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ABSTRACT 

 The crustacean cardiac ganglion (CG) network coordinates the rhythmic contractions of the 

heart muscle to control the circulation of blood. The network consists of 9 cells, 5 large motor 

cells (LC1-5) and 4 small endogenous pacemaker cells (SCs). We report a new three-

compartmental biophysical model of an LC that is morphologically realistic and includes 

provision for inputs from the SCs via a gap-junction coupled spike-initiation-zone (SIZ) 

compartments. To determine physiologically viable LC models in this realistic configuration, 

maximal conductances in three compartments of an LC are determined by random sampling 

from a biologically-characterized 9D-parameter space, followed by a three-stage rejection 

protocol that checks for conformity with electrophysiological features from single cell traces. LC 

models that pass the single cell rejection protocol are then incorporated into a network model 

which is then used in a final rejection protocol stage. Using disparate experimental data, the 

study provides hitherto unknown structure-function insights related to the crustacean cardiac 

ganglion large cell, including predictions about morphology including the role of its SIZ, and the 

differential roles of active conductances in the three compartments. Further, we extend analyses 

of emergent conductance relationships and correlations in model neurons relative to their 

biological counterparts, allowing us to make inferences both with respect to the biological 

system as well as the implications of the ability to detect such relationships in populations of 

model neurons going forward. 

 

INTRODUCTION 

 Neurons are endowed with a rich and complex set of intrinsic and synaptic conductances that 

control their electrical activity [1; 2]. Although the role of such a varied set of conductances is 

not fully understood, it is natural to expect that neurons of the same cell type would possess 

similar membrane properties, especially within the same animal. However , experimental 

findings suggest that maximal conductance levels of individual currents can vary two- to six-fold 

among same cell types, even within the same animal [3-7] and that different combinations of 

conductances preserve activity at the single cell level [8; 9]. Computational modeling continues 

to shed light on the role of such conductance variations in conserving cellular output such as 

spike and burst characteristics [2; 10-18]. For instance, Prinz et al. [2] explored the maximal 

conductance space of a single-compartment model neuron to quantify the numerous types of 

spiking and bursting models and showed that similar patterns of activity could be produced by 

many different parameter sets, both for single neurons [2] and within small networks [19].  

 Beyond the broad range of conductance combinations that are associated with convergent 

outputs among neurons of the same type, there is also substantial reports that among populations 

of neurons different sets of ionic conductances [5] and ion channel mRNA levels [7; 20] can be 

correlated with one another in different classes of identified neurons. This suggests that an on-

going, rather than developmentally fixed, regulation of specific sets of conductances may be 

necessary to provide stable output of neurons and networks over the lifetime of an animal. These 

correlated mRNA and conductance levels can arise from a relatively simple set of feedback 

control algorithms in computational models [21]. However, there have been few studies that 

directly demonstrate that these conductance or mRNA relationships are necessary to generate 

appropriate, ongoing neuronal activity in biological neurons. Indeed, compelling computational 

work has demonstrated that – at least theoretically – such relationships are not necessary to 

generate robust output in a population of model neurons. For example, previous studies have 

demonstrated that using a model selection methodology focused on single-cell output in a multi-
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compartment model results in a population of cells with only weak or no correlations among 

conductances [14]. However, most studies to date have focused on selecting models based on 

isolated neuron activity. Therefore, to further extend these analyses, we performed multiple 

levels of selection that included generating model networks with multiple neurons of a given 

type, and only selecting cells that perform within biological parameters of the full network 

output for inclusion in our population. We then looked for conductance correlation relationships 

among the populations of neurons in our simulated model networks. 

 For this work, we use a computational model of the crustacean cardiac ganglion (CG) 

network, based on the crab, Cancer borealis. This simple network consists of 4 pacemaker 

neurons and 5 Large Cell (LC) motor neurons that innervate the heart muscle. The present study 

extends previous computational investigations that focused on single compartment cardiac 

ganglion LCs [15; 16; 19] by considering the potential role of conductances in multiple 

compartments of an LC on its output. Specifically, we develop a new morphologically realistic 

three-compartment LC model of Cancer borealis that incorporates an SIZ compartment and first-

hand biological data and validate the model. We then use it to investigate how the distribution as 

well as potential covariations of conductances affect soma membrane potential response (output). 

Using a rejection sampling approach with a 9-D parameter space of maximal conductances, we 

report, as in previous studies, an unbiased approach to determine the role of various 

conductances in shaping cellular and network function. We extend previous studies by 

performing model neuron selection in complete CG networks, with constraints drawn from intact 

network activity as well as single cell electrophysiology and current response data. A population 

of model LCs generated by such an approach then provided predictions related to the differential 

roles of conductances in the soma vs. neurite in shaping neuronal output. Further, this population 

of neurons allowed us to look for emergent conductance relationships both within and across 

these compartments.  Finally, we compare conductance relationships uncovered through the 

model selection process with a comprehensive set of single-cell mRNA relationships for 

channels underlying these membrane conductance relationships.  

 

RESULTS 
 

Morphologically realistic LC model and SC stimulus reproduces experimental profiles 

Building on our previous two-compartment LC model [15; 16; 19], we added morphological 

realism to the LC by adding a third compartment, the spike initiation zone (SIZ; Fig. 1A). We 

first matched passive properties (see methods) and waveform data from intact cells LC3 and LC4 

(Fig. 1A; [19]). We note that among the five LCs, only LC3-5 are easily accessible, and that LC4 

is gap-junction coupled strongly to LC5 [22]. Accordingly, our biological data are from LCs 3-5, 

while our model predicts network performance for all five LCs, assuming LCs1-2 have similar 

gap junction coupling as LC4-5 (Fig. 1A). 
 

Developing rejection protocol criteria from experimental data. We briefly describe the key 

characteristics of a modified version of our previous rejection protocol [19] to select model LCs 

that match experimental data. In the first stage, we sampled a 9-D parameter space of maximal 

conductances to generate a pool of ligated LCs (soma + neurite with passive conductances) for 

which the passive properties of resting potential and input resistance were within biological 

ranges measured in our Lab [22]; this relaxed some of the constraints in our previous protocol 

(see methods) and permitted more cells to pass this stage. To the cells that passed, we then added 

active conductances (picked randomly – see below) in the neurite and an SIZ compartment (with 

fixed conductances) in stage 2, and then provided synaptic input from the SC between the 
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experimentally observed range of 16-32 Hz and retained only cells that had at least one spike 

with the SC input. This ensured that stage 2 did not pass cells that only had membrane 

depolarizations but no spikes, reducing the load on the computationally intensive stage 3. In a 

third stage, we combine five ‘viable’ (passing selection criteria) randomly-selected single cells 

into a network. The network itself is deemed viable if it satisfied the two experimental 

observations related to LC3 and LC5: (i) a synchrony value between LC3 and LC5 >0.95 in 

control (Pearson’s R-squared); and (ii) synchrony between LC3 and LC5 <0.89 in TEA. Results 

from each of these stages are discussed next. 
 

