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Abstract 18 

Pancreatic progenitor cells (PPC) are an early developmental multipotent cell type that give rise to mature 19 

endocrine, exocrine, and ductal cells. To investigate the extent to which regulatory variants active in PPC 20 

contribute to pancreatic complex traits and disease in the adult, we derived PPC from induced pluripotent stem 21 

cells (iPSCs) of nine unrelated individuals and generated single cell profiles of chromatin accessibility (snATAC-22 

seq) and transcriptome (scRNA-seq). While  iPSC-PPC differentiation was asynchronous and included cell types 23 

from early to late developmental stages, we found that the predominant cell type consisted of NKX6-1+ 24 

progenitors. Genetic characterization using snATAC-seq identified 86,261 regulatory variants that either 25 

displayed chromatin allelic bias and/or were predicted to affect active transcription factor (TF) binding sites. 26 

Integration of these regulatory variants with 380 fine-mapped type 2 diabetes (T2D) risk loci identified regulatory 27 

variants in 209 of these loci that are functional in iPSC-PPC, either by affecting transcription factor binding or 28 

through association with allelic effects on chromatin accessibility. The PPC active regulatory variants in 65 of 29 

these loci showed strong evidence of causally underlying the association with T2D. Our study shows that studying 30 

the functional associations of regulatory variation in iPSC-PPC enables the identification and characterization of 31 

causal SNPs for adult Type 2 Diabetes.   32 
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Introduction 33 

In early development the pancreas is formed from pancreatic progenitor cells (PPCs), which are a multipotent cell 34 

type that has the potential to give rise to endocrine cells (clusters of hormone secreting cells, such , , , and  35 

cells) and exocrine cells (i.e. acinar and ductal cells) (Cano et al., 2014; Jennings et al., 2015). While PPCs are 36 

precursors to mature pancreas cell types, the extent to which regulatory variants active in PPCs contribute to 37 

pancreatic complex traits and disease in the adult is currently not known. Recently it has become possible to use 38 

human pluripotent stem cells to derive PPCs (Pagliuca et al., 2014; Rezania et al., 2014), which provide a virtually 39 

unlimited source of cells to identify and characterize regulatory variants. Given that regulatory variation is largely 40 

located in enhancers and promoters (Pennacchio et al., 2013), ATAC-seq provides an optimal method to identify 41 

and characterize variants in PPCs that directly alter transcription factor binding and downstream gene expression. 42 

Examining induced pluripotent stem cell derived PPCs (iPSC-PPCs) from whole-genome sequenced unrelated 43 

individuals using ATAC-seq could enable identification of regulatory variation in PPCs and determine whether 44 

or not they are associated with adult pancreatic traits and diseases such as Type 2 Diabetes (T2D).  45 

PPCs are characterized as a population of cells that have differentiated beyond the pancreatic foregut, committed 46 

to a pancreatic progenitor fate, and marked by the co-expression of PDX1 and NKX6-1 (Cano et al., 2014; Jennings 47 

et al., 2015). A reference set of embryonic stem cell-derived PPCs (ESC-PPC) obtained across multiple 48 

differentiation stages have shown the presence of multiple cell types, including pancreatic progenitors, endocrine 49 

cells and exocrine cells (Veres et al., 2019), suggesting that stem cell differentiation of PPCs is likely 50 

asynchronous. It is currently unclear how closely iPSC-PPC will be to ESC-PPC, i.e., whether similar cell types 51 

resulting from asynchronous differentiation will be observed. Furthermore, the reproducibility of pancreatic 52 

differentiation across iPSC lines derived from different individuals is unknown.   53 

 54 
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The development of single nuclear ATAC-seq (snATAC-seq) has become a powerful tool to investigate the 55 

mechanisms underlying the function of regulatory variants (Chiou et al., 2021; Rai et al., 2020). snATAC-seq 56 

pinpoints the locations of regulatory elements across the genome; and integration with motif footprinting and 57 

transcription factor binding prediction tools enable the identification of transcription factor binding sites 58 

associated with each snATAC-seq peak as well as a determination of the allelic effects of each SNP on 59 

transcription factor binding (Bentsen et al., 2020; Ghandi et al., 2014; Ghandi et al., 2016; Yan et al., 2021). 60 

Therefore, snATAC-seq provides an optimal approach to characterize regulatory genetic variation and to identify 61 

molecular mechanisms (i.e. transcription factor binding) underlying the associations between genotype and T2D.  62 

The genetic variants associated with the most common pancreatic disease, T2D,  have been investigated in 63 

millions of people, resulting in the identification of more than 500 loci (Mahajan et al., 2018; Vujkovic et al., 64 

2020). Although several studies have successfully identified the likely causal variant in a small subset of T2D-65 

associated loci (Chiou et al., 2021; Mahajan et al., 2018; Varshney et al., 2017), the vast majority of the signals 66 

still remains uncharacterized and typically lie within regulatory regions. Given the importance of many 67 

transcription factors in regulating pancreatic cells’ function, it is not surprising that many non-coding validated 68 

T2D risk variants overlap transcription factor binding sites (Chiou et al., 2021; Geusz et al., 2020; Greenwald et 69 

al., 2019; Mahajan et al., 2018; Rai et al., 2020; Thurner et al., 2018), indicating that snATAC-seq provides an 70 

optimal method to identify the molecular mechanisms underlying the role of regulatory variants in this disease.  71 

Here, we investigated the potential of iPSC-PPC as a model system to study the associations between genetic 72 

variation, gene regulation and T2D. We used nine iPSC lines from unrelated individuals (Panopoulos et al., 2017) 73 

and a 15-day differentiation protocol to obtain ten iPSC-PPC samples. We characterized these iPSC-PPC samples 74 

using scRNA-seq and snATAC-seq and found that, while differentiation occurs asynchronously across iPSC lines, 75 

the vast majority of derived cells are NKX6-1+ progenitors, which represent early pancreatic lineage to endocrine 76 

cells. We investigated the associations between genetic variation and the function of chromatin accessible regions 77 
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in iPSC-PPC and observed that 86,261 regulatory variants either overlapped footprints of transcription factors 78 

active in iPSC-PPC, were predicted to have allelic effects on transcription factor binding sites, and/or were 79 

demonstrated to have allelic-specific effects on snATAC-seq signals. We next investigated the overlap between 80 

these variants and SNPs included in 380 functional T2D credible sets from a recent GWAS (Mahajan et al., 2018) 81 

and found that 209 had SNPs that either overlapped binding sites of active transcription factors and/or were 82 

associated with allelic effects, including 65 that showed strong evidence of being causal. This study demonstrates 83 

that many T2D risk variants overlap regulatory elements active in iPSC-PPC and display allelic effects due to 84 

altered transcription factor binding, indicating that iPSC-PPC are a suitable model system to study the genetics 85 

of T2D in adults.   86 
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Results 87 

We used iPSC lines from nine unrelated iPSCORE individuals (Panopoulos et al., 2017) (Table S1) and a 15-day 88 

differentiation protocol to derive ten iPSC-derived pancreatic progenitor (iPSC-PPC) samples (one iPSC clone 89 

was differentiated twice; Figure 1A). To perform a baseline assessment of iPSC-PPC differentiation efficiency, 90 

we measured the fraction of cells positive for two hallmark PPC transcription factors, PDX1 and NKX6-1, using 91 

flow cytometry, and observed that the ten samples differentiated with varying efficiency (Figure S1). The fraction 92 

of cells that stained positive for PDX1 ranged from 22.1 to 96.4%, and the fraction that was double-positive 93 

stained for PDX1 and NKX6-1 ranged from 9.4 to 91.7% (Figure S1B). As expression of NKX6-1 occurs later 94 

than PDX1 expression during development, the lower fraction of double-positive cells reflect asynchronous 95 

differentiation resulting in pancreatic progenitor cells at slightly different stages of maturity.  96 

iPSC-PPC cell types characterized by scRNA-seq and snATAC-seq  97 

To better understand the cellular heterogeneity of the iPSC-PPCs, we performed scRNA-seq on one iPSC clone 98 

and all ten iPSC-PPC samples (83,971 cells, 18,217 expressed genes), as well as snATAC-seq on seven of these 99 

samples (26,564 nuclei, 288,813 peaks). We integrated the scRNA-seq samples using Seurat (Butler et al., 2018) 100 

and detected eight distinct cell clusters (Figure 1B,C, Figure S2, Figure S3, Table S2). We found that the majority 101 

of the cells belonged to one cluster (52,014 cells, 61.94%). This observation was also reflected in snATAC-seq 102 

where a large proportion of nuclei (24,560 nuclei, 92.46%) belonged to a single cluster despite the fewer number 103 

of clusters (five) detected in snATAC-seq (Figure 1D,E, Figure S4, Table S4).  104 

To annotate each cell type in scRNA-seq, we compared the expression levels of marker genes in each of the eight 105 

clusters with the expression levels in eight pancreatic progenitor cell types over four different stages during 106 

embryonic stem cell differentiation in the ESC-PPC reference study (Figure 1F, Table S3) (Veres et al., 2019). 107 

The Veres et al. study (Veres et al., 2019) included cell types corresponding to populations in the iPSC-PPCs 108 
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(PDX1+ progenitors, NKX6-1+ progenitors, endocrine cells, and non-endocrine cells) as well as advanced cells 109 

(α and β cells) not represented in the iPSC-PPCs. For the cell types present in both studies, we identified clusters 110 

within the iPSC-PPCs that exhibit similar expression profiles as the corresponding cells in the ESC-PPCs: PDX1+ 111 

progenitors, which expressed the transcription factors GATA4, GATA6, and PDX1, but not NKX6-1, indicating 112 

that these cells are not yet fully committed towards pancreatic and beta cell differentiation (Xuan and Sussel, 113 

2016); pancreatic progenitor cells (hereafter referred to as NKX6-1+ progenitors), which expressed both PDX1 114 

and NKX6-1 and corresponded to the predominant cluster in scRNA-seq;  endocrine cells which expressed both 115 

endocrine markers PAX6 and CHGA and the pancreatic hormones INS, GCG, and SST; and non-endocrine cells, 116 

which we identified as precursors for ductal cells (referred to as early ductal), expressed endothelial marker FLT1 117 

(Pictet et al., 1972; Reichert and Rustgi, 2011). Similar to Veres et al., we identified a subcluster within the 118 

NKX6-1+ progenitors that expressed cell division markers (TOP2A, CENPF, AURKB), indicating that the cells 119 

in this cluster were replicating NKX6-1+ progenitors. We also identified primitive cells in the iPSC-PPCs not 120 

represented in the Veres et al. study including mesendoderm and early definitive endoderm, which expressed 121 

markers for early embryonic development (COL1A1, COL1A2, AFP, and APOA2) (Nowotschin et al., 2019; 122 

Saykali et al., 2019; Teo et al., 2015) and iPSCs, which expressed the stem cell marker POUF51 and corresponded 123 

to the iPSC scRNA-seq sample. These results are consistent with the differentiation protocol used in Veres et al. 124 

(Veres et al., 2019), generating similar albeit more advanced cell types than the differentiation protocol we used 125 

to generate the iPSC-PPCs. 126 

While the nine iPSC-PPC samples all consisted of multiple cell types, the vast majority of the scRNA-seq cells 127 

were PDX1+ progenitors, NKX6-1+ progenitors or replicating NKX6-1+ progenitors. To determine if our results 128 

reflected the differentiation efficiency measured by flow cytometry, we compared the fraction of NKX6-1+ 129 

progenitors and replicating NKX6-1+ progenitors, with the fraction of cells that stained double-positive for PDX1 130 

and NKX6-1. We found that these two independent measurements were highly correlated (R = 0.843, p = 0.00218; 131 
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Pearson’s correlation, Figure S7A), indicating that scRNA-seq captured the variable differentiation efficiency 132 

observed in FACS. 133 

To annotate the snATAC-seq clusters, we compared motif activity scores of pancreatic-associated transcription 134 

factors from chromVAR (Schep et al., 2017) with their gene expression levels from scRNA-seq (Figure 1G, Table 135 

