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ABSTRACT  25 

Group B Streptococcus (GBS) colonizes the vaginal mucosa of a significant percentage 26 

of healthy women and is a leading cause of neonatal bacterial infections. Currently, 27 

pregnant women are screened in the last month of pregnancy and GBS-positive women 28 

are given antibiotics during parturition to prevent bacterial transmission to the neonate. 29 

Recently, human milk oligosaccharides (HMOs) isolated from breastmilk were found to 30 

inhibit GBS growth and biofilm formation in vitro, and women that make certain HMOs are 31 

less likely to be vaginally colonized with GBS. Using in vitro human vaginal epithelial cells 32 

and a murine vaginal colonization model, we tested the impact of HMO treatment on GBS 33 

burdens and the composition of the endogenous microbiota by 16S rRNA amplicon 34 

sequencing. HMO treatment reduced GBS vaginal burdens in vivo with minimal 35 

alterations to the vaginal microbiota. HMOs displayed potent inhibitory activity against 36 

GBS in vitro, but HMO pretreatment did not alter adherence of GBS or the probiotic 37 

Lactobacillus rhamnosus to human vaginal epithelial cells. Additionally, disruption of a 38 

putative GBS glycosyltransferase (Δsan_0913) rendered the bacterium largely resistant 39 

to HMO inhibition in vitro and in vivo but did not compromise its adherence, colonization, 40 

or biofilm formation in the absence of HMOs. We conclude that HMOs are a promising 41 

therapeutic bioactive to limit GBS vaginal colonization with minimal impacts on the vaginal 42 

microenvironment.  43 

 44 

IMPORTANCE 45 

During pregnancy, GBS ascension into the uterus can cause fetal infection or preterm 46 

birth. Additionally, GBS exposure during labor creates a risk of serious disease in the 47 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.20.465155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465155


3 
 

vulnerable newborn and mother postpartum. Current recommended prophylaxis consists 48 

of administering broad-spectrum antibiotics to GBS-positive mothers during labor. 49 

Although antibiotics have significantly reduced GBS neonatal disease, there are several 50 

unintended consequences including altered neonatal gut bacteria and increased risk for 51 

other types of infection. Innovative preventions displaying more targeted antimicrobial 52 

activity, while leaving the maternal microbiota intact, are thus appealing. Using a mouse 53 

model, we found that human milk oligosaccharides (HMOs) reduce GBS burdens without 54 

perturbing the vaginal microbiota. We conclude that HMOs are a promising alternative to 55 

antibiotics to reduce GBS neonatal disease. 56 

 57 

INTRODUCTION  58 

Group B Streptococcus (GBS or Streptococcus agalactiae) is a Gram-positive bacterium 59 

that colonizes the gastrointestinal and vaginal tracts of ~18% of pregnant women globally 60 

(1), exposing more than 20 million infants to GBS at, or prior to, delivery (2). The majority 61 

of children born to GBS-positive women themselves become colonized without symptoms 62 

(3); however, a subset of these infants (>300,000 annually) develop invasive GBS 63 

infections accounting for upwards of 100,000 infant deaths each year around the globe 64 

(2). Additionally, 57,000 annual stillbirths are attributed to GBS infections (2), yet this may 65 

be an underestimate as this pathogen is also the most frequently cultured bacterium in 66 

mid-gestation spontaneous abortions (4). Because maternal GBS colonization is a risk 67 

factor for neonatal infections, universal screening in late pregnancy and intrapartum 68 

antibiotic prophylaxis (IAP) to GBS-positive or at-risk mothers is the current standard of 69 

care in many countries. These preventative measures have decreased, but not 70 
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eradicated, GBS early-onset disease (5). However, this early antibiotic exposure disrupts 71 

the infant microbiota and the potential adverse consequences of this perturbation are not 72 

fully established (6-10).   73 

 74 

Breastfeeding has long been associated with improved infant health, reduced risk of 75 

infectious disease, and accelerated immune and microbial maturation within the gut (11-76 

13). Human milk oligosaccharides (HMOs), the third most abundant component of 77 

breastmilk, are a group of structurally complex, unconjugated glycans that are recalcitrant 78 

to host digestive enzymes. HMOs provide nutritional advantage for beneficial microbes in 79 

the infant gut and drive immune maturation at the gut epithelium (13-16). Moreover, 80 

HMOs may protect against neonatal pathogens by acting as soluble “decoy” receptors for 81 

enteric pathogens (17, 18), through neutralization of bacterial toxins (19, 20), or via direct 82 

antimicrobial activity including against GBS (21-24). Although the mechanism of HMO-83 

mediated GBS inhibition is not known, GBS expression of a putative glycosyltransferase 84 

(locus san_0913) is necessary for inhibitory activity (21), and HMO exposure lowers GBS 85 

sensitivity to antibiotics including vancomycin, erythromycin and trimethoprim (21, 25, 26). 86 

Additional support for HMO-mediated anti-GBS activity stems from clinical observations 87 

that mothers who produce a functional variant of the fucosyltransferase enzyme FUT3, 88 

which attaches fucose in an α1–3 or α1–4 linkage to form certain HMOs, are less likely 89 

to be vaginally colonized by GBS (27).  90 

 91 

We hypothesized that HMOs may reduce GBS vaginal colonization in vivo either through 92 

direct antimicrobial activity, or through indirect activity on the vaginal epithelium and/or 93 
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vaginal microbiota. Here, we test this hypothesis using a murine model of GBS vaginal 94 

colonization and pooled HMOs (pHMOs) isolated from human breastmilk. We further 95 

assess the impact of pHMOs on bacterial attachment to human vaginal epithelial cells 96 

and phenotypically characterize a GBS strain that is resistant to HMO inhibitory actively 97 

