 

HMGA1-high clusters (Figure 2E). CD44 and HMGA1 are well-known markers of cancer 114 

stem cells in breast cancer (Liu et al, 2010; Pegoraro et al, 2013). These results 115 

suggested that 2 types of cancer stem cell-like populations existed in MDA-MB-231 116 

xenograft models.  117 

 The heterogeneity of each cluster was demonstrated by calculation of network 118 

topology using the normalized closeness centrality (Watanabe et al, 2020). The 119 

centralities showed the correlation of gene expression in each cluster. These results 120 

showed that the cancer cells in the HMGA1 clusters had a the expanded diverse of 121 

expressional heterogeneity compared with CD44/MYC clusters (Supplementary Figure 122 

S1D and S1E). Interestingly, although 3 human clusters were present in both the 123 

primary tumors and the lymph node metastases (Figure 2F), mouse stromal clusters 124 

showed a site-specific pattern. Most of the Ttr-high clusters were observed in the 125 

primary tumors. On the other hand, most Tcell-like clusters and B-cell-like clusters were 126 

found in the lymph node metastases (Figure 2G). 127 

 Next, we performed spot analysis with the spatial information to determine the 128 

spatial heterogeneity in the xenografts (Figure 3A, 3B, and 3C). Human 129 

CD44/MYC-high cancer cells tend to localize the outside of the primary tumor. However, 130 

lymph node metastases did not show such a tendency (Figure 3A). Cell cycle analysis 131 
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of cancer cells showed that cell proliferation occurred outside of the primary tumor and 132 

at sparse sites among the lymph node metastases (Figure 3B). Approximately 50 % of 133 

the cells in CD44/MYC-high clusters and 30% of the cells in HMGA1-high clusters were 134 

actively undergoing cell division (Supplementary Figure S2A, 3D and Supplementary 135 

Table S3). These results suggested that the cells divided from two cancer stem cell-like 136 

clusters, leading to cancer expressional heterogeneity. Mouse stromal cell localization 137 

showed that most Tcell-like clusters were present throughout the entire lymph node 138 

metastases; on the other hand, Tcell-like clusters also exited the outside of the primary 139 

tumor. Most Ttr-high clusters were present at the sparse primary tumor (Figure 3C). The 140 

mouse Tcell-like clusters and Inhba-high clusters were recruited into the cell cycle 141 

(Supplementary Figure S2B, S2C, S2D and Supplementary Table S3). Next, a 142 

comparative analysis of the cell cycle in the primary tumor and lymph node metastasis 143 

showed that the two cancer stem cell-like clusters (HMGA1-high and CD44/MYC-high) 144 

increased the cell division index in lymph node metastases (Figure 3E). In contrast, 145 

Marker-low clusters did not change the cell cycle index in either location. This result 146 

suggested that the cancer stem-like cells in metastatic tissues proliferated aggressively. 147 

 148 

Enrichment analysis of microspots 149 

 The differentially expressed genes (DEGs) in human clusters and mouse 150 

clusters were extracted and visualized in heatmaps (Figure 4A, Supplementary Figure 151 

S51, S5B, Table S2 and S4). The human HMGA1-high cluster showed that high 152 

expression of TMSB10 (Zhang et al, 2017), CTSD (Ashraf et al, 2019) and LGALS1 153 
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(Balestrieri et al, 2021; Jung et al, 2007), which are correlated with poor prognosis in 154 

breast cancer. The human CD44/MYC-high cluster expressed SENPK, SENPN and 155 

PTK2 (focal adhesion kinase: FAK), which regulate the cell cycle and cell division. The 156 

human Marker-low clusters showed that low expression levels of these genes. The 157 

mouse Tcell-like clusters expressed cytokines and immune receptors. To determine the 158 

biological function of DEGs, we performed upstream analysis, GO enrichment analysis 159 

and pathway enrichment analysis using Metascape (Zhou et al, 2019). DEGs from each 160 

human cluster showed the upregulated DEGs in the HMGA1-high clusters and 161 

CD44/MYC-high clusters, and downregulated DEGs in the Marker-low clusters (Figure 162 

4A, Supplementary Table S2 and S4). Upstream analysis of DEGs showed that HIF1A 163 

downstream genes were upregulated in the HMGA1-high cluster, and MYC 164 

downstream genes were upregulated in the CD44/MYC-high cluster. In the Marker-low 165 

clusters, E2F1 downstream genes were downregulated (Figure 4B). We performed 166 

pathway and GO enrichment analyses focused on the two cancer stem cell-like clusters 167 

that had upregulated DEGs. Amide metabolites, VEGFA-VEGFR signaling, and 168 

apoptosis regulation were enriched in both clusters. On the other hand, the DEGs in 169 