S4). While most cell types could be identified in both scRNA-seq and snATAC-seq, we observed several 136 

differences (Figure 1, Figure S5, Figure S6, Table S5, Table S6). Both technologies identified mesendoderm 137 

(strong motif activity scores for TFAP2A, TFAP2B, (Raap et al., 2021; Wang et al., 2011)), NKX6-1+ progenitors 138 

(GATA4/6, HNF4A, FOXA1/2 PDX1, NKX6-1), endocrine (HNF1A, MAFA, NEUROD1, NKX2-2), and early 139 

ductal (ETV1, ETS1, ETS2) cell type populations. However, with scRNA-seq, we were able to distinguish 140 

clusters of early definitive endoderm cells and PDX1+ progenitors, which could not be distinguished in snATAC-141 

seq from NKX6-1+ progenitors, which were the predominant cell type. Furthermore, snATAC-seq could not 142 

discriminate between replicating and non-replicating iPSC-PPC. However, when we compared the cell type 143 

fractions of NKX6-1+ progenitors in snATAC-seq with the fraction of early definitive endoderm, PDX1+, NKX6-144 

1+ progenitors, and replicating cells in scRNA-seq, the fractions were significantly correlated (R = 0.956, p = 145 

0.000783, Figure S7B).  Interestingly, we identified two distinct endocrine cell clusters using snATAC-seq, which 146 

differed in motif activity levels of early endocrine (SOX4, SOX10 and SOX13 (Lioubinski et al., 2003; Xu et al., 147 

2015)) and late endocrine transcription factors (NKX2-2 and NEUROD1 (Doyle and Sussel, 2007; Itkin-Ansari 148 

et al., 2005; Mastracci et al., 2013)). Because the early endocrine cells also showed high motif activity levels for 149 

PAX and RFX (Figure 1G), which regulate endocrine differentiation, we determined that these cells are 150 

committed to endocrine lineage but have not yet fully developed into mature endocrine cells. Overall, while our 151 

results show that while scRNA-seq and snATAC-seq  capture slightly different iPSC-PPC cell types, the 152 

predominant cell type across all samples in both assays consisted of NKX6-1+ progenitors.  153 

Endocrine cells express combinations of three pancreatic endocrine hormones 154 
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ESC-PPCs have been shown to produce polyhormonal endocrine cells (Shahjalal et al., 2018). We tested whether 155 

the 952 cells in the endocrine cluster expressed combinations of INS (insulin), GCG (glucagon), and SST 156 

(somatostatin, Figure S8). We observed that 50.7% of endocrine cells expressed INS, 18.7% expressed GCG, and 157 

30.9% expressed SST. Of these cells, 23.7% expressed only one of the three hormones and 32.8% expressed at 158 

least two hormones, with INS and SST being the most common combination (16%) and 11% expressed all three 159 

hormones. While these hormones were also expressed in non-endocrine cell clusters, they were expressed in less 160 

than 5% of the cells. These results suggest that, while the protocol results in asynchronous differentiation, NKX6-161 

1+ progenitors, which are the most common cell type in the iPSC-PPCs, represent early pancreatic lineage to 162 

endocrine cells.  163 

Characterizing regulatory genetic variation in snATAC-seq 164 

To understand the potential of iPSC-PPC as a model system to study pancreas regulatory  genetics, we 165 

investigated the potential effects of variants overlapping 203,895 autosomal snATAC-seq peaks using three 166 

methods: 1) by identifying active transcription footprints and detecting their overlapping variants, using TOBIAS 167 

(Bentsen et al., 2020); 2) by predicting the allelic effects of variants in snATAC-seq peaks, using deltaSVM 168 

(Ghandi et al., 2014; Ghandi et al., 2016; Yan et al., 2021); and 3) by measuring allelic-specific effects (ASE) on 169 

heterozygous variants in snATAC-seq peaks.  170 

To annotate accessible chromatin regions in iPSC-PPC, we identified 3,871,477 unique footprints for 746 171 

transcription factors at 57,797 snATAC-seq peaks (28.3%) using TOBIAS (Bentsen et al., 2020; Stormo, 2013). 172 

We observed multiple footprints at the same peak for two reasons: 1) multiple transcription factors may bind to 173 

the same peak; and 2) since TOBIAS identifies transcription factor footprints independently for each transcription 174 

factor and determines the presence of a bound footprint based on each transcription factor motif, it cannot 175 

distinguish between transcription factors with highly similar motifs (for example: NKX6-1 and NKX6-2); 176 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/


10 

 

therefore, multiple transcription factors in the same family may be identified as bound to the same footprint. To 177 

identify variants with potential effects on transcription factor binding in iPSC-PPC, we selected 325,942 common 178 

SNPs (≥ 5% minor allele frequency across 273 iPSCORE individuals (Panopoulos et al., 2017)) in 134,065 179 

snATAC-seq peaks (65.8% of all peaks) and found that 35,248 (10.8%) overlapped at least one of the 3,871,477 180 

active transcription factor footprints, corresponding to 19,775 peaks (9.7%) and 107,354 footprints (Table S7). 181 

Although TOBIAS identifies transcription factor footprints, indicating the genomic loci where a transcription 182 

factor is bound, it does not provide any information or prediction about the potential effects of the genotype of 183 

variants on transcription factor binding.  184 

Next, to examine the allelic effects of variants in the snATAC-seq peaks we used recently published HT-SELEX 185 

data (Yan et al., 2021) generated for 94 transcription factors on ~100,000 SNPs at T2D loci to train the deltaSVM 186 

model (Ghandi et al., 2014; Ghandi et al., 2016; Yan et al., 2021). This allowed us to use deltaSVM to predict the 187 

allelic effects of the 325,942 common SNPs on the binding of the 94 transcription factors in the 134,065 snATAC-188 

seq peaks. We found that 52,653 SNPs (16.2%) in 42,511 peaks (20.8%) were predicted to overlap transcription 189 

factor binding sites and to have allelic effects on their binding (Table S7, Table S8). To validate these predictions, 190 

we investigated their overlap with the transcription factor footprints determined using TOBIAS for 89 191 

transcription factors tested with both methods. For each of these transcription factors, we confirmed that variants 192 

predicted by deltaSVM to overlap bound transcription factor binding sites were more likely than expected to 193 

overlap the transcription factor footprint identified by TOBIAS (p = 2.2 x 10-47, t-test, Figure S9A, Table S9) and 194 

found a negative association between deltaSVM score and distance from each transcription factor footprint (p = 195 

4.3 x 10-15, t-test, Figure S9B).  196 

Finally, to measure allelic-specific effects in 48,738 snATAC-seq peaks that overlapped at least one SNP 197 

heterozygous in one or more of the seven tested samples (110,290 SNPs in total, including 86,660 of the ones 198 

tested with TOBIAS and deltaSVM, Table S7, Table S10), we utilized genotypes of the nine iPSCORE 199 
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individuals from whole genome sequencing (DeBoever et al., 2017; Panopoulos et al., 2017). We divided SNPs 200 

according to whether they were heterozygous in one sample (termed “singletons” hereafter: 60,742 SNPs) or two 201 

or more samples (“multiplets”: 49,548 SNPs, Figure S10). We found 3,862 singleton and 3,487 multiplet SNPs 202 

with ASE (7,349 in total, FDR < 0.05, binomial test, adjusted using Benjamini-Hochberg’s method) in 5,583 203 

peaks (2.25% of all peaks). We compared the allelic effects measured by ASE with the estimations by deltaSVM 204 

and observed a significantly positive correlation (R = 0.26, p-value = 3.0 x 10-34, Figure 2A). We also computed 205 

the correlation between snATAC-seq ASE and the deltaSVM predictions of allelic effects in each of these 206 

transcription factors. We observed a significantly positive correlation for 27 transcription factors (FDR ≤ 0.05, 207 

Benjamini-Hochberg’s method, Figure 2B, Table S11) and the distribution of correlation values across all 208 

transcription factors was significantly greater than zero (p = 3.7 x 10-6, t-test). The transcription factors with the 209 

strongest correlation included genes with known functions in embryonic development and pancreas, such as JDP2 210 

(Huang et al., 2011), NFE2 (Kojayan et al., 2019), ATF3 (Fazio et al., 2017), CUX1 (Ripka et al., 2010) and 211 

FOXB1 (Ma et al., 2016). We also observed a negative association between ASE measured on heterozygous 212 

variants in snATAC-seq peaks and their distance from transcription factor footprints (p = 6.45 x 10-84, t-test, 213 

Figure S9C, Table S12), indicating that variants with allelic effects are more likely than expected to affect 214 

transcription factor binding and that the results from the methods we employed to analyze the associations 215 

between genetic variation and chromatin function are concordant. Using three methods (TOBIAS, deltaSVM and 216 

ASE), we were able to detect or predict allelic effects or effects on transcription factor binding for 86,261 variants 217 

(Figure 2C). These results indicate that the genotypes of a large proportion of variants at iPSC-PPC snATAC-seq 218 

peaks are likely associated with altered binding affinities for transcription factors and therefore may be associated 219 

with adult pancreatic complex traits and disorders.  220 

To examine the correlation between ASE in iPSC-PPC regulatory elements due to genetic variation and to changes 221 

in gene expression, we performed bulk RNA-seq (scRNA-seq only has coverage at 3’ end of gene) for the seven 222 
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samples with snATAC-seq and performed ASE on the transcriptome (Figure S10, Table S13). We observed a 223 

significant positive correlation between ASE at promoters and allelic bias with corresponding genes (R = 0.039, 224 

p = 1.6 x 10-6, Figure 2D). Although significant, the correlation between ASE at promoters and corresponding 225 

genes was weak, which is consistent with previous observations (Gate et al., 2018), and could reflect the fact that 226 

multiple proximal and distal regulatory elements can regulate the expression of a gene. Overall, these results show 227 

that regulatory genetic effects are consistent between the epigenome and the transcriptome. 228 

Regulatory variants with allelic effects in iPSC-PPC are associated with Type 2 Diabetes 229 

To test if regulatory variants active in iPSC-PPC were associated with Type 2 Diabetes (T2D), we intersected the 230 

iPSC-PPC snATAC-seq peaks with the 380 99% functional credible sets (comprised of 66,607 SNPs) identified 231 

in a meta-analysis of 32 T2D GWAS from about 900,000 individuals (Mahajan et al., 2018). We found that the 232 

majority of credible sets (269, 70.8%) had at least one SNP (3,705 SNPs in total) that overlapped with iPSC-PPC 233 

snATAC-seq peaks (Table S14). These overlapping variants were more likely to have a higher rank (based on 234 

causality within a credible set, 8.6 x 10-136, Mann-Whitney U test) and a higher posterior probability of association 235 

(PPA) with T2D (p = 3.6 x 10-68) than SNPs outside of peaks (Figure 3A,B). These results indicate that regulatory 236 

elements active in iPSC-PPC are enriched for causal variants associated with T2D.  237 

To further characterize the potential of iPSC-PPC to study T2D genetics, we identified variants in the T2D 238 

credible sets that had high PPA or were the top-ranked and overlapped bound transcription factor binding sites 239 