Membrane potential responses of ligated cells: The ligated cell (soma + neurite) model was 

tested for passive properties based on experimental data from our Lab [22]. From among 150,000 

ligated model cells with random conductances selected from the 9-D parameter space (see 

methods), 100,000 passed stage 1 of the rejection protocol. Figure 1B shows a representative 

experimental (Fig1B1 & Fig1B2, Pre & Post) and model (Fig1B3 & Fig 1B4, Pre & Post) 

membrane potential responses of a ligated cell to an experimentally determined input (termed 

‘stimulus protocol’; [22]; see methods) in control and post-TEA conditions. After finding viable 

ligated cells (soma and passive neurite), we attached an SIZ to each cell in the pool for further 

testing in stages 2 and 3. For this, we designed an SC input to represent experimentally 

determined SC input characteristics as described next. 
 

Designing the SC input to the LC network: In the crustacean, the five-cell LC network receives 

input from a cluster of four small cells, and we assumed that all five LCs receive a common 

synchronized input from this SC cell cluster. We designed the SC input as a spike train to a 

synapse on the SIZ, the properties of which are tuned to mimic experimental voltage responses 

[23]. Experimental recordings from the Schulz Lab (unpublished data) showed that SC input 

frequency varied between 16 and 32 Hz in 1 Hz intervals. Also, two components were noted in 

the experimental data over a typical period of 1000 ms, a steady one that continued over the 

entire duration, and a second one that lasted for 600 ms, starting from 300 ms and ending at 900 

ms. As described in methods, we designed the SC input with the two components, after randomly 

picking a frequency within the rage of 16-32 Hz. 
 

Network Responses - matching responses of intact single cells. The SC input we designed was 

then used in the next stage to provide input to intact cells formed by adding an SIZ and synapse 

to the ligated single cell model. Figure 1C1 (control)shows the experimental recording for an 

intact LC4 cell A typical corresponding response from the model intact cell is shown in Figure 

1C3 (PreTEA) and Figure 1C4 (PostTEA),. To make the analysis tractable, we considered the 

case where the intact cells in a network did not receive input from the other four LCs, i.e., all gap 

junction coupling between the LCs were disconnected. We consider the SIZ gap-junction 

coupled case in a later section. 

 For such an intact single LCs, we initially assumed a passive neurite, i.e., only leak 

conductance in the neurite. So, to the model cells that passed stage 1, we connected an SIZ and 

synapse, and used the SC spike train input described in the previous section. Interestingly, none 

of the 100,000 cells passing stage 1 were able to pass stage 2. This was because the cells had a 

spiking frequency above 8 Hz in control and did not exhibit a TEA response. However, the SIZ 

responses did match biological reports. Specifically, the model membrane potential responses at 

the soma had a depolarization of 10 mV for 1000 ms, and with spikes on top of the 

depolarization that reached 20 mV in height. This response matched the soma membrane 

potential response characteristics from our lab that had a depolarization bump of 10 mV for 1000 
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ms, and spike height of 15 mV (Fig. 1C1). Additionally, the model SIZ spike height attenuated 

by a factor of 3 (30 to 10 mV) at the soma (figure 5C), matching the corresponding biological 

recordings from our Lab which had an attenuation factor of 3.66 (55 to 15 mV) (unpublished 

data; also matched experimental SIZ recording in [23]). 

   The functional reason for the cells failing in stage 2 was determined to be the excessive 

leak through the neurite, i.e., although sufficient current entered the neurite from the SIZ, this 

leakage diminished the amount that reached the soma for raising the response in TEA. Reducing 

the diameter, and therefore surface area, was found to decrease leakage. However, the neurite 

diameter had to be 5 m, which was unrealistically small compared to biological minimum 

diameter of 10 m. As a next step, we considered active conductances in the neurite.   
 

Active conductances necessary in neurite to reproduce experimental network responses 

The presence or role of active conductances in the neurite of the CG LC is unknown. For 

instance, although our mRNA studies suggest the presence of Nap in the LC), the morphological 

specificity of location is unknown. Similarly, although Ca2+ currents are thought to be present in 

the neurite, their localization is not fully understood.  
 

Role of individual conductances. We adopted a systematic procedure to determine a 

parsimonious set of active conductances in the neurite. For this, we first inserted only Nap in the 

neurite, and this helped counter the excessive leakage cited in the previous section, enabling the 

soma to elicit a TEA response with spiking in SIZ (Fig. 4 A-B Supplemental). With Nap in the 

neurite, for every 1000 cells that passed stage 1, about 35 passed stage 2. Fewer cells passed 

because the spike height and LC spike frequency were both found to exceed the upper bounds in 

the control case. For instance, for a case with SC frequency of 22 Hz (low in experimental traces 

of SC spikes), the soma spike height was above the upper bound of 30 mV (Table 6) as was the 

spike frequency, in many of the control cases. The reason for this was that the cell was already 

close to excitable in the control case with the passive neurite. The key attribute that Nap 

provided was a TEA response that met the requirements of increased spike frequency and 

amplitude (Fig S4B) in nearly all cells. So, we considered current channels to reduce the 

depolarization caused by Nap in the control case while retaining the TEA response. This led to 

the addition of I_BKKCa but that worked only for some models (Fig S4C), even with maximal 

conductance of I_BKKCa exceeding the upper bound (Table 2). Furthermore, this manipulation 

did not provide the variability in TEA responses seen in experimental traces (Fig.1D1-3). Since 

I_Nap by itself was not sufficient, we then explored whether I_CaT and I_CaS channels could 

substitute for I_Nap. Even with values of conductances beyond the upper bounds for CaS and 

CAT channels, the TEA response was inadequate (Fig 4SD), and the peak spike height in the 

control case was also too high. So, we added I_BKKCa to this set of I_CaT and I_CaS, without 

Nap. Although this reduced the peak spike height to within permissible ranges, the TEA response 

was still inadequate (Fig S4E).  

   To gain insights into the process, we investigated the mechanism by which I_BKKCa 

improved the TEA response together with I_Nap (Fig S4C), and produced variable TEA 

responses seen in experiments, without disturbing the control responses. First, we found that 

I_BKKCa helped reduce the spike amplitude (compare Fig. S4F and S4G). However, there was 

little variability in TEA response waveforms of different cells. To explore why, we investigated 

the underlying current waveforms (Fig 2A). For this cell, I_CaT and I_CaS in the neurite 

produced less spiking and depolarization in the soma during TEA compared to I_Nap in the 

neurite (Fig 2 B). The waveform of I_BKKCa corresponds closely in time with those of leak and 
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Nap currents, all of which also closely follow the voltage waveform. This suggests that 

I_BKKCa has a greater impact on the voltage waveform than did I_CaT and I_CaS. However, 

the slow wave amplitude could, in general, be modified by I_CaT and I_CaS, allowing the model 

to exhibit varied TEA waveforms. With all these channels present, the waveform criteria for both 

control and TEA cases were met by larger numbers of cells (Fig 2B), and there was greater 

variability in the range of TEA responses. A typical set of TEA responses for five intact cells 

with all channels present is shown in Fig S4I. In summary, I_BKKCa (with I_CaT and I_CaS) 

reduced peak spike height and frequency in the control case. Although I_BKKCa did reduce the 

increased control response caused by I_Nap, it did not affect I_Nap’s facilitation of the TEA 

response. Furthermore, CaS and CaT channels were found to be important for the generation of 

varied TEA responses.   
 