CD44/MYC-high clusters were enriched in many terms related to the cell cycle and cell 170 

division, namely, cell division, cell cycle, and telomeres. In HMGA1-high clusters, 171 

ribosome assembly and ribosome biogenesis were significantly enriched (Figure 4C, 4D 172 

and Supplementary Figure S3). The results of enrichment analysis using DEGs in the 173 

Marker-low clusters showed that metabolism of RNA, translation, and mitochondrial 174 

organization were enriched (Supplementary Figure S4). 175 
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 In mouse clusters, enrichment analysis of the DEGs was performed by using 176 

Metascape. Enrichment analysis of the DEGs in the Ttr-high clusters showed no 177 

enriched terms. The Tcell-like clusters and Inhba-high clusters had two common 178 

enriched terms; glycolysis and neutrophil degradation (Supplementary Figure S5).  179 

 180 

Cell-cell interaction (CCI) analysis of microspots 181 

To estimate the CCI score, we utilized a cell-cell interaction database 182 

(https://baderlab.org/) and extracted a total of 115,900 interactions (3,209 ligands, 183 

4,364 receptors and 433 extracellular matrix) (Watanabe et al., 2020). Highly expressed 184 

genes (expression level > 2) were selected for CCI analysis, and ligand-receptor 185 

interactions (human to mouse and mouse to human) were estimated in each spot 186 

(Figure 5A). We extracted 2,432 interactions and 7 clusters of “mouse (stromal) to 187 

human (cancer)” CCI patterns (Figure 5B and Supplementary Table S7). In particular, 188 

Cluster 2 was constituted by only lymph node metastasis spots, while Cluster 6 was 189 

constituted by only primary tumor spots. We thus focused on these clusters: the CCI 190 

heatmap showed lymph node metastasis-specific CCI (Figure 5C and 5D) and primary 191 

tumor-specific CCI (Figure 5E and 5F). The “human (cancer) to mouse (stromal)” CCI 192 

pattern showed 741 interactions (Supplementary Figure S6, Supplementary Table S7 193 

and S8).  194 

 Next, we focused on cell type-specific CCI. Ten sets of cancer cell-stromal 195 

cell interactions were observed (Figure 6A and 6B). The PT-1, PT-2 and PT-3 groups 196 

existed in only the primary tumors; in contrast, the Mix-1~7 groups were present in both 197 
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the primary tumors and lymph node metastases (Figure 6C). As a result, 4,126 198 

interactions “cancer to stromal” (Supplementary Table S8) and 4,165 interactions of 199 

“mouse (stromal) to human (cancer)” (Supplementary Table S9) were estimated from 200 

the cell type-specific CCI analysis. The ligand-receptor interaction with the highest CCI 201 

score was shown for each group (Figure 6D-G). Among cancer cell-to-stromal 202 

interactions, annexin A2 (ANXA2) and heat shock protein 90 alpha (HSP90AA1) had 203 

high CCI scores in various groups. On the other hand, from stromal to cancer cell 204 

interactions, B2m interactions were estimated in various groups. Alb interaction was 205 

estimated in the Mix5 and Mix6 groups. The interactions of the Tcell-like cluster (Mix-1, 206 

Mix-3 and Mix-5) changed depending on the type of cancer cell (Figure 6E and 6G). 207 

Similarly, the Ttr-high (PT-1, PT-2 and Mix-4) cluster interactions also changed 208 

depending on the type of cancer cell. On the other hand, in view of the stromal to cancer 209 

interaction, the Mix5 and Mix6 clusters have specific interactions with proteins such as 210 

integrin B1 (ITGB1) and cystatin C3 (CST3) (Figure 6G). 211 

 212 

TNBC patients showed two cancer stem cell-like populations 213 

To confirm our findings in clinical samples, we reanalyzed the public single-cell 214 

RNA-seq (scRNA-seq) dataset (Karaayvaz et al, 2018) and the Molecular Taxonomy of 215 

Breast Cancer International Consortium (METABRIC) (Pereira et al, 2016). First, we 216 

analyzed the scRNA-seq dataset of 5 TNBC patients (Figure 7A). We extracted 546 217 

cancer cells from the dataset with UMAP visualization (Figure 7B). Module analysis was 218 

performed using the HMGA1 signatures and CD44/MYC signatures from DEG analysis 219 
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to detect the HMGA1-high cluster and CD44/MYC cluster in TNBC patients. TNBC 220 

patients had the two cancer stem cell-like populations and a double-positive population 221 