(21). Combined, our findings support the continued exploration of HMOs as a therapeutic 98 

strategy for GBS in pregnancy and the neonatal period.   99 

 100 

RESULTS 101 

Topical pHMO treatment reduces GBS vaginal burdens in vivo 102 

To determine the effect of HMOs on GBS vaginal colonization in vivo, wild-type C57BL/6J 103 

female mice were vaginally inoculated with GBS COH1, a serotype III ST17 neonatal 104 

sepsis clinical isolate (28). Mice were treated with pHMOs (1 mg/dose) 2 h prior to GBS 105 

inoculation, and on the following two consecutive days. Lacto-N-tetraose (LNT), a 106 

commercially produced HMO that inhibits GBS growth in vitro (21) was included as a 107 

treatment condition to test the efficacy of a single HMO. Vaginal swabs were collected 108 

prior to pHMO treatment on day 0, 1, and 2, as well as day 3 and 6 post-inoculation (Fig. 109 

1A). Treatment with pHMOs significantly reduced GBS vaginal burdens on day 1 (P = 110 

0.023) and 2 (P = 0.009) during active treatment, but these differences were resolved at 111 

day 3 and 6 after pHMO treatment had stopped (Fig. 1B). No differences between LNT 112 

and mock-treated groups were observed at any time point. Additionally, endogenous 113 

vaginal Enterococcus spp. were distinguished on the Streptococcus selective media, but 114 

no differences between treatment groups were detected (Fig. 1C). 115 

 116 
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Vaginal epithelial HMO exposure does not impact adherence of GBS or probiotic 117 

Lactobacillus 118 

Because HMOs can reduce adherence of pathogens (29-31) and promote adherence of 119 

beneficial bacteria to the host epithelium (32), we tested the impact of epithelial HMO 120 

pretreatment on adherence of GBS or the probiotic Lactobacillus rhamnosus GG to 121 

human vaginal epithelial (VK2) cells. We observed no effect of pHMO or LNT 122 

pretreatment on GBS adherence to VK2 cells at two different concentrations (Fig. 1D), 123 

nor did HMO pretreatment alter L. rhamnosus adherence to VK2 cells (Fig. 1E). 124 

 125 

HMO resistance conferred by disruption of san_0913 does not alter GBS biofilm 126 

formation, adherence, susceptibility to antibiotics, or in vivo colonization in the 127 

absence of HMOs  128 

Although the exact mechanism of HMO anti-GBS activity has yet to be established, 129 

increased GBS sensitivity to intracellular targeting antibiotics and enhanced cell 130 

membrane permeability occur following HMO exposure (21, 25, 26). Additionally, HMO 131 

exposure perturbs multiple GBS metabolic pathways including those related to linoleic 132 

acid, sphingolipid, glycerophospholipid, and pyrimidine metabolism (26). A transposon 133 

mutant library screen identified the gbs0738 gene (locus san_0913 or 134 

GBSCOH1_RS04065 in COH1), a putative glycosyltransferase family 8 protein, as 135 

essential for GBS susceptibility to HMOs over a 7 h time course (21). Using a targeted 136 

insertional mutant of san_0913 (COH1 Δsan_0913) (21), we assessed the growth of WT 137 

COH1 and Δsan_0913 in the presence of 0-20 mg/mL pHMOs over 18 h. We found that 138 

growth of COH1 was significantly inhibited at all pHMO concentrations tested compared 139 
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to the mock control (Fig. 2A,B). Concentrations of 20 mg/mL and 10 mg/mL pHMO 140 

inhibited growth of Δsan_0913 but to a lesser degree than seen with wild-type COH1 (Fig. 141 

2A,B). To determine whether san_0913 disruption altered GBS characteristics 142 

associated with colonization, we assessed the ability of Δsan_0913 to form biofilms and 143 

attach to vaginal epithelial cells. We observed no differences between COH1 and 144 

Δsan_0913 biofilm formation in either bacteriologic (Todd-Hewitt broth, THB) or 145 

eukaryotic (RPMI-1640) media as measured by crystal violet staining (Fig. 2C). 146 

Additionally, we observed no differences in VK2 adherence between the COH1 and 147 

Δsan_0913 strains (Fig. 2D). In our in vivo model, we found no differences in vaginal 148 

GBS burdens between COH1 and Δsan_0913 (Fig. 2E). However, when mice were 149 

treated with pHMOs as in Fig. 1A, Δsan_0913 displayed significantly higher GBS burdens 150 

at day 1 post-inoculation (P = 0.007) during active pHMO treatment, but this difference 151 

resolved at later time points (Fig. 2F). Furthermore, we performed minimum inhibitory 152 

concentration (MIC) assays of a variety of antibiotic classes, hydrogen peroxide, and 153 

dimethyl sulfoxide (DMSO). MICs were determined by a >90% reduction in OD600 values 154 

compared to controls. No differences in MICs between COH1 and Δsan_0913 were 155 

observed with any compound tested (Supp. Table 1). 156 

 157 

pHMO treatment minimally impacts the endogenous murine vaginal microbiota in 158 

the presence or absence of GBS 159 

We previously identified that GBS introduction to the murine vaginal tract causes 160 