Random sampling of neurite conductances and validation checks. Based on the systematic initial 

trial-and-error investigation of the role of conductances in the neurite discussed in the previous 

section, we decided to add the following current channels to the neurite using random sampling: 

CaS, CaT, NaP, BKKCa. The reader is reminded that maximal conductances of the soma 

currents were finalized in stage 1, and so stage 2 considers only the random selection of maximal 

conductances for the channels added to the neurite, i.e., stage 2 rejection protocol focused only 

on conductances in the neurite. Of the 100,000 intact cells that passed stage 1, an active neurite 

resulted in the total number passing stage 2 to increase to 18,000. 

Validation check of ‘stimulus protocol’ waveform in Ransdell et al. [24]. In our prior 

experiments with the ligated soma, Ransdell et al.[24] recorded from intact networks and 

developed a current trace termed ‘stimulus protocol’ that, when injected into a ligated soma, 

resulted in a membrane potential profile that matched those from intact network recordings. As a 

validation experiment, we found that the model current entering the soma from the neurite 

mimicked the ‘stimulus protocol’ waveform with active, but not a passive dendrite (Fig.S4I ).  

 

Network responses with gap-junction coupling among SIZs 

The cells from a sample network that passed this final rejection criteria involving networks 

(Stage 3) are shown in figure 3 (right panel, top right). Of the 2,000 model cells that passed stage 

two, a total of 750 passed stage 3 (150 networks). The dissimilar individual responses of LCs to 

the SC frequency of 18 Hz became highly synchronized when placed in a network with gap-

junction connectivity among all LCs at the SIZ and among specific cell pairs LCs1-2 and LCs3-4 

at the soma (Fig. 5A1,2). The reader is reminded that a pronounced TEA response is a rejection 

criterion used in Stages 2 and 3 (see methods). We explored the mechanism by which the gap-

junction coupling between soma compartments of LCs1-2 and LCs4-5, and between the SIZ 

compartments of all cells (Fig. 1A) ensured synchrony among the LCs in the network.  

 For this we considered the cells in the example network of Figure 5A2 that passed stage 3 of 

the rejection protocol, with the same SC input of 18 Hz used for each cell in Fig. 5A. In this 

network, we found that the gap junction current between soma compartments of LCs1-2 or 

between LCs4-5 was seven- to ten-fold smaller in magnitude than the synaptic current due to the 

SC drive. Focusing on one cell, LC1, Fig. 5B1 provides a comparison of the sum of the gap 

junction current from soma of LC2 to soma of LC1 and from the various SIZ compartments to 

the SIZ of LC1, labeled as ‘gap junction current’, to the synaptic current into the SIZ of LC1 due 

to SC input spikes. As can be seen from the traces, the magnitude of the total gap junction 

current into LC1 was found to be more than seven-fold smaller than that of the synaptic current 

into LC1. Also, a comparison of traces in Fig. 5A2 and B1 shows that the soma membrane 
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potential response of LC1 is primarily due to the input from SC rather than from input via gap 

junctions. The total gap junction current is also phase shifted compared to the synaptic current. 

This sheds light on the role of the synaptic current which is to raise the SIZ membrane potential 

to spike threshold in ~500 ms (Fig. 5B1). Once the threshold is reached in the SIZ and spiking is 

initiated, the gap junction currents ensure that the spikes are synchronized among the cells, and 

so there is a phase shift of ~50 ms between the peak of the depolarization due to the synaptic 

current and the first peak in gap junction current profiles. In summary, the analysis predicts a 

delineation of the primary functions of the two current types: synaptic (to increase SIZ and soma 

membrane potential to threshold) and gap junction (to synchronize spikes) and quantifies their 

magnitudes. 

 We also note that the observation of the gap junction current being considerably smaller than 

the synaptic current for each cell justifies the use of intact single cells in stage 2 of the rejection 

protocol, without considering the gap-junction interaction effects from other cells and provides a 

validation check. 

 

Conductance parameter space variations following three levels of selection on model 

neurons 

Following each of the stages of selection, we examined the overall distribution of membrane 

conductances in the soma and neurite compartments in the viable/passing neurons to determine 

whether each selection criterion limited any conductance to a particular portion of the parameter 

space (Figure 4). We visualize this in two distinct ways. Figure 4A uses a density plot to describe 

the conductances that passed a given level of selection. As selection continued, some 

conductances were more and more limited to a portion of the parameter space, while others 

maintained a broader range of viable conductances. For example, selection stages 2 and 3 result 

in a restricted range of distribution of NaPSOMA, NaPNEURITE, LeakSOMA, and LeakNEURITE, and 

Bkkca and Leak. Further, as Vrest was a free parameter in the selection process, we see the 

strongest selection pressure on this feature, where selection levels 2 and 3 result in a narrow 

distribution of acceptable values near the high end of the range (Figure 4A).  The other active 

conductances maintained a broad range of acceptable values through all levels of selection. 

However, these are not normally distributed. Rather, multiple peaks around conductance ranges 

that enriched for successful models can be seen in most of the conductances (Figure 4A). Finally, 

because Figure 4A scales each level of selection independently to maximize the opportunity to 

see variations in the range of conductance values after each selection level, we have also plotted 

these data in a nested format using a stacked density plot (Figure 4B). This provides the 

opportunity to see the full parameter space (level 0, purple) and then each round of selection as a 

subset of the remaining parameter space. 

Conductance parameter differences larger between strongly gap-junction coupled cells. Since the 

gap junction coupling between 4 and 5 is considerably stronger than between either of those and 

3, we hypothesized that the network would be able to support a larger variation in conductances 

between 4 and 5 compared to the same between either of those and LC 3. To test for this, we 

estimated the Euclidean distance between the parameter sets of each of the three cells. Since LCs 

4 and 5 are tightly coupled, we averaged the conductances between LCs 4 and 5, and then 

estimated the Euclidean distance between that average parameter set and that of LC3, for each 

network. These were then averaged across all the networks. This yielded the following when 

averaged across all the networks: the Euclidean distance between parameter sets of LC 4 and 

LC5 was 1.7689 (units?) and between averaged LCs4&5 and LC3 was 0.0148. The same 
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calculations for LCs 1, 2 and 3 revealed the following numbers: the Euclidean distance between 

parameter sets of LC 1 and LC 2 was 2.0329 and between average of LCs1&2 and LC3 was 

0.0155.  

 

Intrinsic conductance covariations in the network model 

Biological studies have suggested that it is important and/or necessary for pairs of “modules” of 

conductance to work in concert to control appropriate physiological output. Therefore, we looked 

for relationships among all the membrane conductances in our model – across two compartments 

(soma and neurite) – at all three levels of selection.  

 Figure 5D describes membrane conductance relationships in the soma. Correlograms (Figure 

5D, top) demonstrate that there is a general strengthening of conductance correlations [as 

evidenced by increasing absolute value of rho()-value] across the levels of selection. To better 

visualize individual relationships, we have plotted each pairwise correlation coefficient at each 

level of selection as a bar plot matrix (Figure 5D, bottom). We see several correlations that 

become apparent as network level selection of model neurons progresses. However, overall, the 

rho-values for any correlation remain relatively low, with the highest correlation coefficient 

approaching 0.2. Nevertheless, 5 conductance relationships emerge across the selection levels. 