(Figure 7C, 7D, Supplementary Tables S10 and S11). Next, survival analysis was 222 

performed using the HMGA1 signatures and CD44/MYC signatures with METABRIC 223 

claudin-low subtype (TNBC) cohorts. High expression of HMGA1 signatures correlated 224 

with poor prognosis in the claudin-low subtype (Figure 7E). In contrast, CD44/MYC 225 

signatures did not correlate with prognosis in these cohorts (Supplementary Figure S7).  226 

 227 

 228 

Discussion 229 

 Spatial transcriptomics technologies (Rodriques et al, 2019; Yoda et al., 2017) 230 

have enabled us to reveal the in situ expressional profiles and microheterogeneity of 231 

cancer. In particular, in a xenograft model, both human-derived RNA and 232 

mouse-derived RNA can be analyzed both simultaneously and individually by mapping 233 

the sequence reads to a human genome reference or mouse genome reference 234 

(Bradford et al, 2013; Callari et al, 2018). In this study, by combining microtissue 235 

sampling and the isolation of human-mouse gene expression by mapping, we revealed 236 

the expressional heterogeneity of cancer cells and stromal cells, and the heterogeneity 237 

of cancer-stroma interactions in MDA-MB-231 primary tumors and the axillary lymph 238 

node metastases. 239 

 Interestingly, we observed two types of cancer stem cell-like populations in 240 

both the primary tumors and lymph node metastases. One of the cancer stem cell-like 241 
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populations expressed CD44 and MYC. The CD44 gene is a well-known cancer stem 242 

cell marker in breast cancer (Liu et al., 2010; Marotta et al, 2011; Sheridan et al, 2006). 243 

Most MDA-MB-231 cells expressed high levels of CD44 (Burdick et al, 2012), although 244 

the expression levels varied (Figure 2E). The cluster with the highest CD44 expression 245 

was MYC, and these cells proliferated aggressively in vivo. The other cancer stem 246 

cell-like population, the HMGA1-high cluster, was observed in both the primary tumors 247 

and lymph node metastases. HMGA1 promotes tumor initiation, cancer stemness and 248 

metastasis in TNBC (Huang et al, 2015; Pegoraro et al., 2013; Shah et al, 2013). The 249 

DEGs enrichment analysis indicated that HIF1A activation and ribosomal-related 250 

bioprocesses were enriched in the HMGA1-high cancer stem cell-like population. HIF1A 251 

is a well-known regulator of hypoxia that activates stemness, glycolysis, angiogenesis, 252 

and invasion/metastasis (Choudhry & Harris, 2018; Petrova et al, 2018). In terms of 253 

ribosomal-related processes, the upregulation of translation and ribosomal processes 254 

may promote distant metastasis in breast cancer (Ebright et al, 2020). In the clinical 255 

scRNA-seq analysis, both types of cancer stem cell-like populations were observed in 256 

single-cell analysis of TNBC patients (Karaayvaz et al., 2018). Our results showed that 257 

the mixture of these multicancer stem cell-like populations makes curative treatment 258 

difficult and causes the anticancer drug resistance in the clinic. In addition, the HMGA1 259 

signatures has the potential to be a novel biomarker for diagnosis, and HMGA1-high 260 

cancer stem cells may contribute to poor prognosis. 261 

 Our results showed Ttr-high and Inhba-high stromal populations in the 262 

xenograft model. High expression of transthyretin (Ttr) enhances tumor proliferation and 263 
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growth (Lee et al, 2019). Inhba is a member of the TGF-beta superfamily (Bloise et al, 264 

2019). Inhba is upregulated in breast tumors, and induces epithelial-mesenchymal 265 

transition (EMT), tumor growth and distant metastasis (Bashir et al, 2015; Kalli et al, 266 

2019). Most Inhba-high populations also existed in the primary tumor. Our results 267 

suggested that stromal expression of Ttr and Inhba enhanced tumor growth in the 268 

primary tumors of MDA-MB-231 xenografts. 269 

 CCI analysis of each the spot and group was performed to understand the 270 

interaction dynamics of different combination of cancer cell and stromal cell types. This 271 

analysis will be helpful for discovering the cancer stem cell niche and metastatic niche 272 

(Oskarsson et al., 2014). B2M is a gene that presents self-antigens on the plasma 273 

membrane. Cancer cells present self-antigens to immune cells in the tumor tissue 274 