community instability, particularly a decrease in Staphylococcus succinus, a dominant 161 

vaginal microbe in C57BL/6J mice (33). Because HMOs are metabolized by a variety of 162 
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bacteria in the neonatal intestinal tract (34-38), and since maternal serum HMO levels 163 

correlate with specific taxa in the maternal urinary and vaginal microbiota (39), we 164 

investigated whether pHMO treatment impacted the murine vaginal microbiota in the 165 

presence or absence of GBS perturbation. Using swabs collected from the murine 166 

experiments as outlined in Fig. 1A, 16S rRNA amplicon sequencing was used to 167 

characterize shifts in the vaginal microbiota of Control (mock-treated, mock-infected), 168 

pHMO (treated, mock-infected), Control_GBS (mock-treated, GBS-infected), and 169 

pHMO_GBS (treated, GBS-infected) mice. The alpha diversity, as measured by 170 

Shannon’s diversity index, significantly increased in Control_GBS and pHMO_GBS 171 

groups regardless of treatment compared to controls (Fig. 3A). However, in the absence 172 

of GBS, alpha diversity was not impacted in the pHMO versus Control groups at any time 173 

point (Fig. 3A). As observed previously (33), mice that received GBS  showed heightened 174 

community instability compared to mock-infected controls as measured by Bray-Curtis 175 

distance between time points. This effect was seen both in the presence (pHMO_GBS, P 176 

= 0.0048) and absence (Control_GBS, P = 0.0073) of pHMO treatment for the pairwise 177 

comparisons between days 2 and 3 (Fig. 3B). No impact upon community stability was 178 

observed with pHMO treatment in the absence of GBS (pHMO, Fig. 3B).  179 

 180 

Across all four conditions, no significant differences were observed in community richness 181 

over the 6-day time course as measured by observed operational taxonomic units (OTUs, 182 

Supp. Fig. 1A). Mice exposed to GBS (Control_GBS and pHMO_GBS), regardless of 183 

treatment, experienced a significant drop in the relative abundance of S. succinus 184 

compared to Control mice starting at day 1, and this effect continued throughout the 185 
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sampling period (Fig. 3C). No differences in the relative abundance of Enterococcus spp. 186 

or Lactobacillus spp., the two next most abundant endogenous OTUs, were observed 187 

between groups (Supp. Fig. 1B, 1C). ANCOM analysis (40) identified Bacteroides as the 188 

only significantly differentially abundant taxa across the four groups, with increased 189 

abundance in pHMO_GBS mice compared to all other groups (Fig. 3D).  190 

 191 

Murine vaginal community state types (mCSTs) display minimal differential 192 

stability upon pHMO treatment in the presence or absence of GBS 193 

The human vaginal microbiome, and more recently the murine vaginal microbiome, are 194 

classified into community state types (CSTs) (41) and murine community state types 195 

(mCSTs) respectively (33). In humans, four of the CSTs are each dominated by different 196 

Lactobacillus species, and the remaining CSTs had a non-Lactobacillus dominant taxa or 197 

diverse array of facultative and strictly anaerobic bacteria (41). In C57BL/6J mice from 198 

Jackson Labs, the vaginal microbiome is separated into 5 mCSTs dominated by either S. 199 

succinus, Enterococcus, a mixture of S. succinus/Enterococcus, Lactobacillus, or a 200 

mixture of different taxa (33). In this study, we detected all five of these mCSTs by 201 

hierarchical clustering with Ward’s linkage of Euclidean distances of day 0 swab samples 202 

prior to GBS infection and/or pHMO treatment (Supp. Fig. 2). When analyzing the 203 

collection of samples from all four groups across all time points, we observed the 204 

emergence of three GBS-containing groups: GBS dominant (mCST VI), GBS and S. 205 

succinus present at similar levels (mCST IV), and S. succinus dominant with lower 206 

abundances of GBS or Enterococcus (mCST II) (Fig. 4). 207 

 208 
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To assess if mice differentially transitioned between mCSTs across treatment groups, we 209 

tracked mCSTs in individual mice over time. Like our prior study (33), we found that 210 

mCSTs were relative unstable, with 43% of uninfected and 87% of GBS-infected mice 211 

being categorized to two or more mCSTs over the time course (Fig. 5). Using Bray-Curtis 212 

first distances for microbial communities within individual mice, we compared the 213 

instability between the baseline composition and the subsequent time points. Although 214 

there were no differences in longitudinal stability between Control and pHMO groups (P= 215 

0.2036), Bray-Curtis first distances were higher in pHMO_GBS versus Control_GBS mice 216 

(P= 0.0281) (Fig. 5).  217 

 218 

Although mCST I (S. succinus dominant) was the most commonly appearing mCST in 219 

Control and pHMO groups, mCST II appeared with significantly more frequency in the 220 

Control group (P= 0.0404) and mCST I appeared with more frequency in the pHMO group 221 

(P= 0.0067) (Fig. 6A). No significant differences in mCST frequencies were observed 222 

between Control_GBS and pHMO_groups with mCST II, mCST IV, and mCST VI 223 

representing the most abundant mCSTs in both GBS-infected groups (Fig. 6A). As seen 224 

previously (33), mCST I was the most stable community state: combining all conditions 225 

and samples with successfully sequenced consecutive timepoints, 84/109 (77%) of 226 

mCST I samples were assigned mCST I at the next time point (self-transition). mCST VI 227 