The most substantial relationship is seen for Leak versus NaP in the soma (Figure 5D), and this 

emerges as a notable positive correlation. Two other positive correlations of some note are 

detected in the soma (Figure 5D): SKKCa versus Kd2, and SKKCa versus Leak. Furthermore, 

three negative correlations become apparent in the soma as well: CaT versus A, CaT versus 

BKKCa, and Leak versus A, and Bkkca and leak. 

  Figure 6 describes the same conductance relationship analyses for the neurite compartment. 

Again, we can see relationships emerging and strengthening across the levels of selection (Figure 

6, top). Two relationships appear more prominently in the neurite: a positive correlation between 

Leak and NaP, and a negative correlation between the two calcium conductances – CaS and CaT 

(Figure 6, bottom). Of note, Leak and NaP emerges as the strongest relationship in both the 

neurite and the soma compartments.  

  Finally, we comprehensively compare conductance relationships across compartments, to 

determine whether there may be co-regulation of membrane conductances between the soma and 

neurite. Figure 3 shows a comprehensive view of the conductance data in both compartments at 

selection level 3. In this visualization, we can see the distribution of each conductance along the 

diagonal, as well as the raw scatterplots of the 295 neurons at this level of selection.  In addition 

to visualizing the raw data for the relationships in Figures 5D and 6, we see two strong 

relationships emerge across compartments: NaPSOMA versus NaPNEURITE, and LeakSOMA versus 

LeakNEURITE. 

 

Ion Channel mRNA correlations relative to model relationships 

To determine whether the relationships seen among model neuron conductances may have 

independently arisen as necessary for appropriate output, we wanted to compare these results 

with a biological data set. Because it is difficult or impossible to comprehensively measure 

membrane conductances in biological neurons, we performed an analysis on levels of the 

mRNAs that encode the channels most directly responsible for membrane conductances that are 

represented in our model neurons. Using single-cell qPCR, we quantified 12 different channel 

mRNAs from 40 individual crab LC motor neurons (Figure 7).  
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  While we are unable to disentangle mRNAs for channels that will be localized to the soma 

versus those that will be in the neurite, we feel the mRNA data are best compared with the 

somatic conductances in the model. The channel mRNAs reveal some very intriguing 

relationships. First, there is widespread correlation among mRNAs, and of considerably high 

correlation coefficients (Figure 7). Further, every correlation is a positive correlation. However, 

some of the most profound relationships bear striking similarity to those seen in the model. For 

example, NALCN and IRK are putatively related to the model conductances NaP and Leak 

respectively. NaP and Leak was the strongest correlation seen in the soma compartment and is a 

very tight correlation in biological cell mRNA as well (Figure 7). Furthermore, the four other 

strongest correlations found in the soma compartment of the model (CaT/A, Leak/A, 

SKKCa/Kd2, and SKKCa/Leak) reflect some of the strongest mRNA correlations in their 

biological channel counter parts as well (see Figure 8; CaV2/Shaker, IRK/Shaker, SKKCa/Shab-

Shaw1-Shaw2, and SKKCa/IRK respectively). Thus, while the overall quantitative level of 

correlation differs, it is striking that the most tightly correlated mRNA relationships correspond 

well to the strongest model conductance correlations in the soma.  

 

 

DISCUSSION  

We developed morphologically enhanced biophysical model of the LC of Cancer Borealis that 

included a new, hitherto unreported compartment SIZ that receives the synaptic input, and is 

informed completely by measured properties of the same cell. The model was used to investigate 

the potential role of membrane conductances in the neurite compartment of these cells. 

Furthermore, we engaged in a selection regime based on biologically relevant network activity 

that simultaneously selects five motor neurons for inclusion in our final cell population. Using 

network level output as selection criteria generated a population of 295 LC motor neurons in 

which we could further characterize relationships among membrane conductances in multiple 

compartments. In doing so, we identified correlations among ionic currents that are strongly 

reminiscent of channel mRNA relationships seen in a biological population of neurons. This is 

consistent with the hypothesis that neurons actively co-regulate membrane conductances to 

generate and maintain appropriate network output and suggests that these constraints may exist 

at a higher order network level rather than at the level of individual neuron properties.  

 

An intact model network generated from experimental data 

Previous iterations of computational models of the crustacean cardiac ganglion [15; 16] relied on 

experimental data from multiple organs (e.g., stomatogastric ganglion) and species (e.g., lobster) 

for passive properties and conductance ranges. For the present model, the experimental data were 

obtained directly from the LCs of intact networks recorded from the Schulz lab, as well as SIZ 

recordings to first match our model with the known data, and then to explore the functional 

characteristics in search of an explanation for the preservation of output across a wide variation 

range. We started with a prediction of the intact single cell morphology that integrates 

information about structure and proposed a methodology to validate it. Specifically, although an 

SIZ has been conjectured as the source of SC input into the cardiac ganglion, reported single cell 

models have not explicitly considered such morphology. For instance, models of single LCs have 

typically considered only the soma compartment and possibly a neurite attached to it. To validate 

our enhanced three-compartmental model that includes an SIZ, we estimated the SC frequency 
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ranges from intact recordings and then found that a model that accounted for the biological data 

was able to successfully reproduce intact single cell responses (Figs.2G) 

 

Biologically realistic framework for predictions single cell- and network-levels 

Our new LC single cell model structure provided a framework to integrate experimental data 

related to LC input and output and explore underlying mechanisms. Specifically, the input to an 

LC arrived via synapses at its SIZ in the form of spike trains from the SCs. The range of 

frequency and temporal profiles of the SC spike trains followed experimental data. The output 

was the membrane potential fluctuation of the LC soma that in turn controlled the 

synchronization of spikes at the gap-junction coupled SIZ compartments (Fig. 1A). Using a 

three-stage rejection protocol to select the conductances in an unbiased manner, the procedure 

predicted that active conductances were necessary in the neurite to reproduce experimental input-

output data for an LC.  

 To illustrate how a single-cell model is used to discover underlying mechanisms, recall that 

the LC model with soma with a short passive dendrite (to model the ligated neurite) was 

developed in stage 1 using experimental data from ligated LCs [22]. Using this model with a 

longer passive dendrite in stage 2 revealed that excessive leak in the passive neurite resulted in a 

reduction in depolarization of the soma membrane potential with spikes in the SIZ. This logic led 

to the consideration of Nap and/or CaS and CaT channels to counter the leakage. As shown in 

results, I_Nap and not I_CaS or I_CaT helped offset the effects of leak current in the neurite 

(Fig. 2B,D). The framework can be used to probe deeper underlying mechanisms. For instance, 

analysis of the time constants of the currents to probe how they accomplish this function, 

revealed that I_Nap had a time constant that was at least four-fold lower than that of I_CaT and 

at least 14-fold lower than that of I_CaS in the -50 to -20 mV range (Fig. 7). Since the membrane 

voltage of the soma never exceeded 0 mV, the time constant (during all model runs) of the I_CaT 

was always at least twice as large as that of I_Nap, and that of I_CaS was always larger than of 

I_CaT. However, I_CaT and I_CaS were continuously active and strengthened I_BKKCa as seen 

by comparing the traces in Figs. 2D, E. 

 Although the framework is designed to study both single cell and network level dynamics, the 

focus presently was largely on single-cell studies with only the issue of synchrony across LCs 

being considered at the network level. However, the framework can be readily used for network 

level studies. Some that we envisage in the future include potential co-variations of the synaptic 

or gap-junction conductances on the SIZs with the intrinsic conductances reported here.  
 