(Popat et al, 2020). B2M has a different molecular regulatory mechanism in ER-positive 275 

and ER-negative breast cancer, and it controls the proliferation of cancer cells (Chai et 276 

al, 2019). Our results suggested that MDA-MB-231 cells interact with immune cells 277 

through B2M antigen presentation, which controls cancer cell proliferation in the 278 

xenograft model. In addition, HSP90AA1 and ANXA2 expressed by cancer cells had 279 

high CCI scores in the spot CCI analysis. High expression of HSP90AA1 in TNBC or 280 

HER2-/ER+ breast cancer patients is correlated with poor prognosis, and the 281 

HSP90AA1 gene is often amplified (Cheng et al, 2012). HSP90AA1 is secreted in 282 

extracellular vesicles under hypoxia and enhances the migration of cancer cells and 283 

stromal cells in breast cancer (Santos et al, 2017). HSP90AA1 may contribute to the 284 

involvement of extracellular proteins in the cell–cell interactions. High expression of 285 
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ANXA2 is correlated with poor prognosis in TNBC patients (Gibbs & Vishwanatha, 286 

2018) and regulates drug resistance to EGFR1-targeted therapy (Fan et al, 2019; 287 

Zhang et al, 2018). ANXA2 controls angiogenesis in TNBC xenografts and has the 288 

potential to be a novel therapeutic target in TNBC (Sharma & Jain, 2020). ANXA2 is a 289 

regulator of endocytosis and exocytosis on the plasma membrane (Bharadwaj et al, 290 

2013; Grindheim et al, 2017). This interaction has the potential to mediate cell-cell 291 

communication via exosomes, and thereby promotes the migration of cancer cells and 292 

immune cells.  293 

 Several spots did not contain enough RNA for analysis or exhibited bias 294 

toward either human RNA or mouse RNA (Supplementary Figure S1A). Thus, one 295 

limitation of this sampling method is that some spots have a biased cell type or no cells. 296 

Read counts of each cluster showed lower counts for the human Marker-low cluster, 297 

mouse Ttr-high cluster, mouse Inhba-high cluster, and mouse B-cell like cluster than for 298 

other clusters (Supplementary Figure S1B and S1C). The limitations of cell type bias 299 

and low RNA extraction efficiency caused these low transcript counts.  300 

 Our results showed that HMGA1 signatures correlated with poor prognosis in 301 

TNBC patients in the METABRIC cohort; on the other hand, CD44/MYC signatures did 302 

not correlate with progression (Supplementary Figure S7). Previous research reported 303 

that the diagnosis of invasive breast cancer on the basis of CD44 expression alone is 304 

difficult and that it is necessary to examine the expression of other genes (Mylona et al, 305 

2008; Wang et al, 2017). Our study supports that CD44 signatures are not sufficient for 306 

diagnosis. In contrast, HMGA1 signatures is useful for the diagnosis of TNBC patients. 307 
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Our results showed that these spatial transcriptomics methods will be helpful for the 308 

diagnosis, further identification of biomarkers, and elucidation of the essential 309 

characteristics of cancer. 310 

 311 

 312 

Materials and Methods 313 

Cell culture 314 

The MDA-MB-231-luc2-Venus cell line was cultured in RPMI-1640 (Fujifilm Wako, 315 

Osaka, Japan) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 316 

Fujifilm Wako), 100 µg/ml streptomycin (Meiji Seika Pharma Co. Ltd. Tokyo, Japan) and 317 

100 U/ml penicillin (Meiji Seika Pharma) at 37°C with 5% CO2.  318 

 319 

Animal studies 320 

A. breast cancer xenograft model was established in NOD.CB-17-Prkdcscid/J mice 321 

(NOD-SCID; Charles River Laboratories Japan, Inc., Kanagawa, Japan) by orthotopic 322 

transplantation as previously described (Nakayama et al, 2017). A total of 1.0 x 106 cells 323 

were injected into the 4th fat pad of NOD-SCID mice. The primary tumor was removed 8 324 

weeks after transplantation. An axillary lymph node metastasis was sampled 2 weeks 325 

after removing the primary tumor. The growth of the primary tumors and metastases 326 

were monitored by bioluminescence using an in vivo imaging system (IVIS-XRMS, 327 

PerkinElmer, MA, USA). For bioluminescence monitoring by IVIS, mice were 328 

anesthetized with 2.5% isoflurane (Fujifilm Wako) and intraperitoneally injected with 329 
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3 mg D‐luciferin (Gold Biotechnology Inc., MO, USA) in 200 µl PBS as previously 330 

described (Han et al, 2020; Nakayama et al, 2020). The harvested organs were placed 331 

in ice-cold PBS (Fujifilm Wako) and embedded in SCEM (Super Cryoembedding 332 

Medium, SECTION-LAB, Japan) using liquid nitrogen and stored at -80 degree until 333 

sectioning. 334 

 335 

Microtissue dissection and RNA-seq analysis 336 

Microtissue sampling was performed by an automated tissue microdissection punching 337 

system as previously described (Yoda et al., 2017). Frozen sections were sliced at a 338 

thickness of 20 μm and transferred on an LMD film II (SECTIOIN-LAB). Microspots were 339 

sampled with a 100 μm needle in the dissection instrument. RNA-seq was performed by 340 