(TOBIAS), had predicted allelic effects (deltaSVM) and/or validated allelic effects (ASE). Of the 269 credible 240 

sets with at least one SNP overlapping snATAC-seq peaks, 209 (77.7%) had at least one SNP potentially altering 241 

transcription factor binding affinities, including 163 with TOBIAS support, 152 with deltaSVM support and 65 242 

with ASE. Of note, 73 had support from two methods and six from all three (Table S14). Among these 209 T2D 243 
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loci, we found 65 SNPs that showed strong evidence of being causal, including 38 that were top-ranked and 27 244 

that were not the top ranked but had high PPA (PPA > 10%, Figure 3C).  245 

The 38 SNPs that were the top-ranked included six with PPA ≥ 90%, corresponding to the loci for GLI2 (predicted 246 

to affect binding by deltaSVM and/or TOBIAS of HSF2, HSF4 and YY2), CHCR2 (RFX1-5, SCRT1, SCRT2), 247 

UBAP2 (HSF2 and HSF4), SLC30A8 (PAX1 and PAX9), IGF2BP2 (IRF1, PRDM1, ZNF384, and shows ASE 248 

in snATAC-seq) and DGKB (RFX1) and eight with PPA between 50% and 90%, corresponding to KCNQ1 249 

(ZNF148 and ZNF263, and shows ASE in snATAC-seq), PTPN9 (HNF4A, HNF4G, NR4A1 and XBP1), PPARG 250 

(PPARG,RXRA and PROX1), MTNR1B (HSF2), MAP2K7 (ZNF423), RREB1 (ZBTB33), HHEX/IDE (ZNF460) 251 

and LCORL (ASCL1, ASCL2, BHLHE22, MYF5, MYOD1, MYOG, NHLH1, PTF1A, TCF12, ZBTB18 and 252 

ZSCAN29, Table S14). Many of the 209 potentially altered binding sites were associated with transcription 253 

factors with pancreatic functions: HSF4 is expressed in pancreas and is associated with neuronal development 254 

(Nakai et al., 1997; Syafruddin et al., 2021); and YY2 is involved in the regulation of multiple cellular processes, 255 

including pluripotency and differentiation (Li et al., 2020); RFX3 is involved in pancreatic endocrine cells 256 

development (Ait-Lounis et al., 2007); SCRT1 is involved in the regulation of beta cell proliferation during 257 

differentiation(Sobel et al., 2021); IRF1 regulates the progression of pancreatic cancer (Sakai et al., 2014); 258 

ZNF148 is associated with pancreatic cancer risk (Fang et al., 2017); variants in HNF4A causes maturity-onset 259 

diabetes of the young and are associated with T2D (Yamagata, 2014); HNF4G is associated with glucose tolerance 260 

(Baraille et al., 2015); NR4A1 protects beta cells from apoptosis (Yu et al., 2015); XBP1 is required for the 261 

homeostasis of acinar cells (Hess et al., 2011); PPARG regulates multiple insulin-associated genes in beta cells 262 

(Gupta et al., 2010); RXRA negatively regulates glucose-stimulated insulin secretion (Miyazaki et al., 2010); 263 

PROX1 controls pancreas morphogenesis (Wang et al., 2005); PTF1A regulates acinar cell apoptosis (Sakikubo 264 

et al., 2018).  265 
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Twenty-seven credible sets had SNPs with allelic effects that were not the top ranked but had high PPA (PPA > 266 

10%). These cases include the ZNF169 locus, whose top-ranked SNP (rs12236906) has PPA = 33% but does not 267 

overlap any snATAC-seq peak, whereas its second-ranked SNP (rs10993329, PPA = 31%) overlaps a snATAC-268 

seq peak and has deltaSVM predicted allelic effects (Figure 3D). Although rs12236906 has been indicated as the 269 

most likely causal SNP for this locus, our results suggest that rs10993329 is more likely to be functional. These 270 

observations are supported by the higher activity of the genomic region surrounding rs10993329 across multiple 271 

tissues (Figure 3D). We further investigated the predicted allelic effects of rs10993329 and found that it is 272 

associated with the loss of motifs for three members of the ETS family of transcription factors (ERG, FEV and 273 

FLI1), which play a role in pancreatic mesodermal development (Kobberup et al., 2007).  274 

In the KSR2 locus, the variants with the second- and third-highest PPA (rs79310463: 25%; and rs34965774: 13%) 275 

have both been described as causal for T2D and are both included in the GWAS Catalog (Buniello et al., 2019), 276 

whereas the variant with the highest PPA (rs55834317: 27%) is not associated with any GWAS. While 277 

rs79310463 and rs55834317 both overlap a snATAC-seq peak, only rs79310463 is associated with ASE and 278 

overlaps footprints for TFDP1 and ZNF263, suggesting that this SNP is more likely to have functional 279 

consequences in this locus (Figure 3E).  280 

In other loci containing lower ranked SNPs (PPA > 10%), such as HMG20A and IRS2, multiple variants overlap 281 

iPSC-PPC snATAC-seq peaks and are predicted to have ASE, indicating that additional studies are needed to 282 

determine if multiple causal SNPs underlie the associations in these loci and whether they are functional. In 283 

conclusion, our genetic association analysis shows that many regulatory variants implicated in T2D are active 284 

and have allelic effects in iPSC-PPC, making these cells a suitable model system to identify and characterize the 285 

molecular mechanisms underlying T2D genetic associations.  286 
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Discussion 287 

In this study, we derived ten iPSC-PPC samples from nine unrelated individuals to generate matched scRNA-seq 288 

and snATAC-seq and determined that while the differentiation was asynchronous and similar to ESC-PPC (Veres 289 

et al., 2019), the derived cells largely consisted of a single cell type (NKX6-1+ progenitors). We characterized 290 

regulatory variants that overlapped open chromatin in iPSC-PPC and found that these variants are likely to have 291 

allelic effects on chromatin accessibility and may affect transcription factor binding. To validate the utility of 292 

iPSC-PPC to characterize and annotate genetic variants associated with adult T2D, we used previously fine-293 

mapped 380 T2D risk loci (Mahajan et al., 2018). Enrichment analyses revealed that the majority of the T2D risk 294 

loci were located within open chromatin regions of iPSC-PPC. Furthermore, these loci contain variants that 295 

overlap active transcription factor binding sites and/or show allele specific effects on chromatin accessibility.  296 

Our study identified 65 T2D risk loci containing SNPs with strong evidence of being causal (i.e. high PPA) that 297 

are associated with allelic-specific effects and/or predicted to affect transcription factor binding in the iPSC-PPCs. 298 

For 38 of the T2D risk loci, the top-ranked SNP (i.e. the SNP with highest PPA) had functional effects on 299 

transcription factor binding and/or chromatin accessibility; while in 27 loci, we observed that at least one lower-300 

ranked SNP with high PPA (≥10%) was associated with allelic effects or altered transcription factor binding, 301 

suggesting that the top-ranked SNP is likely not causal. In certain cases, such as rs79310463 in the KSR2 locus, 302 

the SNP we identified as being associated with allelic effects or transcription factor binding had been described 303 

as being causal in previous T2D studies (Ishigaki et al., 2020; Suzuki et al., 2019; Vujkovic et al., 2020); whereas 304 

in other loci (rs10993329 in the ZNF169 locus), the SNP we predict to have functional effects had not previously 305 

been associated with T2D. Fine mapping using regulatory annotations, such as chromatin state maps in relevant 306 

tissues (Ernst and Kellis, 2012; Roadmap Epigenomics et al., 2015), prioritizes SNPs that overlap specific 307 

annotations (Pickrell, 2014); however, it is challenging to distinguish  causal SNPs from  variants that are in high 308 

LD with it. Here, we showed that characterizing the functional effects of individual SNPs using TOBIAS (Bentsen 309 
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et al., 2020), deltaSVM predictions (Ghandi et al., 2014; Ghandi et al., 2016; Yan et al., 2021) or ASE, provides 310 

an alternative method to pinpoint the likely causal SNPs and may help discriminate neutral SNPs that are in high 311 

LD. Although the analyses proposed here identified SNPs that are associated with the active regulatory elements 312 

in iPSC-PPC, further analyses that integrate the results presented here with co-accessibility, expression 313 

quantitative trait loci (eQTLs) (Vinuela et al., 2020), chromatin accessibility QTLs (Alasoo et al., 2018), 314 

colocalization between QTLs and GWAS (Giambartolomei et al., 2014; Giambartolomei et al., 2018; Majumdar 315 

et al., 2018; Wallace, 2020) and, ultimately, experimental validation (Geusz et al., 2020), are needed to link their 316 

effects with their target genes and thus, functional mechanisms, as most regulatory elements are not in close 317 

proximity to promoters, and distal regulatory elements may regulate multiple genes (Oh et al., 2021). By 318 

empowering chromatin accessibility profiles with advanced tools such as transcription factor footprinting, allelic 319 

effect predictions, and co-accessibility, it is feasible to uncover novel molecular mechanisms that underlie the 320 

genetic risk of T2D.   321 

Our study shows that by combining GWAS with epigenomic information from iPSC-PPC, it is feasible to gain 322 

insight into the molecular mechanisms underlying the associations between genetic variation and adult pancreatic 323 

complex traits and disease. Although we were able to determine the associations between SNPs in 209 T2D risk 324 

loci and transcription factor binding or allelic effects, the majority of the associations were predictions. Larger 325 

sample sizes would result in additional variants in ATAC-seq peaks and greater statistical power to test each 326 

variant-containing peak for ASE and downstream changes in gene expression. Indeed, to gain insight into global 327 

functional genetic variation, it will be necessary to obtain data for hundreds of iPSC-PPCs. With a small sample 328 

size, we show that iPSC-PPC provide a suitable model system to study the associations between genetic variation, 329 

regulatory mechanisms, and T2D, and that studies involving large numbers of samples could aid in the 330 

identification of causal variants at the majority of T2D risk loci. 331 
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Methods 332 

iPSCORE subject information 333 

We obtained 9 iPSC lines from the iPSCORE collection (Panopoulos et al., 2017) (Table S1). These lines were 334 

reprogrammed from skin fibroblasts collected from 9 unrelated subjects (8 female, 1 male), who ranged in age at 335 

time of donation from 21 to 65 years old, and represent three 1000 Genomes Project super populations: European 336 

American (7), Asian American (1), and African American (1).  From each subject, whole blood samples were 337 

collected and used to generate and process whole genome sequence (WGS) data as previously described 338 

(D'Antonio et al., 2018; DeBoever et al., 2017). Briefly, reads were aligned against human genome b37 with 339 

decoy sequences (Genomes Project et al., 2015) using BWA-mem and default parameters (Li and Durbin, 2009). 340 

We applied the GATK best-practices pipeline for variant calling that includes indel-realignment, base-341 

recalibration, genotyping using HaplotypeCaller, and finally joint genotyping using GenotypeGVCFs (DePristo 342 

et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013). The recruitment of these individuals was 343 

approved by the Institutional Review Boards of the University of California, San Diego and The Salk Institute 344 

(Project no. 110776ZF).  345 

iPSC-PPC Derivation 346 

iPSC-PPCs were derived using STEMdiff™ Pancreatic Progenitor Kit (StemCell Technologies) following 347 

manufacture’s recommendations except as noted below. One iPSC line (from subject 90e8222f-2a97-4a3c-9517-348 

fbd7626122fd) was independently differentiated twice (PPC_029 and PPC_036) resulting in a total of 10 derived 349 

iPSC-PPC samples. 350 

Expansion of iPSC: One vial from each of 9 iPSC lines was thawed into mTeSR1 medium containing 10 μM 351 