(GBS dominant) was the next most stable, followed by mCST II, mCST III, mCST V, and 228 

mCST IV (Fig. 6B). When separated by treatment groups, we found that mCST I was 229 

more likely to self-transition in the pHMO group compared to Control group (P = 0.0401) 230 

whereas mCST II was more likely to self-transition in the Control group compared to the 231 
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pHMO group (P = 0.0031) (Fig. 6C). In GBS-infected animals, no significant differences 232 

in mCST self-transitions were observed between Control_GBS and pHMO_GBS groups 233 

(Fig. 6C). 234 

 235 

DISCUSSION 236 

GBS remains a pervasive pathogen in pregnancy and the neonatal period. Current IAP 237 

prevention strategies have not fully abolished GBS neonatal infections and IAP is 238 

ineffective in preventing GBS infection prior to parturition. Because of the adverse effects 239 

of antibiotic exposure on the endogenous microbiota and propagation of antibiotic 240 

resistance, discovery of more targeted antimicrobial therapies to control maternal GBS 241 

carriage is important for maternal and neonatal health. Here, we apply HMOs, natural 242 

products produced by the mammary gland during pregnancy and lactation, to in vitro and 243 

murine models of GBS vaginal colonization. HMOs are known for simultaneous prebiotic 244 

benefits on commensal bacteria (14, 34, 38) and antimicrobial activity towards pathogens 245 

including GBS (21-24). To our knowledge, this is the first application of HMOs as a vaginal 246 

therapy in vivo. We propose that HMOs possess promising anti-GBS activity in this 247 

environment with minimal impact on the vaginal microbiota.   248 

 249 

Our animal model demonstrated that pHMO treatment reduced GBS vaginal carriage, but 250 

this effect was only seen during active treatment with no sustained impact observed after 251 

treatment ceased (Fig. 1). This finding aligns with other murine models showing 252 

protective effects of HMOs in reducing pathogen colonization (31, 42-44). Using human 253 

vaginal epithelial cells (VK2), we observed no changes in bacterial adherence when cells 254 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.20.465155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465155


12 
 

were pretreated with pHMOs. This observation is distinct from work showing HMO-255 

mediated inhibition of pathogens (31, 45-47) or enhanced attachment of beneficial 256 

bacteria (32, 48-50) at the gastrointestinal mucosa. Other studies have observed no 257 

impact of pHMO treatment on certain pathogens (51) or on pathogen colonization of other 258 

epithelial surfaces such as the bladder (52). These results suggest that prior mechanisms 259 

seen with HMOs and the gut epithelium may absent in the vaginal epithelium or with the 260 

bacterial species we tested.  261 

 262 

There are several limitations to this HMO treatment model. First, we did not optimize 263 

dosage, timing, or length of pHMO treatment. Second, although LNT shows potent in vitro 264 

anti-GBS activity (21), this did not translate to an in vivo GBS reduction, and thus the 265 

specific HMOs responsible for GBS reduction in our animal model are currently unknown. 266 

A clinical study found that Lewis positive women, who generate certain fucosylated 267 

HMOs, display reduced GBS vaginal carriage and infant colonization at birth (27). 268 

Specifically, levels of lacto-N-difucohexaose I (LNDFHI) in breastmilk samples negatively 269 

correlated with maternal GBS colonization status and reduced GBS growth in vitro (27).  270 

Third, HMOs and their fermentation products have multiple known gastrointestinal 271 

epithelial and immune modulatory activities (53-56). Likewise, it is possible that HMOs 272 

can act indirectly through altering host vaginal responses to GBS, however this was not 273 

evaluated in our study. Lastly, using murine models to test whether HMOs possess 274 

potential therapeutic activity in preventing GBS neonatal transmission and adverse birth 275 

outcomes (57, 58) will be an important application of our findings. 276 

 277 
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Although the exact mechanism of anti-GBS activity by HMOs is unknown, GBS 278 

susceptibility is linked to expression of a GBS-specific putative glycosyltransferase (locus 279 

san_0913) thought to catalyze the addition of glucose or galactose residues to the cell 280 

surface and thus may enable incorporation of HMOs into the GBS cell wall (21). In prior 281 

work, a glycosyltransferase-deficient Δsan_0913 strain showed resistance to HMO 282 

inhibition (5 mg/mL) over 7 h of culture (21). In our growth analysis, we confirmed this 283 

finding extended out to 18 h (Fig. 2). At higher concentrations (10 and 20 mg/mL) 284 

matching physiologic concentration of HMOs in human colostrum and breastmilk (59, 60), 285 

Δsan_0913 growth was inhibited, but not to the same extent as wild type COH1, 286 

suggesting that this deficiency does not completely resolve anti-GBS activity of HMOs. 287 

Recent work has shown that HMOs induced multiple GBS stress responses related to 288 

cell membrane and cell wall components (26), but the role of san_0913 in this GBS 289 

response has not been established. While streptococcal glycosyltransferase activity has 290 

been implicated in biofilm formation and composition in S. mutans (61), our phenotypic 291 

analyses did not reveal any substantial deficits in the glycosyltransferase-deficient 292 