Illumina HiSeq as previously described (Yoda et al., 2017). 341 

 342 

Mapping and quality check 343 

Transcriptome analysis was performed with HISAT2 version 2.0.5 (Kim et al., 2019) and 344 

RSEM version 1.3.0 (Li & Dewey, 2011). The gene expression of cancer cells was 345 

obtained by mapping RNA-sequence reads to the human reference genome or mouse 346 

reference genome. We subjected ‘protein_coding’ genes to spatial transcriptome 347 

analysis.  348 

 349 

Clustering and UMAP visualization 350 
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Data mining analyses such as clustering, UMAP analysis, and DEG extraction were 351 

performed with the functions ‘runPCA’, ‘FindNeigbors’, ‘FindClusters’, and ‘runUMAP’ 352 

and ‘FindAllMarkers’ in ‘Seurat’ version 3.2. (Stuart et al., 2019). Cell cycle detection 353 

was performed by the function ‘CellCycleScoring’. Heatmap drawing was performed 354 

using ‘ComplexHeatmap’(Gu et al, 2016). These packages and functions were run in R 355 

version 3.6.3. 356 

 357 

Network analysis for expressional heterogeneity 358 

Correlational network analysis for calculation of the expressional heterogeneity was 359 

performed by the ‘igraph’ package as previously described (Nakayama et al., 2017; 360 

Watanabe et al., 2020). We calculated Pearson’s correlational coefficients between the 361 

spots classified into the same clusters. Next we calculated the normalized closeness 362 

centrality using the correlational network. 363 

 364 

Enrichment analysis using DEGs 365 

Pathway and GO enrichment analyses were performed by the Metascape 366 

(https://metascape.org/gp/index.html#/main/step1) (Zhou et al., 2019). DEGs from each 367 

cluster were subjected to the Metascape interface. Differential enrichment terms were 368 

analyzed by multiple gene list mode. The results of enrichment analysis were visualized 369 

as heatmaps and networks. 370 

 371 

Cell-Cell Interaction (CCI) analysis 372 
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Ligand-receptor interactions between human cancer cells and mouse stromal cells were 373 

performed using the interaction database of the Bader laboratory from Toronto 374 

University (https://baderlab.org/CellCellInteractions#Download_Data) in R software 375 

version 3.6.3. For spot CCI analysis, we extracted the genes whose expression value 376 

was greater than 2. We selected the combinations representing ligand-receptor 377 

interactions, in which both ligand genes and receptor genes were expressed in the 378 

same spot. Hierarchical clustering was performed by ‘hclust’ and it was visualized as a 379 

circular clustering plot by the ‘circlize’ package in R (Gu et al, 2014). 380 

 In the CCI analysis of the group with containing both human cancer cells and 381 

mouse stromal cells, we calculated the number of spots with expression values greater 382 

than 2. Only groups whose expression cell ratio exceeded 10% were extracted for CCI 383 

analysis, and the CCI score between each group was calculated as previously 384 

described (Watanabe et al., 2020).  385 

 386 

Analysis of the public single-cell RNA-seq dataset 387 

To confirm the cancer stem cell signatures in MDA-MB-231 xenografts, we performed 388 

reanalysis of scRNA-seq of TNBC patients from the public cohort (Karaayvaz et al., 389 

2018). The normalized scRNA-seq dataset was downloaded the GSE138390 dataset 390 

from the Gene Expression Omnibus (GEO) and analyzed with the annotation metadata. 391 

The dataset was analyzed and visualized by the UMAP plot with Seurat in R. Module 392 

analysis was performed using the function ‘AddModuleScore’ with gene signatures 393 

(Supplementary Table S10) in ‘Seurat’. 394 
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 395 

Clinical dataset analysis 396 

Survival analysis of the Molecular Taxonomy of Breast Cancer International Consortium 397 

(METABRIC) cohort (Ali et al, 2020; Curtis et al, 2012; Pereira et al., 2016) was 398 

performed by the Kaplan-Meier method using the ‘ggplot2’, ‘survminer’ and ‘survival’ 399 

packages with R as previously described (Kuroiwa et al, 2020; Murakami et al, 2019; 400 