ROCK Inhibitor (Selleckchem) and plated on one well of a 6-well plate coated with matrigel. iPSCs were grown 352 
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until they reached 80% confluency and then passaged using 2mg/ml solution of Dispase II (ThermoFisher 353 

Scientific). To obtain a sufficient number of iPSCs for differentiation, iPSCs were passaged twice: 1) cells from 354 

the first passage were plated on three wells of a 6-well plate (ratio 1:3); and 2) cells from the second passage were 355 

plated on six wells of a 6-well plate (ratio 1:2).  356 

Monolayer plating (Day 0; D0): When the confluency of iPSC cells in the six wells of a 6-well plate reached 357 

80%, cells were dissociated into single cells using Accutase (Innovative Cell Technologies Inc.). Single iPSC 358 

cells were resuspended at the concentration of 1.85 x106 cells/ml in mTeSR containing 10μM ROCK inhibitor 359 

and plated on six wells of a 6-well. Cells were grown for approximately 16 to 20 hours to achieve a uniform 90-360 

95% confluency (3.7x106 cells/well; about 3.9x105 cells/cm2).  361 

Differentiation: Differentiation of the confluent iPSC monolayers were initiated by the addition of STEMDiff 362 

Stage Endoderm Basal medium supplemented with Supplement MR and Supplement CJ (2ml/well) (D1). All 363 

following media changes were performed every 24 hours following initiation of differentiation (2ml/well). On 364 

D2 and D3, the medium was changed to fresh STEMDiff Stage Endoderm Basal medium supplemented with 365 

Supplement CJ. On D4, the medium was changed to STEMDiff Pancreatic Stage 2-4 Basal medium supplemented 366 

with Supplement 2A and Supplement 2B. On D5 and D6, the medium was changed to STEMDiff Pancreatic 367 

Stage 2-4 Basal medium supplemented with Supplement 2B. On D7, D8 and D9, the medium was changed to 368 

STEMDiff Pancreatic Stage 2-4 Basal medium supplemented with Supplement 3. On D10, D11, D12, D13 and 369 

D14, the medium was changed to STEMDiff Pancreatic Stage 2-4 Basal medium supplemented with Supplement 370 

4.  371 

Harvest: On D15 cells were dissociated using Accutase, collected and counted, and either processed fresh 372 

(scRNA-seq) or cryopreserved (scRNA-seq and snATAC-seq).  373 

Flow Cytometry 374 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/


19 

 

Each of the 10 iPSC-PPC differentiations were analyzed for co-expression of two pancreatic precursor markers, 375 

PDX1 and NKX6-1, using flow cytometry. Specifically, at least 2x106 iPSC-PPC cells were fixed and 376 

permeabilized using the Fixation/Permeabilization Solution Kit with BD GolgiStopTM (BD Biosciences) 377 

following manufacturer recommendations. After the last centrifugation, cells were resuspended in 1X BD 378 

Perm/WashTM Buffer at the concentration of 1 x 107/ml. For each flow cytometry staining, 2.5 x 105 cells were 379 

stained with PE Mouse anti-PDX1 Clone-658A5 (BD Biosciences; 1:10) and Alexa Fluor® 647 Mouse anti-380 

NKX6.1 Clone  R11-560 (BD Bioscience; 1:10) or with appropriate class control antibodies, PE Mouse anti-IgG1 381 

κ R-PE Clone MOPC-21 (BD Biosciences) and Alexa Fluor® 647 Mouse anti IgG1 κ Isotype Clone MOPC-21 382 

(BD Biosciences). Cells were stained for 75 minutes at room temperature, washed three times, resuspended in 383 

PBS containing 1% BSA and 1% Formaldehyde, and immediately processed through FACS Canto II flow 384 

cytometer. FACS results were analyzed using FlowJo software V 10.4. The fractions of PDX1 and NKX6-1-385 

positive cells varied across the analyzed iPSC-PPC lines, where percentages of PDX1/NKX6-1 double-positive 386 

cells ranged from 14.6 – 91.7% (mean = 60.0%; median = 71.0%). 387 

Generation of scRNA-seq 388 

Library Generation: One 1 iPSC line (from subject: iPSC_PPC034) and 10 iPSC-PPC samples were used for 389 

scRNA-seq generation (Table S1). Fresh cells (i.e., not frozen) from the iPSC line and from seven iPSC-PPC 390 

samples were captured individually at D15. Four of these same iPSC-PPC samples were also captured as 391 

cryopreserved cells (immediately after thawing) along with three iPSC-PPC samples that were captured only as 392 

cryopreserved cells. Cells from four cryopreserved iPSC-PPC samples were pooled (RNA_Pool_1), and cells 393 

from the other 3 iPSC-PPC samples were pooled (RNA_Pool_2) prior to capture (Table S1). All single cells were 394 

captured using the 10x Chromium controller (10x Genomics) according to the manufacturer’s specifications and 395 

manual (Manual CG000183, Rev A). Cells from each scRNA-seq sample (1 iPSC, 7 fresh iPSC-PPCs, 396 

RNA_Pool_1, and RNA_Pool_2) were loaded on an individual lane of a Chromium Single Cell Chip B. Libraries 397 
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were generated using Chromium Single Cell 3’ Library Gel Bead Kit v3 (10x Genomics) following 398 

manufacturer’s manual with small modifications. Specifically, the purified cDNA was eluted in 24l of Buffer 399 

EB, half of which was used for the subsequent step of the library construction. cDNA was amplified for 10 cycles 400 

and libraries were amplified for 8 cycles.  401 

Sequencing: Libraries produced from fresh and cryopreserved cells were sequenced on a HiSeq 4000 using 402 

custom programs (fresh: 28-8-175 Pair End and cryopreserved: 28-8-98 Pair End). Specifically, 8 libraries 403 

generated from fresh samples (1 iPSC and 7 iPSC-PPC samples) were pooled together and loaded evenly on 8 404 

lanes and sequenced to an average depth of 163 million reads. Two libraries from seven cryopreserved lines 405 

(RNA_Pool_1 and RNA_Pool_2) were each sequenced on an individual lane to an average depth of 265 million 406 

reads. In total, we captured 99,819 cells. Figure S2 shows highly similar cell type proportions are observed in 407 

fresh and cryopreserved iPSC-PPCs. 408 

Processing scRNA-seq data 409 

Raw data processing. We retrieved FASTQ files for 10 scRNA-seq samples (one iPSC, seven fresh iPSC-PPCs, 410 

one RNA_Pool_1, and one RNA_Pool_2) and used CellRanger V6.0.1 (https://support.10xgenomics.com/) with 411 

default parameters and v34lift37 (Harrow et al., 2012) gene annotations to generate single-cell gene counts and 412 

BAM files for each individual sample (Table S1).  413 

Demultiplexing. To reassign pooled cells iPSC-PPCs back to the original subject (RNA_Pool_1 and 414 

RNA_Pool_2; Table S1), we obtained the BAM files for each scRNA-seq sample and a VCF file containing SNPs 415 

(called from WGS) that are bi-allelic and located at UTR or exon regions on autosomes as annotated by Gencode 416 

v34lift37 (Harrow et al., 2012) calls from each of the nine subjects, two of which was not included in scRNA-seq 417 

pools but served as negative controls. The two files (BAM and VCF) were used as input to Demuxlet (Kang et 418 

al., 2018), which outputted the subject identities of each single cell based on genotype. We found that less than 419 
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1% of the cells mapped to negative controls after filtering for low quality cells and thus, were removed from 420 

downstream analyses.  421 

Data Processing. To merge the 10 scRNA-seq samples (1 iPSC, 7 fresh iPSC-PPCs, RNA_Pool_1, and 422 

RNA_Pool_2), we first aggregated the samples that were sequenced as an independent batch (1 iPSC and 7 fresh 423 

iPSC-PPC) using the CellRanger V6.0.1 command aggr with no normalization. For each sample (aggregated 424 

sample, RNA_Pool_1, and RNA_Pool_2), we log-normalized the gene counts (NormalizeData) and identified 425 

the 2000 most variables genes using a threshold of 0.5 for the standardized log dispersion (FindVariableFeatures). 426 

We next applied Seurat’s standard integration workflow to adjust for batch differences between the samples. 427 

Specifically, we used FindIntegrationAnchors to identify a set of integration anchors between the samples using 428 

30 dimensions computed from canonical correlation analysis (CCA). Next, we integrated the samples using 429 

IntegrateData and applied the standard downstream workflow of scaling the data (ScaleData), applying principle 430 

dimension reduction for 30 principle components (RunPCA), and then visualizing the single cells using Uniform 431 

Manifold Approximation and Projection (UMAP). To identify clusters, we used a shared-nearest-neighbor (SNN) 432 

graph of the significant PCs. To remove poor quality cells, we removed cells with fewer than 500 genes/cell or 433 

more than 50% of the reads mapping to the mitochondrial chromosome. We performed iterative clustering until 434 

all clusters driven by high mitochondrial reads or low number of genes were removed. Clusters with fewer than 435 

250 cells were also removed. After filtering, 83,971 cells remained. We tested resolutions 0.05, 0.08, and 0.1 for 436 

clustering analyses and determined that 0.08 was more representative of the cell types predicted to be observed 437 

during stem cell differentiation into PPCs (Figure 1B,F, Figure S3).    438 

Annotation and validation of iPSC-PPC cells in scRNA-seq 439 

To annotate the 83,971 iPSC-PPC cells, we used the expression of markers with known associations with 440 

pancreatic development and function, including COL1A1, COL1A2 (mesendoderm) AFP, APOA (early definitive 441 
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endoderm), GATA4, GATA6, PDX1 (PDX1+ progenitors), PDX1, NKX6-1 (NKX6-1+ progenitors), PAX6, 442 

CHGA, INS, GCG, SST (endocrine), FLT1 (early ductal). We used POU5F1 to identify the iPSC cluster. To obtain 443 

z-normalized expression values, we used cells with normalized expression values above 1% of the maximal 444 

expression, computed the average for each cluster, and then z-normalized across the 8 clusters. To validate cell 445 

type assignments, we used a reference scRNA-seq dataset from the ESC-B time course that captured cells from 446 

four differentiation stages (Veres et al., 2019): Stage 3 (Day 6; 7,982 cells), Stage 4 (Day 13; 6,960 cells), Stage 447 

5 (Day 18; 4,193 cells), and Stage 6 (Day 25; 5,186 cells). Processed single cell gene counts and their associated 448 

metadata were downloaded from GEO (GSE114412). Z-normalized expression values were computed using the 449 

same procedure. We examined the transcriptome profiles at resolutions 0.05, 0.08, and 0.1, and found that the 450 

subclusters within the predominant cluster exhibited similar profiles to each other (Figure 1F, Figure S3, Table 451 

S2), confirming that they were NKX6-1+ progenitors. To identify differentially expressed genes, we performed 452 

Wilcoxon rank sum test between the normalized expression values of cells within the cluster and cells outside of 453 

the cluster (Table S3). P-values were adjusted using a Bonferroni correction, and genes with FDR ≤ 0.05 were 454 

considered differentially expressed.  455 

Generation of snATAC-seq 456 

Library Generation: A total of 7 iPSC-PPC samples were used for snATAC-seq generation (Table S1). Cells 457 

from seven cryopreserved iPSC-PPCs samples were captured for snATAC-seq immediately after thawing. All 458 

seven samples have matched scRNA-seq. Cells from four cryopreserved iPSC-PPC samples were pooled 459 

(ATAC_Pool_1) and cells from the other 3 iPSC-PPC samples were pooled (ATAC_Pool_2) prior to capture 460 