Δsan_0913 in terms of biofilm formation, vaginal cell adherence, or in vivo vaginal 293 

colonization in the absence of HMO treatment. These results may have important clinical 294 

implications for HMO therapies and emergence of spontaneous HMO-resistant GBS 295 

under selective pressure.  296 

 297 

HMOs serve as prebiotics for beneficial microbes in the gut by promoting the 298 

establishment of Bifidobacteria and Bacteroides (37, 38, 62). Mammary HMO production 299 

begins early in pregnancy and is detected in maternal circulation in the first trimester (63). 300 
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Moreover, maternal serum levels of two abundant HMOs (2’-FL and 3’-SL) positively 301 

correlate with vaginal Gardnerella spp. and L. crispatus respectively (39), providing a 302 

basis for the hypothesis that HMOs might not only shape neonatal microbiota and 303 

immunity, but also maternal vaginal microbiota. Whether HMOs have the potential to 304 

directly impact the vaginal microbiome in humans has not been determined, however, a 305 

common vaginal species, L. gasseri, lacks the ability to metabolize HMOs (34). Because 306 

of the well-known prebiotic effects of HMOs on the infant microbiota, we examined the 307 

impact of pHMOs on the murine vaginal microbiota in our colonization model. We found 308 

minimal pHMO-driven changes to the community composition in terms of alpha and beta 309 

diversity (Fig. 3). The most marked difference between groups in our model was the 310 

emergence of Bacteroides in mice dually inoculated with GBS and treated with pHMOs 311 

(Fig. 3D). While the relative abundance of Bacteroides remained below 5% of the entire 312 

microbial landscape in the majority of mice, 0.1-5% abundance is estimated to account 313 

for ~105-106 total CFU in the murine vaginal tract. In women, the vaginal microbiota 314 

postpartum shows community instability and increases in Bifidobacterium and 315 

Bacteroides (64, 65), but the mechanisms driving these changes are unknown. Whether 316 

HMOs can be detected in the human vagina during pregnancy and lactation, and whether 317 

human vaginal microbes can metabolize HMOs are important topics of future study. 318 

 319 

There are several limitations to the interpretation of our murine vaginal microbiome data. 320 

First and foremost, the murine vaginal microbiome does not fully reflect the human vaginal 321 

microbiome in terms of species present; although there is an mCST dominated by a 322 

murine Lactobacillus (Supp. Fig. 2), it is a rare community in C57BL/6J mice (33). As a 323 
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future direction, we seek to use humanized microbiota mice to assess pHMO-mediated 324 

changes to the vaginal microbiota in the presence of human vaginal bacteria, such as 325 

that done in mouse models colonized with human gastrointestinal microbiota and treated 326 

with HMOs (42, 66). In women, GBS is present at low relative abundance in the vagina 327 

(67) whereas in our mouse model, GBS becomes a dominant member of vaginal 328 

community in some mice upon introduction (Fig. 4). This high relative abundance may 329 

alter dynamics of GBS and other vaginal taxa distinct from human vaginal communities. 330 

Additionally, the length of HMO treatment may need to be extended to observe larger 331 

effects. Prior studies have described more pronounced HMO-mediated shifts to the gut 332 

microbiota of both conventional (44, 68) and humanized microbiota mice (66), however, 333 

the length of HMO treatment in these studies was longer than in our model (3-8 weeks 334 

vs. 3 days respectively).  335 

 336 

By combining our prior (33) and current studies, we found that the vaginal microbiome of 337 

the C57BL/6J mice from Jackson labs is highly consistent across cohorts over several 338 

years. In both studies, we found that GBS introduction increases vaginal community 339 

instability and reduces the relative abundance of the most abundant taxa S. succinus. 340 

Additionally, we confirmed our prior observation that mCST I (S. succinus-dominant) is 341 

the most stable murine community over time. These consistencies highlight the utility of 342 

this murine model in comparing different experimental groups across cohorts and 343 

experimental variables.  344 

 345 

In summary, we have demonstrated HMOs can reduce GBS vaginal colonization in an 346 
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animal model with minimal impacts on the vaginal microbiota. There is mounting evidence 347 

that HMOs play an important role in shaping the infant gut microbiota and preventing 348 

pathogen colonization. HMO introduction to the vaginal tract may provide similar 349 

beneficial effects. These findings expand our knowledge of therapeutic applications of 350 

HMOs and support their continued development as a target for controlling GBS 351 

colonization in women. 352 

 353 

MATERIALS & METHODS 354 

 355 

Reagents, bacterial strains, and cell lines 356 

Pooled HMOs were isolated from human milk samples collected through the human milk 357 

donation program at the University of California, San Diego, lyophilized and stored at -358 

20° C as previously described (69). Individual HMO lacto-N-tetraose (LNT) was 359 

purchased from Dextra Laboratories. Prior to use, HMOs were resuspended in molecular 360 

grade water to a final concentration of 100 mg/mL, and subsequent dilutions were made 361 

in cell culture media (in vitro) or molecular grade water (in vivo).  362 

 363 

Group B Streptococcus (GBS) strains used in this study include COH1 (ATCC BAA-1176) 364 

and isogenic Δsan_0913 generated previously (21). Strains were grown for at least 16 h 365 

to stationary phase at 37°C in Todd-Hewitt Broth (THB) prior to experiments with 5 μg/mL 366 

erythromycin added to Δsan_0913 cultures. Prior to in vitro and in vivo experiments, 367 

overnight cultures were diluted 1:10 in fresh THB, and incubated stationary at 37°C until 368 

mid-log phase (OD600nm = 0.4). Lactobacillus rhamnosus GG (ATCC 53103) was grown 369 
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for 16 h to stationary phase at 37°C without shaking in de Man, Rogosa and Sharpe 370 