Emergent conductance correlations in the multicompartmental network model 

One of the key hypotheses that this work tests is whether network level selection criteria will 

result in a population of models in which conductance correlations emerge. The collective 

literature in two similar crustacean networks (stomatogastric and cardiac ganglia) are somewhat 

inconsistent in this result. Previous computational models in the cardiac ganglion LCs from our 

group [15; 16]with a similar rejection sampling approach yielded strong correlations in the LC 

soma among two pairs of conductances: CaS-A and CaT-Kd. These data reveal that such 

relationships can emerge naturally from a selection process focused on output characteristics 

informed by biological data. However, those results were limited to models of the soma only and 

based on a different species and different mode of activity (driver potentials) than the cells 

modeled in our study. Further, there was relatively little biological data available at the time for 

those experiments, and so ultimately our interpretation of these first models is that such 
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relationships are theoretically possible to detect and quantify – but further study was needed, 

including more thorough grounding in biological data as well as model neurons that better reflect 

the morphological complexity (i.e., multiple compartments) of biological neurons.  

 Conversely, a thorough and extensive analysis of a multicompartment model employing a 

large population of LP neurons from the crustacean stomatogastric ganglion yielded a different 

outcome. Taylor et al. [14] utilized a large population selection approach, in a multicompartment 

model, and selected based on output characteristics that focused both on the single cell 

excitability as well as some features reminiscent of network level function (i.e., output as a result 

of synaptic input currents). In this study, they found only weak correlations among conductances 

– both within and across the compartments [14]. Thus, our current work employs a much more 

similar approach to Taylor et al., but in the system originally modeled by previous members of 

our group – the cardiac motor neurons – in which we had seen such correlations. When we 

combined a multicompartmental model, far more extensive first-hand biological data, and a more 

developed network level selection process, our results in this study were largely consistent with 

those of Taylor et al. [14].  That is, while we could detect some emergent correlations within and 

across model neuron compartments, these were overall weaker correlations (rho-values between 

-0.2 and +0.2).  

 There are (at least) two overall interpretations of these results. First, that the intrinsic 

conductance correlations found in biological neurons across a wide range of nervous systems are 

not fundamentally necessary to generate baseline functional output of neurons. In other words, 

while these relationships may confer some adaptive advantage to neuron and network stability, 

and implicate compensatory relationships involved in homeostatic regulation, they are not in and 

of themselves fundamental to the solutions capable of producing a given output of a neuron in a 

network. However, we also interpret these results from a cautionary perspective. Taken together, 

the work of the Nair Lab shows that conductance correlations emerge in more narrowly 

constrained models with clear input-output relationships [15; 16]. However, as we add more free 

parameters to the system for which we have less knowledge of biological constraints – in this 

case multiple compartments and conductances therein, as well as synaptic inputs and network 

connectivity – we may lose the ability to detect fundamental relationships in biological neurons. 

If this is the case, then we predict that as more complex models become better informed by 

biological data, the possibility to recapitulate and interrogate these relationships may be more 

robust. 

 A more generous interpretation of the correlations found in the model would be that it is 

significant that such relationships can be detected at all given the conditions of the model 

experiment. Given that we had no biological data from which to inform the neurite compartment 

modeling, that the input-output relationships of LCs across individuals can be highly variable in 

biology, and that the network connectivity and synaptic drive from the pacemaker neurons had to 

be entirely inferred from the literature, we might predict that such levels of uncertainty would 

make it nearly impossible to expect biological relationships to emerge. Yet even though the 

correlation coefficients are somewhat weak, there is a clear constraint on conductances that 

emerge towards their correlated levels and several relationships are detectable as “signal above 

the noise.” Most provocative is the fact that the model conductance relationships we detect 

clearly are reflected as some of the most strongly correlated biological relationships at the level 

of channel mRNAs. While it would be inappropriate to overinterpret such disparate modalities of 

data (biological channel mRNAs are a long way removed from model membrane conductances), 

this provides some encouragement that better biological constraints to inform models going 
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forward may recapitulate more strongly the relationships seen in biology. This will further allow 

computational modeling to be a critical test bed for exploring the nature of these relationships 

and how they influence output and stability in neural networks.  

 

CONCLUSION 

We utilized a novel three-compartmental biophysical model of an LC that is morphologically 

realistic and includes provision for inputs from the SCs. The proposed single cell model 

facilitated incorporation of additional experimental observations related to both the SIZ 

compartment responses and to the presence of active conductances in the neurite compartment. 

Furthermore, the overall network model provided a framework to integrate this single cell 

information into a network and explore how it impacted and reproduced experimental 

observations at the network level. The model provided novel predictions of the differential roles 

of conductances in the neurite and the soma, and insights into the role of specific current 

channels in the neurite. The model also reproduced the varied responses seen experimentally and 

predicted the calcium currents in the neurite to be the underlying cause. Finally, we investigated 

whether conductance relationships would emerge from the selection process that would provide 

insight into the biological function of these interactions, as well as allow us to make inferences 

about the fundamental nature of such relationships in biological neurons. While we did detect 

some correlations among conductances within and across compartments, these were overall 

weaker relative to our previous work and that reported in the biological literature. We suggest 

that either such conductance relationships are not fundamentally necessary to generate a given 

output, or that much greater constraints on the free model parameters are needed to recapitulate 

these biological relationships. Overall, these predictions and the reasons why the LCs exhibit 

varied TEA responses are topics for future research. 
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List of Figures 

 

Figure 1. Biological realistic model of intact LC reproduces experimental data.  - still being 

updated 

 

Figure 2. Model predicts presence and roles of active conductances in neurite.   – finalized 

 

Figure 3. Scatterplots for pairwise relationships among soma, neurite, and across 

compartment conductances in models after selection level 3. 

 

Figure 4. Conductance distributions after selection of soma and neurite model 

conductances.  A.) Distribution of the conductances of models spared each level of selection; 

those selected on by the next level’s criteria. Each selection level (0, 1, 2, 3) represents the 

conductances that passed that level with the level 0 being those that were initially generated and 

level 3 being those which satisfied all criteria. Each level’s density plot is scaled independently. 

Because selection level 0 is performed on isolated somata, there are no conductances represented 

at this level for the neurite compartment. B.) Stacked density plots showing the subset of filtered 

at each level of selection. Four different levels of selection are shown (purple = 0, blue = 1, green 

= 2, yellow = 3). Each selection level (0, 1, 2, 3) represents the conductances of models that 

passed that level of selection, but not the subsequent – except for level 3, which shows those that 

were preserved through all levels of selection. This indicates for a given conductance value 

which level of selection is most frequent.   

Figure 5. Conductance correlations in the soma compartment of model neurons across 

selection levels.  TOP) Correlograms for four levels of selection (0-3) conductances in the 

somatic compartment of selected model neurons. Each pairwise correlation was calculated using 

Spearman’s correlation and reported as rho values. These plots demonstrate that correlations 

become more pronounced across subsequent levels of selection.   BOTTOM) Bar plot showing 

the rho-value of each pairwise correlation across levels of selection. These are the same data 

plotted in the top row but allow for more precise determination of the more pronounced 

correlations. 