(Table S1). Nuclei from two pools were isolated according to the manufacturer’s recommendations (Manual 461 

CG000169, Rev B), transposed, and captured as independent samples according to the manufacturer’s 462 

recommendations (Manual CG000168, Rev B). All single nuclei were captured using the 463 

10x Chromium controller (10x Genomics) according to the manufacturer’s specifications and manual (Manual 464 
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CG000168, Rev B). Cells for each sample were loaded on the individual lane of a Chromium Chip E. Libraries 465 

were generated using Chromium Single Cell ATAC Library Gel & Bead Kit (10x Genomics) following 466 

manufacturer’s manual (Manual CG000168, Rev B). Sample Index PCR material was amplified for 11 cycles. 467 

Sequencing: Libraries were sequenced using a custom program (50-8-16-50 Pair End) on HiSeq 4000.  468 

Specifically, two libraries from seven cryopreserved iPSC-PPC samples (ATAC_Pool_1 and ATAC_Pool_2) 469 

were each sequenced on an individual lane.  470 

Processing snATAC-seq data 471 

Raw data processing. For two snATAC-seq samples (ATAC_Pool_1 and ATAC_Pool_2; Table S1), we retrieved 472 

FASTQ files and used CellRanger V2.0.0 (https://support.10xgenomics.com/) to align files to the hg19 genome 473 

using cellranger-atac count with default parameters. NarrowPeaks were called using the MACS2 command 474 

macs2 callpeak --keep-dup all --nomodel --call-summits (Feng et al., 2012) on the BAM files merged from the 475 

two pooled samples and detected 288,813 peaks. Peaks called on ambiguous chromosomes or the mitochondrial 476 

genome were removed, leaving 280,079 peaks remaining. Using these peaks, each snATAC-seq sample was 477 

reanalyzed using cellranger-atac reanalyze to generate single-nuclei peak counts for each sample. To integrate 478 

the two snATAC-seq datasets for downstream analyses, we performed Signac integration (Butler et al., 2018) by 479 

first applying normalization (RunTFIDF) and linear dimensional reduction (FindTopFeatures and RunSVD) on 480 

each sample dataset. We then identified a random subset of 20,000 peaks and computed a set of integration 481 

anchors between the samples (FindIntegrationAnchors for 2,000 anchors) The two snaATAC-seq was integrated 482 

using IntegrateData and 2-30 most significant dimensions calculated from dimension reduction analyses. Finally, 483 

on the integrated dataset, dimension reduction was applied (RunSVD for 30 singular values), and single cells were 484 

visualized using UMAP (RunUMAP on 2:30 dimensions). Clusters were identified using a SNN-graph method 485 

using FindNeighbors and FindClusters. To remove low quality cells, we removed cells that satisfy one of the 486 
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following criteria: 1) the number of peak region fragments < 2,000 or > 20,000, 2) the percentage of reads in 487 

peaks < 40%, 3) nucleosome signal > 1.5, or 4) TSS enrichment score < 2.5. Furthermore, we removed cells that 488 

do not visually belong to a cluster (i.e. cells that are scattered between two distinct clusters). We performed 489 

iterative clustering until we do not observe significant outliers of single cells. After filtering, 25,564 nuclei 490 

remained and clustering resolutions of 0.1, 0.15, and 0.2 were tested.   491 

Demultiplexing. To reassign pooled nuclei back to the original subject from two snATAC-seq samples 492 

(ATAC_Pool_1 and ATAC_Pool_2; Table S1), we applied Demuxlet (Kang et al., 2018) to the two samples using 493 

the same set of reference variants as stated above.  494 

Annotation of iPSC-PPC nuclei in snATAC-seq using chromVAR 495 

To determine the cell types within the integrated snATAC-seq dataset, we used chromVAR (Schep et al., 2017) 496 

within the Signac pipeline to identify transcription factor motifs from the JASPAR 2020 database (Fornes et al., 497 

2020)that are enriched for accessible chromatin for each cluster. Specifically, we used the RunChromVAR 498 

function in Signac and the hg19 reference (BSgenome.Hsapiens.UCSC.hg19) to compute a deviation z-score for 499 

each motif in each cell. To annotate the cell types, we examined the motif activities of transcription factors with 500 

known developmental or pancreatic functions: TFAP2A/B (mesendoderm), GATA4/6 (PDX1+ progenitors), 501 

HNF4A, FOXA1/2, PDX1, NKX6-1 (NKX6-1+ progenitors), HES1, SOX4/9/10/13 (early endocrine), PAX4/6, 502 

RFX1/3, HNF1A, MAFA, NKX2-2, NEUROD1 (endocrine), and ETV1, ETS1, ETS2 (early ductal). To validate 503 

our annotations, we compared the motif activities to their gene expression in scRNA-seq using the same z-504 

normalization method. We examined the motif activity profiles at resolutions 0.1, 0.15, and 0.20 (Figure 1G, 505 

Figure S4, Table S4), and reasoned that because subclusters within the predominant cluster expressed both PDX1 506 

and NKX6-1 but at varying levels, we collapsed these clusters into NKX6-1+ progenitors. Resolution 0.1 was 507 

used for downstream analyses. To identify differentially expressed peaks, we applied the FindAllMarkers function 508 
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in Signac with default parameters. Peaks with FDR ≤ 0.05 were considered differentially expressed (Table 509 

S5).  510 

chromVAR motif enrichment analyses 511 

To identify differentially enriched motifs for each snATAC-seq cluster at resolutions of 0.1, 0.15, and 512 

0.20, we computed a Wilcoxon rank sum test for each motif and cell type cluster, comparing the 513 

chromVAR z-score distributions of a random sample of 2,000 cells within the cluster and a random 514 

sample of 2,000 cells outside of the cluster. Then, for each cluster, we applied a Bonferroni correction to 515 

account for multiple testing. Motifs with FDR ≤ 0.05  were considered differentially enriched (Table S6).  516 

Processing transcription factor footprints using TOBIAS 517 

To characterize regulatory variants for transcription factor binding sites, we used TOBIAS (Bentsen et al., 2020) 518 

to identify the binding sites of transcription factors. We merged BAM files from snATAC_Pool_1 and 519 

snATAC_Pool_2 and  corrected for bias from Tn5 cutsites using TOBIAS function ATACorrect. Using the cutsite 520 

tracks from ATACorrect, we computed footprint scores across the regions using FootprintScores. Using the 521 

footprint scores along with transcription factor binding motifs from JASPAR2020 (Fornes et al., 2020), we then 522 

estimated the binding positions of each transcription factor footprint across the genome. Using these positions, 523 

we calculated the distance of each of the 325,942 SNPs in snATAC-seq peaks from its closest transcription factor 524 

footprint on the same peak using bedtools closest -d. Information about the footprints can be found in Table S7. 525 

Prediction of allelic effects using deltaSVM 526 

We obtained deltaSVM (Ghandi et al., 2014; Ghandi et al., 2016) models on 94 transcription factors from the 527 

Genetic Variants Allelic TF Binding Database (GVATdb) (Yan et al., 2021). As training sets for the deltaSVM 528 
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models, GVATdb includes the results from a SNP-SELEX experiment that analyzed the allelic effects of 95,886 529 

noncoding variants located in close proximity with 110 T2D loci on transcription factor binding. Although 530 

GVATdb investigated 533 transcription factors, only 94 were associated with high-confidence deltaSVM models 531 

(Yan et al., 2021) and were used in this study. We selected 325,942 SNPs with at least 5% minor allele frequency 532 

in the iPSCORE cohort (Panopoulos et al., 2017) that overlapped the 203,895 snATAC-seq peaks using bcftools 533 

(Danecek et al., 2021). We found that 134,065 peaks had overlapping SNPs. We ran the deltaSVM pipeline 534 

developed within GVATdb (https://github.com/ren-lab/deltaSVM) on each of these variants. This resulted in 535 

30,638,548 tests (325,942 SNPs by 94 transcription factors). To detect SNPs with a predicted allelic effect on 536 

transcription factor binding, we filtered these tests based on seq_binding == “Y” and preferred_allele != “None”. 537 

seq_binding refers to whether the transcription factor is predicted to be bound to the locus overlapping the tested 538 

SNP and preferred_allele describes whether the SNP is associated with improved binding affinity for the 539 

transcription factor (“Gain”), decreased binding affinity (“Loss”) or is not associated with changes in transcription 540 

factor binding affinity (“None”). We found 84,196 tests passing these filters, for a total of 52,653 unique SNPs, 541 

as one SNP may be predicted to affect the binding affinity for more than one transcription factor. 542 

Allele-specific effects in snATAC-seq peaks 543 

We filtered the total 288,813 snATAC-seq peaks to include peaks on autosomal chromosomes, with MACS2 544 

score ≥ 100, and outside of ENCODE blacklist regions (hg19-blacklist.v2.bed.gz) (Amemiya et al., 2019; 545 

Consortium, 2012). We intersected the resulting 203,895 peaks with the SNPs heterozygous in at least one of the 546 

seven samples that underwent snATAC-seq (Figure S10). Variant information was obtained from our previously 547 

published whole genome sequencing (dbGaP: phs001325) (DeBoever et al., 2017; Jakubosky et al., 2020a; 548 

Jakubosky et al., 2020b). We obtained 110,290 SNPs with read depth ≥ 20 in at least one heterozygous sample, 549 

which we divided into: 1) 60,742 SNPs heterozygous only in one sample (singletons); and 2) 49,548 SNPs 550 

heterozygous in multiple samples (multiplets). We calculated allele-specific effects (ASE) for each SNP 551 
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independently in each heterozygous sample using a two-sided binomial test with the alternative hypothesis that 552 

both alleles were equally likely to be observed (p = 0.5). We further removed all multiplets with inconsistent 553 

effects: only 22,717 multiplet SNPs (61,562 tests) having the sign of 𝑙𝑜𝑔2 (
𝑟𝑒𝑎𝑑𝑠𝑅𝐸𝐹

𝑟𝑒𝑎𝑑𝐴𝐿𝑇
) consistent across all 554 

heterozygous samples were retained for downstream analyses. FDR correction was performed on a per-sample 555 

basis using Benjamini-Hochberg’s method on all singleton and multiplet SNPs passing this filter (17,199 – 36,517 556 

tests). 557 

To test for the correspondence between ASE in snATAC-seq and bulk RNA-seq, we obtained the coordinates of 558 

Genecode v34lift37 (Harrow et al., 2012) promoters and intersected them with coordinates of snATAC-seq peaks 559 

displaying ASE using bedtools intersect. We obtained 826 and 759 genes whose promoters overlapped singleton 560 

and multiplet SNPs, respectively. Of these genes, we retained 447 and 497, respectively, that were expressed 561 

(TPM > 1 in the heterozygous samples) and that had read depth ≥ 10 for at least one heterozygous variant.  562 

Generation of bulk RNA-seq  563 

Library generation and sequencing: For 10 iPSC-PPC samples, RNA was isolated from total-cell lysates using 564 

the Quick-RNATM MiniPrep Kit (Zymo Research) with on-column DNAse treatments. RNA was eluted in 48ul 565 

RNAse-free water and analyzed on a TapeStation (Agilent) to determine sample integrity. All iPSC-PPC samples 566 

had RNA integrity number (RIN) values between 9.4 and 10. Illumina TruSeq Stranded mRNA libraries were 567 

prepared and sequenced on HiSeq 4000 to an average depth of 58.6 M 100-bp paired-end reads per sample. 568 