(MRS) broth.  371 

 372 

Immortalized human vaginal epithelial cells (VK2/E6E7, ATCC CRL-2616) were cultured 373 

in keratinocyte serum-free medium (KSFM) (Gibco) with 0.5 ng/mL human recombinant 374 

epidermal growth factor and 0.05 mg/mL bovine pituitary extract. Cells were cultured in a 375 

37°C incubator with 5% CO2. Cells were split every 3-4 days at ~80% confluency, and 376 

0.25% trypsin/2.21mM EDTA (Corning) were used to detach cells for passaging. 377 

 378 

GBS growth kinetics 379 

For growth curves, log phase GBS cultures were diluted 1:10 in RPMI-1640 (Gibco) in 380 

96-well microtiter plates with 20, 10, 5, or 2.5 mg/mL pHMOs or carrier control in 200 µL 381 

total volume. Wells with pHMOs and media only were also included to confirm absence 382 

of microbial contamination. Plates were incubated at 37°C and absorbance at OD600nm 383 

was read every 15 min for 18 h using a BioTek Cytation 5 multi-mode plate reader. 384 

 385 

Biofilm assays 386 

GBS biofilm assays were performed as described previously (70). Briefly, overnight 387 

cultures were diluted to OD600nm = 0.1 in RPMI-1640 or THB and incubated at 37°C for 388 

24 h. Media was removed, and biofilms were washed twice with PBS before drying at 389 

55°C for 30 min. Biofilms were stained with 0.2% crystal violet for 30 min, washed with 390 

PBS three times, and destained with 80:20 ethanol:acetone mixture. Supernatant was 391 

transferred to a fresh 96-well plate and absorbance was read at OD595nm using a BioTek 392 
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Cytation 5 multi-mode plate reader. Values were normalized to total bacterial growth prior 393 

to washing and staining and data were expressed as a ratio of crystal violet staining to 394 

total bacterial growth (OD595:OD600).  395 

 396 

Minimum inhibitory concentration (MIC) assays 397 

MICs were performed as described previously with minor adaptions (71). Mid-log phase 398 

cultures were diluted 1:100 in THB with or without H2O2, DMSO (Fisher Scientific), 399 

trimethoprim (Sigma), chloramphenicol (Fisher Scientific), and vancomycin (Sigma) at 400 

concentrations listed in Supp. Table 1 in 100 µL total volume in 96-well microtiter plates. 401 

Plates were incubated stationary for 24 h at 37ºC. The MICs were determined by at >90% 402 

reduction in OD600 absorbance compared to control wells.  403 

 404 

Adherence assays 405 

GBS adherence assays were performed on confluent VK2 cells in 24-well plates as 406 

described previously (72, 73). For studies using HMOs, media was replaced with KSFM 407 

containing 3mg/mL or 6 mg/mL of pHMO, LNT or vehicle control for 18 h. Cells were 408 

infected with GBS COH1, Δsan_0913, or L. rhamnosus at MOI = 1 (assuming 1 × 105 409 

VK2 cells per well). Bacteria was brought into contact with the VK2 cells by centrifuging 410 

for 1 min at 300 × g. After 30 min, supernatant was removed and cells washed 6X with 411 

sterile PBS. Cell layers were incubated for 5 min with 100 μL 0.25% trypsin/2.21 mM 412 

EDTA after which 400 μL of 0.025% Triton-X in PBS was added. Wells were mixed 30X 413 

to ensure detachment, and bacterial recovery was determined by plating on THB or MRS 414 

agar plates using serial dilution and counting CFUs. Data were expressed as a 415 
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percentage of adherent CFUs compared to original inoculum. 416 

 417 

Animals 418 

Animal experiments were approved by the UC San Diego and Baylor College of Medicine 419 

Institutional Animal Care and Use Committees (IACUC) and conducted under accepted 420 

veterinary standards. Mice were allowed to eat and drink ad libitum. WT C57Bl/6J female 421 

mice, originally purchased from Jackson Laboratories, aged 7 weeks, were allowed to 422 

acclimate for one week prior to experiments. 423 

 424 

Murine GBS vaginal colonization model 425 

Vaginal colonization studies were conducted as described previously (74). Briefly, mice 426 

were synchronized with 0.5mg β-estradiol administered intraperitoneally (i.p.) 24 h prior 427 

to inoculation. Mice were inoculated with 10μL (1×107 CFU total) of GBS COH1 or PBS 428 

as a mock control into the vaginal tract. Where applicable, mice were administered 1 mg 429 

(10 μL of 100 mg/mL) pHMOs, LNT, or vehicle control into the vaginal lumen two hours 430 

post-inoculation. Vaginal swabs were collected daily and recovered GBS (identified as 431 

pink/mauve colonies) was quantified by plating on CHROMagar StrepB (DRG 432 

International Inc.). Growth of blue colonies was considered endogenous Enterococcus 433 

spp. based on manufacturer protocols. Where applicable, mice received additional HMO 434 

or mock treatments on days 1 and 2 immediately following swab collection. Remaining 435 

swab samples were stored at -20° C until further use. 436 

 437 

Sample processing and 16S rRNA amplicon sequencing 438 
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DNA was extracted from thawed bacterial swab suspensions using the Quick-DNA 439 