Figure 6. Conductance correlations in the neurite compartment of model neurons across 

selection levels.  TOP) Correlograms for three levels of selection (1-3) conductances in the 

neurite compartment of selected model neurons as described in the previous figure.   BOTTOM) 

Bar plot showing the rho-value of each pairwise correlation across levels of selection. These are 

the same data plotted in the top row but allow for more precise determination of the more 

pronounced correlations. 

Figure 7. Scatterplots for pairwise relationships among channel mRNAs in biological LC 

motor neurons.  Each dot represents a single model and its values for a given pair of channel 

mRNAs. Along the diagonal are curves that represent the distribution of values for a given 

conductance as keyed along the top axis. Stronger correlations that were identified in selection 

levels 2 and 3 in the soma of model neurons are noted by the colored box corresponding to the 

channel mRNAs most likely to encode those conductances. The inset shows the correlation bar 

plot from Figure X with the conductance relationships corresponding to a given pair of channel 

mRNAs color coded to match the mRNA plot.  
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METHODS 

 

Experimental data to constrain single cell and network models. 

The biological data used to constrain both the LC model parameters (e.g., membrane currents) 

and outputs (of both ligated and intact LCs) were collected under the auspices of previously 

published work as follows. 

 Membrane currents were made in two-electrode voltage clamp while the network activity 

was silenced either with tetrodotoxin (TTX) or by severing the CG nerve trunk to remove the 

small cell (SC) inputs. The inward currents ICaS, ICaT, INaP, and ICAN were based on recordings and 

data as described in Ransdell et al. [1]. The outward currents IA, IKd, IBKKCa were based on 

recordings made in Ransdell et al. [2]. No biological characterization of SKKCa has been 

performed in crabs, and this work carries over SKKCa model currents as described in our 

previous CG modeling efforts [3]. Intracellular voltage follower recordings of ongoing network 

activity were made in all of the above studies, and from these we generated the biological 

parameters to constrain model network output. 

 Synaptic inputs (chemical) and connections (electrical) were characterized from these 

recordings as well. EPSPs were characterized by measuring the amplitude and time constant 

characteristics from intracellular LC recordings in intact networks. Single SC action potentials 

that yielded clear (non-summating) EPSPs were used to generate a population of post-synaptic 

potential measurements that constrained the chemical synapse inputs. Electrical coupling was 

measured directly in two-electrode current clamp as described in Lane et al. [3] 

 To characterize isolated LC soma responses with and without TEA, we used a current clamp 

protocol designed to emulate SC synaptic inputs. These chemical synapse stimulus protocols are 

described in detail in Ransdell et al. [1].  

 Finally, mRNA levels for ion channels were taken from previously published work by 

Northcutt et al. [4] and analyzed and formatted for use towards the experimental goals in this 

study. 

 

Development of biophysical single cell models   

The single cell model had three compartments: soma, neurite (neu) and spike-initiation-zone 

(SIZ). The soma compartment had a length of 120 µm and a diameter of 90 µm, and contained 9 

currents. The neurite had a length of 1380 µm, and a diameter of 12 µm, and contained 5 

currents. The SIZ had a length of 108 µm, and a diameter of 20 µm, and contained 3 currents. 

The Na and K channels in the SIZ were given fixed conductances of 0.2 and 0.4 S/cm2, 

respectively, and we assumed a specific capacitance of 1.5 F/cm2 for all three structures. The 

model for currents for each compartment followed the Hodgkin-Huxley equation formulation 

(Eqn. 1)  
 

𝐶𝑠𝑜𝑚𝑎
𝑑𝑉

𝑑𝑡
= −𝐼𝐴 − 𝐼𝐾𝑑 − 𝐼𝑁𝑎𝑝 − 𝐼𝐶𝑎𝑆 − 𝐼𝐶𝑎𝑇 − 𝐼𝐶𝐴𝑁 − 𝐼𝑆𝐾𝐾𝐶𝑎 − 𝐼𝐵𝐾𝐾𝐶𝑎 − 𝐼𝑙𝑒𝑎𝑘 −  𝐼𝑠𝑜𝑚𝑎−𝑡𝑜−𝑛𝑒𝑢 

          (Soma) 

𝐶𝑛𝑒𝑢
𝑑𝑉

𝑑𝑡
=  −𝐼𝐶𝑎𝑇 − 𝐼𝐶𝑎𝑆 − 𝐼𝐵𝐾𝐾𝐶𝑎 − 𝐼𝑁𝑎𝑃 − 𝐼𝑙𝑒𝑎𝑘  − 𝐼𝑛𝑒𝑢−𝑡𝑜−𝑠𝑜𝑚𝑎  (Neurite) 

𝐶𝑠𝑖𝑧
𝑑𝑉

𝑑𝑡
=  −𝐼𝑁𝑎 − 𝐼𝐾𝑑𝑟 − 𝐼𝑙𝑒𝑎𝑘 − 𝐼𝑠𝑖𝑧−𝑡𝑜−𝑛𝑒𝑢       (SIZ)                  (1) 

where the currents on the right-hand side of the first equation are: A-type potassium (IA), delayed 

rectifier (IKd), persistent sodium (INap), slow persistent calcium (ICaS),  transient calcium (ICaT), 

calcium-dependent non-selective cation (ICAN), twSo calcium-dependent potassium currents 
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(ISKKCa and IBKKCa), leak (ILeak) and the injected current (Iinj). The individual currents were 

modeled as 𝐼𝑐 = 𝑔𝑚𝑎𝑥,𝑐𝑚𝑝ℎ𝑞(𝑉 − 𝐸𝑐), where 𝑔𝑚𝑎𝑥,𝑐 is its maximal conductance, m its 

activation variable (with exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐 its 

reversal potential (a similar equation is used for the synaptic current but without m and h). The 

kinetic equation for each of the gating functions x (m or h) takes the form 

                                        
𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
                                                  (2)  

where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 𝜏𝑥 is the 

voltage- and/or Ca2+- dependent time constant. The equations for the active channels in the soma 

compartment were fit using biological recordings for these currents from our Lab from the 

cardiac ganglion of Cancer borealis. These currents were fit as follows: Voltage clamp data 

obtained with Clampfit were imported into MATLAB and fit using the MATLAB curve-fitting 

toolbox. Current data were converted to conductance data by dividing by (Vm – ERev), where ERev 

was as follows: ENa = +55 mV, EK = -80 mV, ECa = +45 mV, ELeak was chosen uniformly 

randomly from [-67.1,50.6], and ECAN = -30 mV. The time axis was adjusted to start from 0 for 

the beginning of the clamp. The following parametrization was used: 

                    𝑔(𝑡) = ∑ 𝐴𝑖 (1 − exp (−𝑡
𝜏𝑚,𝑖⁄ )) (ℎ𝑖 − (ℎ𝑖 − 1) exp (−𝑡

𝜏ℎ,𝑖⁄ ))𝑛
𝑖=1    (3) 

In this equation, Ai = Gi,max × mi was the maximal conductance of the current i multiplied by its 

voltage-dependent steady-state activation (mi), hi was the steady-state inactivation value, and τm,i 

and τh,i were the time constants with which activation and inactivation reached steady-state, 

respectively. This fitting procedure assumed that ionic currents were completely deactivated m=0 

and deinactivated (h=1) prior to the onset of the voltage clamp. This was fit to each trace in 

voltage clamp experiment, giving values of each of the four parameters for each test clamp 

voltage (Vc). These values were then fit for each current as functions of Vc using the general 

forms as stated below. This procedure yielded equations for the currents recorded in voltage 

clamp that could be used in simulations according to the Hodgkin-Huxley formalism. 