Nishiyama et al, 2021) 401 

 402 

Code availability 403 

The source code of spatial transcriptome analysis is available on GitHub 404 

(https://github.com/JunNakayama/Spatial-Transcriptomics-of-MDA-MB-231-xenografts)405 

. 406 

 407 

Data availability 408 

Spatial expression data (RNA-seq of each microspot) were deposited at GEO 409 

accession number GSE184720. 410 

 411 

  412 
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Figure Legends 641 

Figure 1. Microtissue sectioning from the primary tumors and the axillary lymph 642 

node metastases in the TNBC xenograft model. 643 

(A) Experimental flowchart of spatial transcriptomics. The human TNBC cell line 644 

MDA-MB-231-Parent-Venus was transplanted orthotopically into a female NOD-SCID 645 

mouse. After 8 weeks, the primary tumor was harvested, and the center of the tumor 646 

was sectioned. After 4 weeks, axially lymph node metastases were harvested and 647 

sectioned from the same mouse. Sectioning was performed by an automated tissue 648 

microdissection punching system with a 100 μm needle. (B) In total, 93 microspots were 649 

sectioned from the primary tumor, and 43 microspots were sectioned from axillary 650 

lymph node metastases. RNA was extracted from a total of 137 spots. (C) A flowchart of 651 

the transcriptome analysis. Quality check was performed by FASTQC. The reads were 652 

mapped to the human genome reference and the mouse genome reference by HISAT2. 653 

Protein-coding genes were selected for analysis with Seurat. 654 

 655 

Figure 2. Transcriptome profiling of the microspots. 656 

(A) UMAP plot of human (cancer cell) spot clustering. (B) UMAP plot of mouse (stromal 657 

cell) spot clustering. (C) Violin plot of cancer marker genes. (D) Violin plot of stromal 658 

marker genes. (E) Heatmap of CD44, HMGA1, and MYC expression in each human 659 

cluster. (F & G) Bar plot of spot counts in the primary tumor and lymph node 660 

metastases: (F) human (G) mouse. 661 

 662 
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Figure 3. Spatial transcriptome with cell cycle detection. 663 

(A) Spatial transcriptomics of human (cancer cell) clusters at the primary tumors and the 664 

lymph node metastases. (B) Cell cycle phase of cancer cells at the primary tumor and 665 

lymph-node metastases. (C) Spatial transcriptomics of mouse (stromal cell) clusters at 666 

the primary tumors and lymph node metastases. (D) Sunburst plot of the cell cycle in 667 

human cancer cell clusters. (E) Bar plot of cell cycle phases in the primary tumors and 668 

lymph node metastases. 669 

 670 

Figure 4. Enrichment analysis of two cancer stem cell-like populations. 671 

(A) Heatmap of cluster marker genes in human cancer cell DEGs. (B) Heatmap of 672 

enrichment scores in upstream analysis. (C) Heatmap of enrichment analysis in the two 673 

cancer stem cell-like populations (HMGA1-high and CD44/MYC-high). (D) Enrichment 674 

network in two cancer stem cell-like populations. 675 

 676 

Figure 5. Spot cell-cell interaction analysis in ‘stromal to cancer interaction’. 677 

(A) A flowchart of the CCI analysis. (B) Circular clustering plot of hierarchical analysis of 678 

spot CCI analysis (stromal cell to cancer cell). (C & D) Heatmap of CCI in the spots. 679 

 680 

Figure 6. Cell-cell interaction analysis with cell type combinations. 681 

(A) A table of the combinations of cell types. (B) UMAP plot of the combination group. 682 

(C) Bar plot of counts of the group. (D) Circular bar plot of the top CCI 683 

(cancer-to-stromal cell interaction) in each group. (E) Bubble chart of the 684 
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cancer-to-stromal CCI in each group. (F) Circular bar plot of the top CCI 685 

(stromal-to-cancer cell interaction) in each group. (G) Bubble chart of the 686 

stromal-to-cancer CCI in each group. 687 

 688 

Figure 7. Reanalysis of clinical scRNA-seq and cohorts with cancer stem cell-like 689 

signatures. 690 

(A) A flowchart of the reanalysis of a public scRNA-seq dataset. We downloaded 691 

GSE118389 (scRNA-seq data of 5 TNBC patients) and analyzed it with Seurat. Log 692 

normalization, scaling, PCA and UMAP visualization were performed following the basic 693 

protocol in Seurat. To extract the cancer cells, cells expressing EPCAM (epithelial 694 

marker) were filtered. (B) UMAP plot of cancer cell from 5 TNBC patients. (C&D) 695 