Raw data processing. FASTQ files were obtained for the 10 iPSC-PPC samples and processed with a similar 569 

pipeline used in our previous studies (D'Antonio-Chronowska et al., 2019; D’Antonio et al., 2021; DeBoever et 570 

al., 2017). Briefly, RNA-seq reads were aligned with STAR (2.7.3) (Dobin et al., 2013) to the hg19 reference 571 

using Gencode v34lift37 (Harrow et al., 2012) splice junctions with default alignment parameters and the 572 

following adjustments: -outFilterMultimapNmax 20, -outFilterMismatchNmax 999, -alignIntronMin 20, -573 
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alignIntronMax  1000000, -alignMatesGapMax 1000000. Bam files were sorted by coordinates using Samtools 574 

(1.9.0), and duplicate reads were marked using Samtools (1.9.0) (Danecek et al., 2021). TPM values were 575 

estimated from STAR transcriptome bam file using RSEM (1.2.20) (Li and Dewey, 2011). RNA-seq QC metrics 576 

were collected from Samtools (1.9.0) flagstat and idxstats and/or Picard (2.20.1) CollectRnaSeqMetrics (2019).   577 

Sample quality control. To confirm the subject identify assigned to each bulk RNA-seq, we tested common 578 

variants from the 1000 Genomes Phase 3 panel (Genomes Project et al., 2015)that are bi-allelic and have minor 579 

allele frequency between 45% to 55%. For each sample, genotype likelihoods were estimated using BCFtools 580 

(Danecek et al., 2021) (1.9.0) mpileup relative to the hg19 reference, and genotypes were called using BCFtools 581 

(1.9.0) call. Genotypes were filtered by a threshold of 10 for total read depth. Identity-by-state (IBS) was then 582 

estimated with PLINK (Purcell et al., 2007) genome for each pairwise comparison between the inferred genotypes 583 

from RNA-seq and the genotypes from WGS. RNA-seq samples were correctly matched with the subjects based 584 

on the highest pihat for each RNA-seq and individual pair.   585 

Allele-specific effects in bulk RNA-seq using MBASED 586 

To detect the allele-specific effects of gene expression in bulk RNA-seq from seven samples (7 subjects), we used 587 

an R package MBASED (Mayba et al., 2014), which uses a meta-analysis approach that aggregates information 588 

from all SNPs within the gene body to measure gene-level ASE. For ASE analysis, we only considered genes on 589 

autosomes and that is expressed. We determined a gene to be expressed if the gene is expressed with at least 1 590 

TPM in at least 10% of the seven samples. Of the 62,492 genes, 18,217 genes (29.2%) were expressed, of which 591 

10,715 were on autosomes. For each sample and gene, we obtained read counts for the reference and alternate 592 

allele using samtools mpileup at the SNP loci for which the sample was heterozygous. We ran the 1-sample 593 

analysis on MBASED, obtained the major allele frequency and p-value of ASE for each gene, and applied 594 
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multiple test correction using Benjamini-Hochberg’s method. As default, MBASED removed genes with less than 595 

10 reads for read depth. We determine a gene to display ASE if FDR ≤ 0.05 and major allele frequency ≥  0.6.  596 

Processing T2D loci 597 

We obtained the genomic coordinates of each of 380 fine-mapped T2D loci from Mahajan et al. (Mahajan et al., 598 

2018) . For each SNP with PPA > 0 in each locus, we extracted all its iPSC-PPC snATAC-seq peaks using 599 

bedtools intersect (Quinlan and Hall, 2010).  600 

Obtaining Roadmap and ENCODE epigenomic data 601 

We downloaded 15 chromHMM chromatin state annotations (Ernst and Kellis, 2012) in 127 tissues included in 602 

the Roadmap Epigenomics Program (Roadmap Epigenomics et al., 2015). Each state was predicted using a hidden 603 

Markov model (HMM) on the signal from five histone modification ChIP-seq experiments, including H3K4me3, 604 

H3K4me1, H3K36me3, H3K9me3 and H3K27me3. We obtained BED file from 605 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html.  606 

We downloaded H3K27ac peak coordinates for 192 tissues from the ENCODE data portal 607 

(https://www.encodeproject.org/) (Consortium, 2012; Davis et al., 2018). We selected all H3K27ac samples with 608 

NarrowPeak BED files that passed all quality filters established by ENCODE.  609 

Data availability 610 

iPSC-PPC scRNA-seq and snATAC-seq data was submitted to GEO: GSE152610 (token khyrckqqzpsprib). 611 

Seurat objects, including snATAC-seq and scRNA-seq, results from differential gene expression, differential peak 612 

expression and motif enrichment analysis have been deposited to Figshare: 613 

https://figshare.com/projects/Regulatory_variants_active_in_iPSC-614 
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derived_pancreatic_progenitor_cells_are_globally_associated_with_Type_2_Diabetes_in_adults/119706. ESC-615 

PPC reference scRNA-seq was obtained from GEO (GSE114412). ChromHMM chromatin states were obtained 616 

from https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html. H3K27ac peak coordinates were 617 

obtained from https://www.encodeproject.org/. Fine mapped T2D loci were obtained from the Diagram 618 

Consortium (https://www.diagram-consortium.org/).  619 
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Figures 640 

Figure 1: iPSC-PPC are largely comprised of NKX6-1+ progenitors  641 

 642 

(A) Cartoon showing the overview design of the study. We differentiated iPSC-PPCs over a 15-day period and 643 

performed scRNA-seq, snATAC-seq, and bulk RNA-seq on matched samples and characterized regulatory 644 

variants for allele-specific effects on chromatin accessibility, transcription factor binding and gene expression.   645 
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Using these profiles, we discovered variants that are active within iPSC-PPC regulatory elements and are 646 

associated with Type 2 Diabetes.  647 

(B) UMAP plot of scRNA-seq data from 83,871 single cells from one iPSC and ten iPSC-PPC samples. Each 648 

point represents a single cell color-coded by its assigned cluster.  649 

(C) Stacked bar plot showing the fraction of cells from each sample assigned to each cluster in scRNA-seq. Color-650 

coding corresponds to the clusters in panel B. Differentiations PPC029 and PPC036 were from the same iPSC 651 

clone. 652 

(D) UMAP plot of snATAC-seq data from 25,654 single nuclei from seven iPSC-PPC samples. Each point 653 

represents a single nuclei color-coded by its assigned cluster.  654 

(E) Stacked bar plot showing the fraction of cells from each sample assigned to each cluster in snATAC-seq. 655 

Color-coding corresponds to the clusters in panel D.  656 

(F) Heatmap comparing the z-normalized expression of known marker genes between iPSC-PPC and cells from 657 

the reference ESC-PPC study. Color intensity corresponds to the mean z-normalized expression across all cell 658 

types, and the diameter corresponds to the fraction of cells expressing the markers above the threshold of 1% of 659 

the maximum expression value. Clusters labeled in italicized color correspond to the clusters in panel B. Clusters 660 

labeled in grey correspond to clusters identified in ESC-PPC scRNA-seq.  661 

(G) Heatmap comparing the z-normalized motif activity scores from chromVAR for pancreatic-associated 662 

transcription factors in the snATAC-seq clusters from panel D. Also shown are the normalized expression of the 663 

pancreatic-associated transcription factors in the scRNA-seq clusters from panel B. Clusters labeled in italicized 664 

color correspond to the snATAC-seq clusters in panel D. Clusters labeled in grey correspond to the scRNA-seq 665 

clusters in panel B. 666 

 667 
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Figure 2: Allele-specific effects of SNPs in iPSC-PPC snATAC-seq peaks 670 

 671 

(A) Scatterplot showing a significantly positive correlation (R = 0.26, p = 3.0 x 10-34) between SNPs predicted to 672 

have allelic effects across all 94 transcription factors measured by deltaSVM (X axis) and the alternative allele 673 

frequency (from snATAC-seq ASE analysis, Y axis). The blue dashed line represents the regression line. When 674 

considering all the SNPs tested for ASE and deltaSVM, the correlation was significantly positive (R = 0.019, p = 675 

5.8 x 10-80), indicating that deltaSVM accurately predicts the allelic effects of SNPs in snATAC-seq on 676 

transcription factor binding.  677 

(B) Volcano plot showing the correlation between deltaSVM score and ASE measured by snATAC-seq. Each dot 678 

represents the correlation of all the SNPs for one of the 94 transcription factors tested by deltaSVM. Significant 679 
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positively correlated transcription factors are highlighted in red and their names are indicated on the right. The 680 

volcano plot shows that the distribution of correlation values is significantly skewed towards positive values, 681 

confirming that, in general, deltaSVM predictions are concordant with snATAC-seq ASE values.  682 

(C) Venn diagram showing the overlap between the three methods (TOBIAS, deltaSVM and ASE) to characterize 683 

the evidence of functional effects (transcription factor binding or allelic effects) for each variant.  684 

(D) Smooth scatterplot showing a significant positive correlation (R = 0.039, p = 1.6 x 10-6) between the major 685 

allele frequency (MAF) of SNPs overlapping expressed genes, calculated by MBASED (X axis), and the MAF 686 

of SNPs overlapping snATAC-seq peaks at their corresponding promoters (Y axis). Dots represent genes with 687 

significant ASE that were associated with SNPs with ASE at their promoter. The blue dashed line represents the 688 

regression line. 689 

  690 
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Figure 3: Associations between allele-specific effects and T2D-associated SNPs 691 

 692 

(A, B) Barplots showing the enrichment for SNPs that overlap iPSC-PPC snATAC-seq peaks in T2D credible 693 

sets in different (A) rank or (B) PPA bins. X axis shows the rank or PPA bin and the Y axis represents the log2 694 

ratio between the proportion of SNPs overlapping peaks and the proportion of SNPs not overlapping peaks. 695 

(C) Scatterplot showing the rank (X axis) and the PPA (Y axis: darker colors correspond to higher PPA values) 696 

for the 209 T2D loci with SNPs that display allelic effects or overlap transcription factor binding sites. The index 697 
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genes associated with SNPs having PPA ≥ 50% and the index genes associated with the loci described in panels 698 

D and E are shown. Horizontal dashed lines represent PPA = 50% and PPA = 10%. 699 

(D, E) Two T2D loci (D: ZNF169; and E: KSR2) where the top-ranked SNP does not overlap snATAC-seq peaks 700 

or is not associated with ASE. The scatterplot (top) shows the PPA of each SNP included in the 99% credible set. 701 

The SNPs described in the text are shown and the SNPs with ASE are indicated in maroon. The second plot from 702 

the top shows the read depth from snATAC-seq. Below are shown: iPSC-PPC snATAC-seq peak coordinates 703 

(purple); 15 chromHMM chromatin states for two pancreas samples (E087: pancreatic islets; E098: pancreas) and 704 

127 tissues included in Roadmap Epigenomics Program; and H3K27ac peak coordinates (in black) for 192 tissues 705 

obtained from the ENCODE data portal. Roadmap chromatin marks are colored as follows: 1) active TSS (red); 706 

2) flanking active TSS (orange-red); 3) transcription at gene 5’ and 3’ (lime green); 4) strong transcription (green); 707 

5) weak transcription (dark green); 6) genic enhancers (green-yellow); 7) enhancers (yellow); 8) ZNF genes and 708 

repeats (medium aquamarine); 9) heterochromatin (pale turquoise); 10) bivalent/poised enhancer or TSS (Indian 709 

red); 11) flanking bivalent/poised enhancer or TSS (dark salmon); 12) bivalent enhancer (dark khaki); 13) 710 

repressed polycomb (silver); 14) weak repressed polycomb (gainsboro); and 15) quiescent chromatin (white). In 711 

both examples, the SNPs with ASE overlap genomic regions that have H3K27ac peaks and are labeled as bivalent 712 

enhancers in many tissues. These examples show that the SNP with ASE, rather than the top-ranked SNP, is more 713 

likely to be functional and, therefore, causal for T2D. 714 

 715 

  716 
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SUPPLEMENTAL FIGURES 

Figure S1: Measurement of PDX1-postive and NKX6-1-positive cells by flow cytometry 

 

(A) Flow cytometry analysis at D15 of ten iPSC-PPC differentiations. The fraction of cells stained for PPC 

markers, PDX1 and NKX6-1, were measured. Differentiations PPC029 and PPC036 were from the same iPSC 

clone. 