 𝐴(𝑉𝑐) = 𝐺𝑚𝑎𝑥 × 𝑚(𝑉𝑐) = 𝐺𝑚𝑎𝑥 × (1 + exp((𝑉𝑐 − 𝑉𝑚,1/2) 𝑘𝑚⁄ ))
−1

ℎ(𝑉𝑐) = (1 + exp((𝑉𝑐 − 𝑉ℎ,1/2) 𝑘ℎ⁄ ))
−1

𝜏𝑚(𝑉𝑐) = 𝜏𝑏𝑎𝑠𝑒,𝑚 + 𝜏𝑎𝑚𝑝,𝑚(exp((𝑉𝑐 − 𝑉𝜏1,𝑚) 𝑘𝜏1,𝑚⁄ ) + exp((𝑉𝑐 − 𝑉𝜏2,𝑚) 𝑘𝜏2,𝑚⁄ ))
−1

𝜏ℎ(𝑉𝑐) = 𝜏𝑏𝑎𝑠𝑒,ℎ + 𝜏𝑎𝑚𝑝,ℎ(exp((𝑉𝑐 − 𝑉𝜏1,ℎ) 𝑘𝜏1,ℎ⁄ ) + exp((𝑉𝑐 − 𝑉𝜏2,ℎ) 𝑘𝜏2,ℎ⁄ ))
−1

  

(4)   

All the maximal conductances (Gi,max) were in µS, time constants in ms and voltages in mV (4) 

 

Calcium dynamics. Intracellular calcium modulates the conductances of the calcium-activated 

potassium currents (BKKCa and SKKCa), calcium-activated nonselective cation current (CAN) 

and also influences the magnitude of the inward calcium current in the LC [5]. A calcium pool 

was modeled in the LC with its concentration governed by the first-order dynamics [6; 7] below: 

𝜏𝐶𝑎

𝑑[𝐶𝑎2+]

𝑑𝑡
=  −𝐹 × 𝐼𝐶𝑎 − ([𝐶𝑎2+] − [𝐶𝑎2+]𝑟𝑒𝑠𝑡) 

where F = 0.256 μM/nA is the constant specifying the amount of calcium influx that results per 

unit (nanoampere) inward calcium current; τCa represents the calcium removal rate from the pool; 

and [Ca2+]rest = 0.5 μM. Voltage-clamp experiments of the calcium current in the our lab showed 

the calcium buffering time constant to be around 690 ms (τCa).  
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Searching for viable biophysical LC neurons within the model parameter space 

We used a three-stage rejection protocol to select viable networks with five distinct LC cells, 

with each LC satisfying biological single cell and current injection responses. For the single cell 

model search, we started with a set 100,000 three-compartment cell models with the 14 

conductances and the small cell frequency selected randomly from uniform distributions of 

values between their respective minimum and maximums given in table 3. The SC frequency 

range of 16-32 Hz was determined from SC recordings from our lab (see Supplementary 

Materials, table 1). The recordings showed that the combined small and medium spike frequency 

averages had minimum and maximum frequency of 16 Hz and 32 Hz, respectively.  

 In stage 1 of the rejection protocol, ligated soma (soma + neurite) models were tested for 

passive properties of resting membrane potential, time constant and input resistance. Cells for 

which these values were within ranges in table 4 were retained. In stage 2, SIZ was added to the 

passing cells and a synaptic input (spike train mimicking SC input) was provided. Based on 

biological recordings from our Lab, on average, the average values for an SC burst were as 

follows: period was 1000 ms, and the synaptic input frequency increase for 600 ms starting at 

300 ms. The initial SC burst was for 300 ms, and this was followed with a higher frequency for 

600 ms, i.e., till 900 ms, after which it fell back to the original frequency and terminated at 1000 

ms. The synapse had a fixed gain of 0.0309 S in LV2. The reversal potential was chosen as -15 

mv, from STG studies. This was chosen from a range of values as the one that produced the most 

passing cells in the tested sample. Values were picked from a range between 0 -0.2 uS, since 0.2 

uS restored synchrony in TEA conditions [3]. The frequency of SC input is randomly picked 

such that the maximum frequency of the input is chosen. For example, for the first iteration, a 

number between 16 and 17 is chosen, say 16.4, and the input at 300 -600 ms would be 40% of  

16.4, then the for 600 ms would be 16.4 hz, then for 100ms would be 40% of 16.4 Hz. The 

current was delivered to the SIZ using Neuron’s VecStim. Events were delivered to VecStim 

from a csv which was generated based on the random SCfrequency chosen. Each cell was tested 

at each frequency interval between 16 and 32 Hz.i.e., a random frequency between 16-17, then a 

random frequency between 17-18, etc. Each network was also tested at each frequency interval. 

The reason for using randomly chosen intervals rather than fixed numbers was so that more 

frequencies would be used and the distribution of passing cells across frequencies would be more 

even. The network model uses gap junctions between LC1 and LC2 and LC4 and LC5, with gap 

junctions between all SIZs. The coupling conductance between the large cells is  0.65 S, and is 

0.067 S between the SIZs. There is no recorded coupling conductance for SIZ, so this 

conductance was chosen based on what produced a passing network, however a previous study 

reported coupling conductances between the LC's to be between 0.4-0.8 uS [3]. When perfused 

with TEA, the cells shows adaptive conductance changes to be between 0.8-1.2.  

 

 Both control and post-TEA case are considered and intact cells whose resulting membrane 

potential waveform characteristics were within the ranges shown in table 6 were retained. In a 

third stage, we assemble networks and select viable ones as described next. 

 

Determination of viable network models using the selected single cell models 

First, we randomly selected five distinct LCs for the network from the pool of intact LCs that 

pass Stage 2. Then we connected an SIZ to the distal end of the neurite of each LC, and attached 

a synapse to the SIZ. Also, we connected the soma compartments of LCs 4 and 5 and of LCs 1 

and 2 with separate gap junction values that were determined experimentally in our lab (Table 3). 
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The SC pacemaker drive was delivered as a spike train to the five excitatory synapses on each 

SIZ. It was observed biologically that frequency of SC firing increases within the slow wave 

oscillation cycle of LCs. The SIZ compartment and the excitatory SC-SIZ synapse configuration 

was identical for each LC, i.e., we did not vary model parameters for these compartments and 

synapses. 

 Experimental TEA block was simulated by reducing the conductances GBKKCa, GKd and GA by 

97% in the LCs and neurite [1]. Synchrony scores were computed by using the R2 between the 

large cells 3 and 5. To determine the range for synchrony scores, we examined five experimental 

recordings for LC3 and LC5 (Unpublished data). Taking the first two minutes of TEA exposure 

(acute), we measured the R2 between LC3 and LC5 recordings. We chose the maximum of TEA 

synchrony to be the lowest control synchrony score minus 1.5 times the control interquartile 

range. The lowest control synchrony score was 0.9425, and the control interquartile range was 

0.0318, therefore the maximum of TEA synchrony was taken to be 0.8948. The cells were 

considered desynchronized if the synchrony score was below 0.9425. For the synchrony score 

between LC3 and LC5, we considered anything below 0.89 to be asynchronous, and anything 

above 0.9425 to be demonstrating synchrony. 