Module analysis of HMGA1-high signatures and CD44/MYC-high signatures with UMAP 696 

plots. The pie chart showed the ratio of cells that expressed the signatures. (E) Survival 697 

analysis of claudin-low (TNBC) patients in METABRIC cohorts by the Kaplan-Meier 698 

method. Survival analysis with the expression of the HMGA1 signatures. 699 

 700 
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Supplementary Figure Legends 703 

Supplementary Figure S1. Read counts and heterogeneity per spot. 704 

(A) Read counts of human and mouse transcripts in each spot. (B) Read counts of 705 

human cancer clusters. (C) Read counts of mouse stromal clusters. (D) Normalized 706 

closeness centrality in each human cancer cluster. (F) Normalized closeness centrality 707 

in each mouse stromal cluster. 708 

 709 

Supplementary Figure S2. Cell cycle phase in mouse clusters. 710 

(A) The ratio of the cell cycle phase of human cancer clusters. (B) Cell cycle phase of 711 

mouse stromal cells at the primary tumor and lymph-node metastasis. (C) Sunburst plot 712 

of the cell cycle in mouse stromal cell clusters. (D) The ratios of the cell cycle phases of 713 

mouse stromal clusters. 714 

 715 

Supplementary Figure S3. Enrichment network of two cancer stem cell-like 716 

populations. 717 

(A) Circos plot of DEGs in cancer clusters. The edges showed the overlap of DEGs 718 

between each cluster. (B) Network visualization of p values in enrichment analysis. 719 

 720 

Supplementary Figure S4. Enrichment analysis of Marker-low clusters. 721 

(A) Heatmap of enrichment analysis in Marker-low clusters. (B) Enrichment network in 722 

Marker-low clusters. 723 

 724 
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Supplementary Figure S5. Enrichment analysis in mouse stromal clusters. 725 

(A) Circos plot of DEGs. The edges showed the overlap of DEGs between each cluster. 726 

(B) Heatmap of DEGs in mouse stromal cell. (C) Heatmap of enrichment analysis in 727 

Ttr-high, Tcell-like, and Bcell-like clusters (D) Enrichment network in Ttr-high, Tcell-like, 728 

and Bcell-like clusters 729 

 730 

Supplementary Figure S6. Spot Cell-Cell Interaction analysis in ‘cancer to stromal 731 

interaction’ 732 

(A) Circular clustering plot of hierarchical analysis of spot CCI analysis 733 

(cancer-to-stromal cell). (B & C) Heatmap of CCI in the interactive spots. 734 

 735 

Supplementary Figure S7. Survival analysis with the expression of the CD44/MYC 736 

signatures 737 

Survival analysis of claudin-low patients in METABRIC cohorts by Kaplan-Meier method. 738 

Survival analysis with the expression of the CD44/MYC signatures. 739 

 740 
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Supplementary Figure S1
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Supplementary Figure S2
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TCA cycle