Fungal/Bacterial Microprep Kit protocol (Zymo Research). The V4 regions of the 16S 440 

rRNA gene were amplified using barcoded 515F-806R primers (75), and the resulting V4 441 

amplicons were sequenced on an Illumina MiSeq. Raw sequencing data were transferred 442 

to Qiita (76).  Sequences were demultiplexed, trimmed to 150-bp reads, and denoised 443 

using Deblur through QIIME2 v2020.8 (77). Qiime2 was also used for rarefaction (1900 444 

sequences per sample), and calculation of alpha diversity (Shannon and OTUs) and beta 445 

diversity (Bray-Curtis distance). For ANCOM (40) analysis for differentially abundant 446 

OTUs, the nonrarefied feature table was used. Taxonomic assignments used the naive 447 

bayes sklearn classifier in QIIME 2 trained on the 515F/806R region of Greengenes 13_8 448 

99% OTUs. As many of the samples were low biomass, DNA contaminants from 449 

sequencing reagents and kits had a substantial impact on the dataset. Negative controls 450 

that went through the entire pipeline, from DNA extraction to sequencing, were used to 451 

catalog these contaminants (Pseudomonas veronii). Mitochondria and chloroplast 16S 452 

sequences were also removed. Output files generated through the Qiime2 pipeline were 453 

exported and analyzed with R version 3.6.1 (2019-07-05) -- "Action of the Toes" using 454 

stats, factoextra, and Phyloseq (78, 79). Data visualization was performed with ggplot2 455 

(80) and Seaborn (81).   456 

 457 

Community State Type (CST) delineation 458 

Feature tables and representative sequences generated from three individual studies 459 

were merged and used to generate a taxonomy file. Two more studies from our prior work 460 

(33) were downloaded from EBI accession number PRJEB25733 in addition to the current 461 
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study (EBI accession XXXX) for Supp. Fig. 2 depicting the Baseline CSTs. To assign 462 

mCSTs and create heatmaps, hierarchical clustering was performed using the R package 463 

stats (79) on the rarefied feature table  with Ward’s linkage of Euclidean distances. The 464 

optimum number of clusters (5 mCSTs) was determined using wss and silhouette 465 

(kmeans) based on the dendrogram. For EBI accession number XXXX (this study) alone, 466 

including all experimental conditions and time points, we added an additional GBS-467 

dominant mCST as modeled by (33). For within-mouse assessment of instability and 468 

mCST transitioning, samples with only one time point collected were excluded. Samples 469 

that did not successfully sequence at the baseline (Day 0) time point were excluded from 470 

Bray-Curtis first distances analysis.  471 

 472 

Data availability 473 

Sequencing Data used in this study is available in EBI under the accession number XXXX, 474 

and code is accessible at GitHub under project “XXXX”. 475 

 476 

Statistics 477 

All data were collected from at least three biological replicates performed in at least 478 

technical duplicate as part of at least two independent experiments. When biological 479 

replicates were not available (e.g. immortalized cell lines and bacteria only assays), 480 

experiments were performed independently at least 3 times. Mean value from technical 481 

replicates were used for statistical analyses, with independent experiment values or 482 

biological replicates represented in graphs with mean, median with interquartile ranges, 483 

or box and whisker plots with Tukey’s as indicated in figure legends. All data sets were 484 
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subjected to D’Agostino & Pearson normality test to determine whether values displayed 485 

Gaussian distribution before selecting the appropriate parametric or non-parametric 486 

analyses. In the instances where in vitro and in vivo experimental n were too small to 487 

determine normality, data were assumed non-parametric. GBS vaginal colonization 488 

burdens were assessed by Kruskal Wallis with Dunn’s multiple comparisons test or two-489 

stage Mann-Whitney test as indicated in figure legends. GBS adherence to VK2 cells was 490 

assessed by or two-way ANOVA with Dunnett’s multiple comparisons test or Wilcoxon 491 

matched-pairs signed rank test as indicated in figure legends. GBS growth (area under 492 

curve) and biofilm formation was compared by two-way repeated measures ANOVA with 493 

Dunnett’s multiple comparisons test and two-way ANOVA with Sidak’s multiple 494 

comparisons test respectively. Data from 16S rRNA amplicon sequencing was analyzed 495 

by two-way ANOVA with Tukey’s comparison. Bray-Curtis first distances were analyzed 496 

by Mann-Whitney test. mCST transition frequencies were compared by chi square test. 497 

Statistical analyses were performed using GraphPad Prism, version 9.2.0 (GraphPad 498 

Software Inc., La Jolla, CA, USA). P values < 0.05 were considered statistically 499 

significant. 500 
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FIGURE LEGENDS 786 

 787 

Figure 1. Treatment with pHMOs, but not specific HMO LNT, reduce GBS vaginal 788 

burdens in mice and do not impact adherence to human vaginal epithelial cells. (A) 789 
Experimental timeline for the GBS colonization model. Baseline vaginal swabs were 790 
collected on Day 0 prior to GBS inoculation with 1 × 107 CFU of GBS COH1. Mice were 791 

treated with 1 mg pHMOs or lacto-N-tetraose (LNT) two hours post-infection, and on the 792 

two subsequent days. Mice were swabbed prior to daily treatment with HMOs, as well as 793 
one and four days after the last HMO treatment. Mouse and syringe images are available 794 
open source through pixabay. (B) GBS burdens recovered from mouse vaginal swabs 795 
over the 6-day time course (n = 20-30/group). (C) Enterococcus spp. burdens recovered 796 

from mouse vaginal swabs over the 6-day time course. Mice that did not culture 797 
Enterococcus at any time point were excluded (n = 7-22/group). Adherence of GBS COH1 798 