(B) Bar plot showing the fraction of iPSC-PPC cells positively stained for PPC markers, PDX1 and NKX6-1, and 

positive for both PDX1 and NKX6-1. Differentiations PPC029 and PPC036 were from the same iPSC clone.  
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Figure S2: Similar cell type proportions between fresh and cryopreserved cells  

 

To determine if cryopreservation influences our detection of iPSC-PPC cell types, we integrated scRNA-seq 

obtained from eight fresh (i.e., not frozen) sample preparations (seven iPSC-PPC and one iPSC sample, 

aggregated into a single pool) with two pools of four and three cryopreserved iPSC-PPC samples. To assign the 

sample identity of each cell in the two cryopreserved pools, we performed sample deconvolution with demuxlet 

using genotype information from whole genome sequencing of nine individuals (DeBoever et al., 2017), two of 

which served as negative controls (i.e. samples from these two individuals were not included in the cryopreserved 

pools, Table S1). For the fresh preparations, each sample was processed independently from the others, therefore 

deconvolution using Demuxlet (Kang et al., 2018) was not required. For each of the four iPSC-PPC samples with 

matched fresh and cryopreserved preparations (indicated by the asterisks above the bar plots), we compared the 

proportions of cells in PDX1+ progenitors, NKX6-1+ progenitors, mesendoderm, and endocrine, and found that 

fresh and cryopreserved samples were highly correlated. These results indicate that fresh and cryopreserved cells 

can be used interchangeably to characterize the cellular composition of iPSC-PPC. The figure shows: 
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(A) Stacked bar plots showing the fraction of cells from each fresh iPSC-PPC sample assigned to each cell type 

using the same color coding as Figure 1B. Asterisks indicates the four iPSC-PPC samples with matched fresh and 

cryopreserved preparations.  

(B) Stacked bar plots showing the fraction of cells from each cryopreserved iPSC-PPC sample assigned to each 

cell type using the same color coding as Figure 1B.  

(C-F) For the four iPSC-PPC samples with matched fresh and cryopreserved samples, we show the association 

between each preparation by comparing the fraction of cells for (C) PDX1+ progenitors, (D) NKX6-1+ 

progenitors, (E) mesendoderm and (F) endocrine. 
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Figure S3: Clustering of iPSC-PPC scRNA-seq at two additional resolutions  
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Clustering was performed on 83,971 single cells from one iPSC and ten iPSC-PPC samples at resolutions 0.05, 

0.08 (shown in Figure 1B) and 0.1. With increasing resolution, we found that cluster 0 (NKX6-1+ progenitors) 

was further divided into subclusters. While all subclusters expressed PDX1 and NKX6-1, one cluster expressed 

cell division markers (TOP2A, CENPF, and AURKB) at high levels, indicating that this cluster consists of 

replicating NKX6-1+ progenitors. Because the expression profiles are similar between the subclusters within 

cluster 0 at resolution 0.1, we used resolution 0.08 for downstream analyses where the subclusters were collapsed 

to form NKX6-1+ progenitors (Figure 1B). Red-to-blue shade in the heatmaps indicates z-normalized expression 

and the diameter represents the fraction of cells that express 1% of the maximal expression within that cell type. 

Cluster labels in black correspond to clusters in iPSC-PPC scRNA-seq (shown in the UMAP plots above the 

heatmaps). Cluster labels in grey correspond to clusters identified ESC-PPC scRNA-seq (Veres et al., 2019).  
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Figure S4: Clustering of iPSC-PPC snATAC-seq at two additional resolutions  

 

We performed clustering analyses on 26,564 single nuclei from seven iPSC-PPC samples at resolutions 0.1 

(shown in Figure 1D), 0.15 and 0.2. At resolutions 0.1, 0.15 and 0.20, we identified a total of five, six and seven 

clusters respectively. With increasing resolution, cluster 0 was further divided into subclusters that largely consist 
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of NKX6-1+ progenitors but with varying levels of PDX1 and NKX6-1 motif activities. Cluster labels in black 

correspond to clusters in snATAC-seq described in the UMAP plots above the heatmaps. Colored cluster labels 

correspond to iPSC-PPC scRNA-seq clusters described in Figure 1B. Red-to-blue shade in the heatmaps indicates 

Z-normalized expression for scRNA-seq or chromVAR motif activity for snATAC-seq.  
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Figure S5: Expression of 17 marker genes in each of the eight scRNA-seq clusters 

 

Violin plots showing the distributions of normalized expression for marker genes described in Figure 1F for each 

scRNA-seq cluster in Figure 1B.  
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Figure S6: Motif activity of 23 transcription factors in each of the five snATAC-seq clusters  

 

Violin plots showing the distribution of chromVAR motif activity score for the transcription factors described in 

Figure 1G for each snATAC-seq clusters in Figure 1D. Motif logos are shown underneath the corresponding plot.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/


 10 

 

Figure S7: Correlation between flow cytometry, scRNA-seq and snATAC-seq results  

 

To determine the correspondence between FACS, scRNA-seq, and snATAC-seq, we compared the fraction of 

cells expressing both PDX1 and NKX6-1 within each iPSC-PPC sample. For scRNA-seq, we computed the total 

number of NKX6-1+ progenitors as the sum of NKX6-1+ progenitors and replicating NKX6-1+ progenitors (X 

axis, Figure S7A), as these cells express both PDX1 and NKX6-1. We found that the FACS and scRNA-seq was 

significantly correlated (R = 0.843, p = 0.00218, Figure S7A). We next determined whether the cell type fractions 

in snATAC-seq corresponds to scRNA-seq. Because snATAC-seq was not able to detect PDX1+ progenitors and 

early definitive endoderm (DE), we reasoned that these cells may be included in the main NKX6-1+ progenitor 

nuclei cluster. Therefore, we computed the fraction of cells that are early DE, PDX1+, NKX6-1+ progenitors and 

replicating NKX6-1+ progenitors in scRNA-seq and compared it to the fraction of nuclei that are NKX6-1+ 

progenitors in snATAC-seq. We found a significant correlation between scRNA-seq and snATAC-seq (R = 0.956, 

p = 0.000783, Figure S7B). These results show that scRNA-seq, snATAC-seq, and FACs are highly associated 

with each other, and that both sequencing methods can capture the variable differentiation efficiency in iPSC-

PPC.   
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Figure S8: Co-expression of insulin, glucagon, and somatostatin in pancreatic progenitors 

 

Bubble plot showing the percentage of cells that express endocrine-specific hormones in scRNA-seq clusters, 

where radius and shade indicate the percentage of cells expressing above 10% of the maximal expression for the 

indicated gene across all cells. 
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Figure S9: Associations between deltaSVM scores, ASE and transcription factor footprints 

 

Volcano plots showing the associations between deltaSVM scores, ASE and transcription factor footprints. Each 

point represents a transcription factor. 

(A) For each of the 89 transcription factors tested with both deltaSVM and TOBIAS, we investigated the 

agreement between these two tools. Here, we determined if variants predicted to have allelic effects on a specific 

transcription factor by deltaSVM were more likely than expected to occur at genomic locations bound to the same 

transcription factor, as determined by TOBIAS. Effect size (X axis, log2 ratio) and p-values (Y axis, Fisher’s 

exact tests) were measured using the fisher.test function in R. All tests had significant p-values after FDR 

correction (Benjamini-Hochberg) and had a positive log2 ratio and, overall, the distribution of log2 ratios was 

significantly greater than zero (p = 2.2 x 10-47, t-test, measured with the t.test function in R, with option mu = 0). 

Each dot represents one of the 89 tested transcription factors.  

(B) For the same transcription factors in (A), we tested if variants predicted to have allelic effects by deltaSVM 

were more likely to be closer to transcription factor footprints determined using TOBIAS than expected. We 

computed the distance of each variant from the closest transcription factor footprint on the same peak, and 

performed a linear regression between the distance and the absolute value of the variant score measured by 
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deltaSVM. For all but two transcription factors, we observed a negative association (X axis = effect size; Y axis 

= p-value, measured using the lm function in R) and, overall, the effect size distribution was significantly lower 

than zero (p = 4.3 x 10-15, t-test, measured with the t.test function in R, with option mu = 0), indicating that 

variants closer to transcription factor footprints are more likely to have stronger allelic effects.  

(C) We tested the association between the major allelic frequency of each heterozygous variant in iPSC-PPC 

peaks tested for ASE and the distance from its closest footprint for each of the 746 transcription factors analyzed 

using TOBIAS. For most transcription factors, we observed a negative association (X axis = effect size; Y axis = 

p-value, measured using the lm function in R) and, overall, the effect size distribution was significantly lower 

than zero (p = 6.45 x 10-84, t-test, measured with the t.test function in R, with option mu = 0), indicating that 

variants closer to transcription factor footprints are more likely to have stronger allelic effects. 
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Figure S10: Workflow for computing allele-specific effects (ASE) in snATAC-seq peaks 

 

Peaks on autosomal chromosomes were filtered based on: peak score ≥ 100, not within ENCODE blacklist 

regions, and if they contained at least one heterozygous SNP in at least one of the seven snATAC-seq samples. 

SNPs were further categorized as singletons (i.e. observed in only one individual) or multiplets (i.e. observed in 

more than one individual). Multiplets with consistent allele direction in all individuals were retained. SNPs were 

then tested for ASE using a two-sided binomial test assuming a null hypothesis that both alleles were observed at 

equal proportions. We classified SNPs as having ASE if FDR ≤ 0.05 and major allele frequency ≥ 0.6. SNPs with 

ASE at promoter regions were further examined for ASE association with gene expression using bulk RNA-seq 

(Figure 2D). 
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TABLE LEGENDS 

Table S1: Study information, including subject details, differentiation efficiency, and generated molecular 

data from 1 iPSC and 10 iPSC-PPCs 

In Sheet 1: Subject_UUID is the assigned Universal Unique Identifier (UUID) for each subject (Column A) used 

in this study. Sex (Column B), age (Column C), and ethnicity (most similar 1KG population; Column D) are 

provided. iPSCORE_Family (Column E) are the family identifiers used to identify related family members. 

Columns A-E are shown as included in dbGaP (phs001325.v1.p1; phs000924.v1.p1) as part of the iPSCORE 

Resource.  

In Sheet 2: We provide information for each sample in our study. Subject_UUID is provided in Column A. 

Cell_type (Column B) indicates the type of cell (iPSC or PPC) obtained from each subject as part of this study. 

Unique Differentiation Identifier (UDID, Column C) is a unique digit assigned for each attempted iPSC-PPC 

differentiation. %PDX1+ (Column D), %NKX6.1+, (Column E), and %PDX1+_NKX6.1+ (Column F) are the 

fractions of cells from each iPSC-PPC differentiation positively stained for PDX1, NKX6-1, or both PDX1 and 

NKX6-1, respectively. Data type indicates the type of sequencing method performed for each differentiation 

(Column G). The UUID for each sequenced sample is provided (Column H).  Pooling schemes for samples 

combined prior to sequencing are shown (Column I).  