Aerobic respiration

Proteasome

Fatty acid
oxidation

Muscle contraction

Neutrophil degradation

Glial cell proliferation

TNF production

Cofactor
Metabolite

ATP formation

Sulfur metabolite

Oxidative stress & Redox

Glycolysis

PPAR signaling

TP53 signaling

Reactive oxygen metabolite

TGFbeta & EMT

Mitochondrial translation

SRP-dependent 
cotranslational protein

Inhba-high
Bcell-like
Tcell-like

C

A

D

Ttr

Nkg7

Ccl9

Ccl8

Inhba

Pax6

Fgf13

Cox7a1

S100a4

Ncr1

Mcmdc2

Tt
r-h

igh

Tc
ell

-lik
e

Bc
ell

-lik
e

In
hb

a-
hig

h

Spots

B



PT3_08

PT3_81

Lym_41

Lym_09

Lym_61

PT3_49PT3_02

PT3_16

PT3_01PT
3_
33

PT
3_
64PT

3_
50

PT
3_
04

PT
3_
66

Lym
_44

PT3_
21

Lym_69

PT3_91

PT3_60

PT3_26

PT3_89

Lym_15

Lym
_45

Lym
_43

Lym
_49

PT3_73

PT
3_
51

PT
3_
15

PT
3_
47

PT
3_
96

Lym
_1
1

PT3
_76

Lym_
13

PT3_37

2 5

−2

0

2

4

−4 −2 0 2 4
UMAP_1

U
M
AP

_2

Lymph
PT

stim

LYMPH
PT

Cancer to Stromal Interaction

Lymph-PT interaction PT specific interaction

Supplementary Figure S6

CB

A

1

Lym
_20

Lym
_19

Lym
_28

Lym
_07

Lym
_02

Lym
_10

Ctsh&HMGB1

Grn&NME2

Clu&S100A4

Anxa2&ANXA1

Clu&ANXA2

C3&RPSA

Anxa2&S100A4

Anxa2&RPSA

Anxa2&B2M

Anxa2&HSP90AA1

Hsp90b1&HSP90AA1

Hsp90b1&S100A4

Hsp90b1&HSP90B1

Hsp90b1&ANXA2

Ctsl&HSP90B1

Hsp90b1&ANXA1

Lgals3bp&HSP90B1

S100a4&HSP90B1

Ctsb&ANXA2

S100a4&S100A4

S100a4&ANXA2

Lgals3bp&S100A4

Lgals3bp&ANXA2

Ctsh&ANXA2

B2m&ANXA2

B2m&B2M

S100a4&HSP90AA1

Lgals3bp&HSP90AA1

B2m&HSP90AA1

C3&HSP90AA1

0

0.2

0.4

0.6

0.8

1

0

1

Lym
_20

Lym
_19

Lym
_28

Lym
_07

Lym
_02

Lym
_10

Ctsh&HMGB1

Grn&NME2

Clu&S100A4

Anxa2&ANXA1

Clu&ANXA2

C3&RPSA

Anxa2&S100A4

Anxa2&RPSA

Anxa2&B2M

Anxa2&HSP90AA1

Hsp90b1&HSP90AA1

Hsp90b1&S100A4

Hsp90b1&HSP90B1

Hsp90b1&ANXA2

Ctsl&HSP90B1

Hsp90b1&ANXA1

Lgals3bp&HSP90B1

S100a4&HSP90B1

Ctsb&ANXA2

S100a4&S100A4

S100a4&ANXA2

Lgals3bp&S100A4

Lgals3bp&ANXA2

Ctsh&ANXA2

B2m&ANXA2

B2m&B2M

S100a4&HSP90AA1

Lgals3bp&HSP90AA1

B2m&HSP90AA1

C3&HSP90AA1

0

0.2

0.4

0.6

0.8

1

0

Lym
_43

Lym
_49

PT3_73

ANXA2&Lgals3bp

ANXA2&Ctsb

ANXA2&Ctsh

HSP90B1&Lgals3bp

ANXA2&B2m

RPSA&Aldoa

ANXA2&Lgals1

B2M&B2m

0

0.2

0.4

0.6

0.8

1

Lym
_43

Lym
_49

PT3_73

B2M&B2m

ANXA2&Lgals1

RPSA&Aldoa

ANXA2&B2m

HSP90B1&Lgals3bp

ANXA2&Ctsh

ANXA2&Ctsb

ANXA2&Lgals3bp

PT3_02

PT3_16

PT3_01

PT3_33

PT3_64

ANXA2&Alb

RPSA&Alb

ANXA2&Ctsb

ANXA2&Lgals1

RPSA&Aldoa

ANXA2&B2m

CALR&B2m

0

0.2

0.4

0.6

0.8

1

PT3_02

PT3_16

PT3_01

PT3_33

PT3_64

CALR&B2m

ANXA2&B2m

RPSA&Aldoa

ANXA2&Lgals1

ANXA2&Ctsb

RPSA&Alb

ANXA2&Alb



+++
+

+
+++

++
+++++++++++

++++++++
++++++++

+++++++++++
++++++++++++++++++++

++++++
++ ++

++++++
+++ +++++++++++

+ +

+

+

+

+ +++ +

+

+

p = 0.037

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time(months)

Su
rv

iva
l p

ro
ba

bi
lit

y

 + +express=high express=low

Time(months)

0

0.25

0.5

0.75

1.0

0 100 200 300

+++
+

+
+++

++
+++++++++++

++++++++
++++++++

+++++++++++
++++++++++++++++++++

++++++
++ ++

++++++
+++ +++++++++++

+ +

+

+

+

+ +++ +

+

+

p = 0.037

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time(months)

Su
rv

iva
l p

ro
ba

bi
lit

y

 + +express=high express=low

+++
+

+
+++

++
+++++++++++

++++++++
++++++++

+++++++++++
++++++++++++++++++++

++++++
++ ++

++++++
+++ +++++++++++

+ +

+

+

+

+ +++ +

+

+

p = 0.037

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time(months)

Su
rv

iva
l p

ro
ba

bi
lit

y

 + +express=high express=low
High
Low

CD44/MYC signatures

O
ve

ra
ll 

su
rv

iv
al

 p
ro

pe
rty

Supplementary Figure S7