(D) or Lactobacillus rhamnosus GG (E) to VK2 cells pretreated with pHMOs or LNT for 799 

18 h. Adherence was normalized to mock treated controls. Symbols represent individual 800 
mice (B, C), or the means of 4-5 independent experimental replicates (D,E), with lines 801 
representing median and interquartile range. Data were analyzed by Kruskal Wallis with 802 
Dunn’s multiple comparisons test (B,C) or two-way ANOVA with Dunnett’s multiple 803 
comparisons test (D,E).  ** P < 0.01, * P < 0.05. All other comparisons are not significant. 804 
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 805 

Figure 2. HMO resistance conferred by disruption of san_0913 does not alter GBS 806 

biofilms, adherence, or in vivo colonization in the absence of HMOs. (A) Growth 807 
curves of WT COH1 and Δsan_0913 in RPMI-1640 supplemented with 0, 2.5, 5, 10, or 808 

20 mg/mL pHMOs and cultured for 18 h as measured by optical density (OD600). (B) Area 809 

under curve analysis of growth curves from (A). Comparisons shown are to 0 mg/mL 810 
pHMO controls. (C) Biofilm formation of COH1 and Δsan_0913 in THB or RPMI-1640 811 

quantified by crystal violet staining and expressed as a ratio of crystal violet absorbance 812 

over total bacterial biomass (OD595:OD600). (D) Percent adherence of COH1 and 813 
Δsan_0913 to VK2 cells after 30 min of infection, MOI = 1. (E) Mice were vaginally 814 
inoculated with 1 × 107 CFU of COH1 or Δsan_0913, and vaginally swabbed at indicated 815 

time points. Recovered GBS CFU recovered from swabs are shown. (F) Mice were 816 
inoculated as in (E) and treated with pHMOs as indicated in Fig. 1A. Recovered GBS 817 
CFU recovered from swabs are shown. Symbols represent the median of three 818 

independent experiments (A), means of three to six independent experiments (B-D) or 819 
individual mice from two combined independent experiments (n = 16/group, E,F). Lines 820 

indicate median values and interquartile ranges.  Data were analyzed by two-way 821 

repeated measures ANOVA with Dunnett’s multiple comparisons test (B), two-way 822 
ANOVA with Sidak’s multiple comparisons test (C), Wilcoxon matched-pairs signed rank 823 
test (D), or two-stage Mann-Whitney test (E,F). **** P < 0.0001, *** P < 0.001, ** P < 0.01, 824 

* P < 0.05. All other comparisons are not significant. 825 
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 826 

Figure 3. Alpha and beta diversity and differential taxa abundance as measured by 827 

16S rRNA amplicon sequencing. Mice were mock-infected or GBS-infected and treated 828 
with pHMOs or mock-treated: Control (mock-treated, mock-infected), pHMO (treated, 829 

mock-infected), Control_GBS (mock-treated, GBS-infected), and pHMO_GBS (treated, 830 

GBS-infected) as described in Materials and Methods. (A) Shannon’s diversity index of 831 

vaginal 16S amplicon sequencing from each condition over the time course. (B) Bray-832 
Curtis pairwise distances between subsequent time points. Relative abundance of S. 833 
succinus (C) and Bacteroides spp (D) according to treatment group over time. Displayed 834 

as Tukey’s box plot (A,B,D) and min-to-max box and whisker plots (C), n = 11-21/group 835 

per time point. Data were analyzed by two-way repeated measures ANOVA with Tukey’s 836 
multiple comparisons test. All comparisons shown are to the Control group. *** P < 0.001, 837 
** P < 0.01, * P < 0.05. All other comparisons are not significant.  838 
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 839 

Figure 4. Heatmap of murine community state types across treatment groups and 840 

time points. Relative abundances of the top 23 taxa in mice across all four treatment 841 
groups as determined by 16S rRNA amplicon sequencing (n = 20-24 mice/group). Murine 842 

samples are hierarchically clustered by Ward’s linkage of Euclidean distances to generate 843 
mCSTs (top bar). Treatment (middle bar) and timepoint (bottom bar) per sample are 844 
displayed above the heatmap. Highest to lowest taxonomic abundances are shown by 845 
heatmap intensity corresponding to the colorbar (indicated in lower right corner) ranging 846 
from dark purple to white. 847 
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 848 

Figure 5. Vaginal microbiome stability over time with pHMO treatment and/or GBS 849 
infection. mCST designations for mouse cohort samples are displayed ordered by 850 
treatment group and time point (left panels). For each mouse, corresponding Bray-Curtis 851 

first distances from the day 0 time point are shown (right panels). Mice with less than two 852 
sequenced samples were excluded from analysis, and mice without a sequenced day 0 853 
sample were excluded from the first distance analysis (n = 20-25/group). Data were 854 

analyzed by Mann-Whitney test. 855 
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 856 

Figure 6. Frequency and transitions of mCSTs across treatment groups. mCST 857 
designations for mouse cohort samples were combined from all time points. (A) 858 

Frequency of mCST appearances within treatment groups. (B) Proportion of samples 859 

designated to each mCST grouped by the mCST from the previous time point. A self-860 
transitioning mCST would be designated from a mCST to the same mCST at the next 861 
time point (e.g., from mCST I to mCST I). (C) Relative proportions of mCSTs that self-862 

transitioned at the next time point separated by treatment group. Data were analyzed by 863 
chi square test. 864 

 865 

 866 
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