 After performing control and TEA runs using these networks, in the third stage, we rejected 

networks that had waveform characteristics outside the ranges shown in Table 7. We rejected 

networks that showed excessive TEA synchrony between LC3 and LC5, or insufficient spikes 

per burst since neither behavior was observed in biological traces. This left xx networks that 

reproduced the biological trends and these were used in subsequent analyses to explore potential 

conductance changes that could restore network synchrony.   
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Table 1. Ranges of properties for selecting valid LCs 

Parameter Min Max 

Vrest -53 mV -39 mV 

Rin 0.852 MΩ 13.3 MΩ 

Tau 7.3 ms 24.5 ms 

VPeak_PreTEA 7.95 mV 33.76 mV 

Area_PreTEA 2867 mV.ms 18373 mV.ms 

Area_PostTEA 5178 mV.ms 36853 mV.ms 

 

 

Table 2. Maximal conductance ranges 

Current G_min (S/cm2) G_max (S/cm2) 

CaT 0.00016 0.00031 

CaS 6.50E-05 0.00013 

CAN 7.00E-05 1.50E-04 

NaP 3.50E-05 2.30E-04 

Leak (All Segments) 6.20E-05 9.70E-04 

KA 0.000172 0.0019 

Kd (Kd1) 0.000165 0.00127 

KCa 0.00079 0.0061 

SKKCa 0.00088 0.002 

Kd2 0.000091 0.0005 

 

Table 3. Ranges of connective and input parameters used in Stage 2&3 rejection 

Parameter Min Max 

Exp2Syn Tau1 10 ms 

Exp2Syn Tau2 60 ms 

Exp2Syn reversal potential 0 mV 

NetCon weight 0.01 0.1 

NetStim spiking frequency 16Hz 32Hz 

NetStime noise level 0.8 

LocalGap R 1 MΩ 

InterGap R 1MΩ 15 MΩ 
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Table 4. Model Current Parameters
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Table 5. Ranges of waveform properties for selecting valid intact cells 

Parameter Min Max 

Spike number per burst 4 8 

Avg LC spiking frequency 4 Hz 8 Hz 

VPeak_PreTEA 7 mV 30 mV 

Area_PreTEA 2867 mV.ms 18373 mV.ms 

Spike number per burst Post TEA 
>1.13 x PreTEA 

SPB 
none 

AVG LC spiking frequency 
>1.21x PreTEA 

frequency 
none 

VPeak Post TEA 
>1.3x PreTEA 

Vpeak 
none 

R2 synchrony LC3 to LC5 control 0.95 1.0 

R2 synchrony LC3 to LC5 in TEA 0 0.89 

 

Table 6. Ranges of waveform and synchrony properties for selecting valid networks 

Parameter Min Max 

Spike number per burst 4 8 

Avg LC spiking frequency 4 Hz 8 Hz 

VPeak_PreTEA 7 mV 30 mV 

Spike number per burst Post TEA 
>1.13 x PreTEA 

SPB 
none 

AVG LC spiking frequency 
>1.21x PreTEA 

frequency 
none 

VPeak Post TEA 
>1.3x PreTEA 

Vpeak 
none 

R2 synchrony LC3 to LC5 control 0.95 1.0 

R2 synchrony LC3 to LC5 in TEA 0 0.89 
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Figure 1. First model of intact LC reproduces experimental data. (A) Model network. Gap Junctions are formed between LC1-2 and LC4-5. Gap 

Junctions modeled between SIZs using the same fixed conductance value with SC input to each SIZ. (B) Experimental stimulus protocol response of 

ligated cell in control and TEA conditions -from Jing’s work. Corresponding model responses are shown on the right. (C) Same plots as in panel B, 

but for intact cells; (D) Variability in experimental TEA responses from our lab. 
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 Figure 2-A   Figure 2-B 

 
Figure 2. Model predicts presence and roles of active conductances in neurite.  

(J) Current traces. Top: left, middle right: stimulus protocol as used in the biology lab, Neurite current with soma detached and all currents present, 

Neurite current with soma detached and only leak current present. 

Bottom: left, right: Neurite current of intact cell with all currents present, Neurite current of intact cell with only leak present. 

All model traces are from a cell in a network. 
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Figure 3. Scatterplots for pairwise relationships among soma, neurite, and across compartment conductances in models of selection level 3.  

Each dot represents a single model and its values for a given pair of conductances. Along the diagonal are curves that represent the distribution of 

values for a given conductance as keyed along the bottom axis. Stronger correlations are noted by the increasing intensity of background color for 

each pairwise relationship.  
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Figure 4. Conductance distributions after selection of soma and neurite model conductances.   

A.) Distribution of the conductances of models spared each level of selection; those selected on by the next level’s criteria. Each selection level (0, 1, 

2, 3) represents the conductances that passed that level with the level 0 being those that were initially generated and level 3 being those which 

satisfied all criteria. Each level’s density plot is scaled independently. Because selection level 0 is performed on isolated somata, there are no 

conductances represented at this level for the neurite compartment. B.) Stacked density plots showing the subset of filtered at each level of selection. 

Four different levels of selection are shown (purple = 0, blue = 1, green = 2, yellow = 3). Each selection level (0, 1, 2, 3) represents the conductances 

of models that passed that level of selection, but not the subsequent – with the exception of level 3, which shows those that were preserved through 

all levels of selection. This indicates for a given conductance value which level of selection is most frequent.   
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Figure 5D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Conductance correlations in the soma 

compartment of model neurons across selection 

levels.  TOP) Correlograms for four levels of selection 

(0-3) conductances in the somatic compartment of 

selected model neurons. Each pairwise correlation was 

calculated using Spearman’s correlation and reported as 

rho values. These plots demonstrate that correlations 

become more pronounced across subsequent levels of 

selection.   BOTTOM) Bar plot showing the rho-value 

of each pairwise correlation across levels of selection. 

These are the same data plotted in the top row but allow 

for more precise determination of the more pronounced 

correlations. 
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Figure 6. Conductance correlations in the neurite compartment of model neurons across selection levels.  TOP) Correlograms for three levels 

of selection (1-3) conductances in the neurite compartment of selected model neurons as described in the previous figure.   BOTTOM) Bar plot 

showing the rho-value of each pairwise correlation across levels of selection. These are the same data plotted in the top row but allow for more 

precise determination of the more pronounced correlations. 
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Figure 7. Scatterplots for pairwise 

relationships among channel mRNAs in 

biological LC motor neurons.  Each dot 

represents a single model and its values for a 

given pair of channel mRNAs. Along the 

diagonal are curves that represent the 

distribution of values for a given conductance 

as keyed along the top axis. Stronger 

correlations that were identified in selection 

levels 2 and 3 in the soma of model neurons 

are noted by the colored box corresponding to 

the channel mRNAs most likely to encode 

those conductances. The inset shows the 

correlation bar plot from Figure X with the 

conductance relationships corresponding to a 

given pair of channel mRNAs color coded to 

match the mRNA plot.  
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