In Sheet 3: We provide the UUIDs of each iPSC-PPC sample (Column A) by subject (Column B), WGS (Column 

C), bulk RNA-seq (Column D), fresh scRNA-seq (Column E), cryopreserved scRNA-seq (Column F), and 

snATAC-seq (Column G). Bulk RNA-seq was generated for all the of 10 iPSC-PPC samples that have scRNA-

seq, but in this study we analyzed only the seven that have matched snATAC-seq (Table S1). 

Table S2: scRNA-seq metadata 
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The table shows, for each of the 83,971 single cells, the sample UDID (Column A), the preparation of the sample 

corresponding to either fresh or cryopreserved (Column B), the cell barcode (Column C), UUIDs for subject, 

WGS, and scRNA-seq (Columns D-F), the number of reads (Column G), the number of genes detected (Column 

H), the percent of mitochondrial reads (Column I), the cell type assignment (Column J), UMAP coordinates 

(Column K-L), and the cluster assignments at resolutions 0.05, 0.08, and 0.1 (Columns M-O). The UUIDs for 

WGS was obtained using Demuxlet (Kang et al., 2018) and then mapped to subject and sample UUID. Barcodes 

for cells from freshly prepared samples were formatted as barcode-aggregate_id (Sheet 2) while those from 

cryopreserved samples were formatted as barcode-1.  

Because this table’s size is too large, it has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109581   

A Seurat R object including all scRNA-seq data has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109422  

Table S3: Genes differentially expressed in scRNA-seq clusters 

For each gene (Column A) and each scRNA-seq cluster (Column B), we computed Wilcoxon rank sum test 

between normalized expression values across cells within the cluster and cells outside of the cluster. The table 

provides the average log2 fold-change between the groups (Column C), the average expression for each group 

(Column D-E), the fraction of cells with expression greater than 0.1 (Column F-G), the p-value (Column H), and 

q-value adjusted by Bonferroni correction (Column I). Genes with q-value  0.05 were considered differentially 

expressed.  

Table S4: snATAC-seq metadata 

The table shows, for each of the 26,564 single nuclei, the cell barcode (Column A), the sample UDID (Column 

B), UUIDs for subject, WGS, snATAC-seq, and matched scRNA-seq (Columns C-F), quality control parameters 
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from CellRanger-ATAC and Signac (Columns G-V), the assigned cell type (Column W), UMAP coordinates 

(Column X-Y), and the cluster assignments at resolutions 0.1, 0.15, and 0.2 (Columns Z-AB). The UUIDs for 

WGS were obtained using Demuxlet (Kang et al., 2018) and then mapped to subject and sample UUID (snATAC-

seq and scRNA-seq).  

Because this table’s size is too large, it has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109581   

A Seurat R object including all snATAC-seq data has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109422  

Table S5: Peaks differentially expressed in snATAC-seq 

For each cluster in snATAC-seq described in Figure 1D, we performed differential expression using the 

FindAllMarkers function in Signac. The table provides the cluster name, peak ID, average log2 fold-change, the 

fraction of cells within cluster that has peak expression > 0.1, the fraction of cells outside of cluster that has peak 

expression > 0.1, p-value, and q-value adjusted with a Bonferroni correction. We consider peaks with q-value  

0.05 to be differentially expressed.  

Table S6: Motifs enriched in snATAC-seq peaks  

We performed motif enrichment analyses for 633 transcription factors in the JASPAR 2020 database. The table 

shows, for each snATAC-seq cluster, the tested motif ID and name from JASPAR, the p-value from Wilcoxon 

rank sum test, and the adjusted p-value using a Bonferroni correction. Motifs with q-value  0.05 were considered 

differentially enriched.  

Table S7: Evidence of SNPs for association with transcription factor binding or allelic effects 
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In total, we were able to investigate the functional associations for 349,572 variants, including 325,942 common 

SNPs (allele frequency > 5%) in the iPSCORE collection and 110,290 heterozygous variants in the seven iPSC-

PPC samples (86,660 variants were in common). The table shows, for each variant, its associated peak, whether 

it belongs to the 325,942 common SNPs or to the 110,290 heterozygous variants and its functional associations: 

1) overlap with transcription factor footprints (TOBIAS); 2) prediction of allele-specific effects (deltaSVM); or 

3) ASE in snATAC-seq. 

Because this table’s size is too large, it has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109581  

R objects including all results from TOBIAS, including the position of all bound transcription factor binding sites 

and all the overlaps between SNPs and transcription factor binding sites, have been deposited on figshare: A 

Seurat R object including all scRNA-seq data has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109422  

Table S8: deltaSVM prediction of allele-specific transcription factor binding 

The table shows all associations between each of the 325,942 SNPs in snATAC-seq peaks and each of the 94 

tested transcription factors. For each SNP, shown are: its chromosome and position, reference and alternative 

alleles, tested transcription factor, oligo binding score for reference and alternative allele (Yan et al., 2021), 

whether deltaSVM predicts that the transcription is bound, deltaSVM score for allelic TF binding, and the 

consequence of the SNP on the transcription factor binding (“Gain”: the alternative allele has a stronger binding 

score; “Loss”: the reference allele has a stronger binding score; “None”: no difference between reference and 

alternative alleles). Only the 52,653 SNPs predicted to be associated with allele-specific transcription factor 

binding are shown. A table including all 30,638,548 tested SNPs/transcription factor pairs has been deposited on 

Figshare (https://doi.org/10.6084/m9.figshare.15109581). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/


 19 

Table S9: Associations between transcription factor binding site predictions from deltaSVM and TOBIAS 

The table shows the enrichment for transcription factor binding and allelic effects predicted by deltaSVM in the 

genomic regions associated with a bound transcription factor annotated by TOBIAS. For each of the 89 

transcription factors (the transcription factor ID by JASPAR and the transcription factor name by deltaSVM are 

shown in the table) in common between deltaSVM predictions and TOBIAS, we performed two enrichment 

analyses (shown in Figure S9A,B): 1) we tested for the enrichment of variants predicted to overlap a transcription 

factor binding site by deltaSVM and bound transcription factor binding sites measured by TOBIAS, using Fisher's 

exact test (the table shows estimate, p-value and q-value adjusted using Benjamini-Hochberg's method); and 2) 

we tested for the enrichment of variants predicted by deltaSVM to have allelic effects at a transcription factor 

binding site and bound transcription factor sites measured by TOBIAS, using linear regression (the table shows 

effect size, standard error, p-value and q-value adjusted using Benjamini-Hochberg's method). 

Table S10: Allele-specific effects of heterozygous SNPs in snATAC-seq peaks 

Shown are the allele-specific effects of heterozygous SNPs with read depth ≥ 20 in heterozygous iPSCORE 

individuals (Column A). Variant ID indicates the chromosome position, reference allele, and alternate allele of 

the heterozygous SNP (Column B). The peak that overlaps with the SNP (Column C), the peak score from 

MACS2 (Column D) and the gene ID and name whose promoter overlaps with the SNP (Column E-F) are 

provided. The number of reads calculated by samtools mpileup from snATAC-seq BAM files overlapping the 

reference allele, alternative allele, or both are shown (Columns G-I). The major allele frequency was calculated 

as the fraction of reads that map to the allele with greater number of reads (Column J). Information about whether 

the variant is a singleton (i.e. observed only in one individual) (Column K) or observed in a single allele direction 

are given (Column K-L). P-values (Column M) were calculated using binomial test with the alternative hypothesis 

that both alleles were observed in equal frequency. P-values were adjusted using Benjamini-Hochberg’s method 

(Column N). SNPs showed allele-specific effects if FDR ≤ 0.05 and the major allele frequency is ≥ 0.6 (Column 

O).  
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Because this table’s size is too large, it has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109581  

Table S11: deltaSVM prediction of allele-specific transcription factor binding 

The table shows the associations between deltaSVM scores and the alternative allele frequency of all SNPs 

overlapping bound transcription factors. Shown are: the SNP ID (as in Table S4), transcription factor, deltaSVM 

score and allele frequency calculated from snATAC-seq. 

Because this table’s size is too large, it has been deposited on figshare: 

https://doi.org/10.6084/m9.figshare.15109581. 

Table S12: Associations between transcription factor binding and ASE 

The table shows the associations between the major allele frequency of variant tested for ASE and its distance 

from each bound transcription factor binding site in the same snATAC-seq peak measured by TOBIAS (Figure 

S9C). The table shows, for each of the tested 746 transcription factors, its JASPAR ID, the measured effect size, 

standard error, p-value and q-value adjusted using Benjamini-Hochberg's method. 

Table S13: Correspondence between ASE at promoters and their associated genes 

Shown are the allele-specific effects of 5,380 expressed genes that have a snATAC-seq peak at the promoter 

region. The analysis was performed using MBASED (Mayba et al., 2014) on a per-sample basis. For each sample 

and gene (Columns A-C), we provide information about the major allele frequency (Column D), p-value of 

heterogeneity (Column E), p-value of ASE (Column F), FDR-corrected p-value using Benjamini Hochberg’s 

method (Column G), and whether this gene exhibits ASE or not (Column H). We determine a gene to exhibit 

ASE if FDR ≤ 0.05 and the major allele frequency is ≥ 0.6. The major allele frequency, p-value of ASE, and p-

value of heterogeneity were computed by MBASED using the 1-sample analysis in the provided protocol.  
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Table S14: Associations between T2D-associated SNPs and allelic effects in iPSC-PPC 

For each of the 66,600 SNPs in T2D credible sets (Mahajan et al., 2018), the table shows: their associated locus, 

including the position of the index SNP, the index gene and the RS ID of the index SNP, as defined in Mahajan 

et al. (Mahajan et al., 2018); the PPA and the rank in the credible set; whether each SNP overlaps an iPSC-PPC 

snATAC-seq peak; whether it is predicted to have allelic effects, based on deltaSVM results; and whether it has 

ASE in the iPSC-PPC snATAC-seq dataset.  

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/


 22 

References 

 

DeBoever, C., Li, H., Jakubosky, D., Benaglio, P., Reyna, J., Olson, K.M., Huang, H., Biggs, W., Sandoval, E., D'Antonio, 

M., et al. (2017). Large-Scale Profiling Reveals the Influence of Genetic Variation on Gene Expression in Human Induced 

Pluripotent Stem Cells. Cell Stem Cell 20, 533-546 e537. 
Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., Wan, E., Wong, S., Byrnes, L., Lanata, 

C.M., et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36, 89-

94. 

Mahajan, A., Taliun, D., Thurner, M., Robertson, N.R., Torres, J.M., Rayner, N.W., Payne, A.J., Steinthorsdottir, V., Scott, 
R.A., Grarup, N., et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation 

and islet-specific epigenome maps. Nat Genet 50, 1505-1513. 

Mayba, O., Gilbert, H.N., Liu, J., Haverty, P.M., Jhunjhunwala, S., Jiang, Z., Watanabe, C., and Zhang, Z. (2014). 
MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biol 15, 405. 

Veres, A., Faust, A.L., Bushnell, H.L., Engquist, E.N., Kenty, J.H., Harb, G., Poh, Y.C., Sintov, E., Gurtler, M., Pagliuca, 

F.W., et al. (2019). Charting cellular identity during human in vitro beta-cell differentiation. Nature 569, 368-373. 

Yan, J., Qiu, Y., Ribeiro Dos Santos, A.M., Yin, Y., Li, Y.E., Vinckier, N., Nariai, N., Benaglio, P., Raman, A., Li, X., et 
al. (2021). Systematic analysis of binding of transcription factors to noncoding variants. Nature 591, 147-151. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465206
http://creativecommons.org/licenses/by/4.0/

