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Abstract: Protein-protein interactions is a longstanding challenge in cardiac remodeling processes
and heart failure. Here we use the MetaCore network and the Google matrix algorithms for prediction
of protein-protein interactions dictating cardiac fibrosis, a primary causes of end-stage heart failure.
The developed algorithms allow to identify interactions between key proteins and predict new actors
orchestrating fibroblast activation linked to fibrosis in mouse and human tissues. These data hold
great promise for uncovering new therapeutic targets to limit myocardial fibrosis.
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1. Introduction

Cardiovascular disease, a class of diseases that impact cardiovascular system, is responsible for
31% of all deaths and remains the leading cause of mortality worldwide [1]. Myocardial fibrosis
is a central element of cardiac remodeling that leads to human failure and death [2]. Myocardial
fibrosis results from uncontrolled fibroblast activity and excessive extracellular matrix deposition
[2]. Although a number of factors have been implicated in orchestrating the fibrotic response, tissue
fibrosis is dominated by a central mediator: transforming growth factor-β (TGF-β) [3]. Sustained
TGF-β production leads to a continuous cycle of growth factor signaling and dysregulated matrix
turnover. However, despite intensive research, the factors that orchestrate fibrosis are still poorly
understood and as a result, effective strategies for reversing fibrosis are lacking [2,4]. Considering the
complex heterogeneity of fibrosis, research strategy on a system-level understanding of the disease
using mathematical modeling approaches is a driving force to dissect the complex processes involved
in fibrotic disorders. Recently, we have reproduced the classic hallmarks of aberrant cardiac fibroblast
activation leading to fibrosis including high collagen production and deposition [5]. Tools designed in
this work, with RNA sequence data sets, enable analyses to help generate hypotheses about a gene’s
function in activated fibroblasts.

The present work is based on the recent clinical results presented in [5] which allowed to determine
the protein response detected in fibrosis tissue of mouse and human as a feedback on TGF protein
stimulation, which is known to play an important role [3]. These experiments allowed to determine
proteins with most positive and most negative response. We use the proteins with top 20 positive
and top 20 negative strongest response. Their names are given in Table 1 marked by indexes Ku =

1, 2, . . . , 20; Kd = 1, 2, . . . , 20. These proteins are ordered monotonically from the strongest Ku = 1 to to
weakest Ku = 20 positive responses; the same monotonic ordering is done by modulus of negative
response with strongest Kd = 1 to weakest Kd = 20 responses. In addition there are 4 proteins TGF-β
with indexes Kt = 1, 2, 3, 4 used in experiments [5]. These 44 proteins form the internal selected fibrosis
group. For the analysis of protein-protein interactions (PPI) characterizing fibrosis we add a group of
10 external proteins with indexes as Kx = 1, 2, . . . , 10 (their choice will be explained below). Thus in
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total we have the PPI fibrosis network with 54 proteins (nodes). They are ordered by their global index
Kg = 1, 2, . . . , 54 as it is shown in Table 1 (first 4 Kt, then 20 Ku, 20 Kd and 10 Kx).

To analyze the properties of this PPI fibrosis network we use the developed commercial MetaCore
network database of Clarivate [6]. This network database has been shown to be useful for analysis of
various specific biological problems (see e.g. [7,8]). At present the MetaCore network has N = 40079
nodes with N` = 292191 links (without self connections) with on average n` = N`/N ≈ 7.3 links
per node [9]. The nodes are given mainly by proteins but also there are certain molecules and
molecular clusters catalyzing the interactions with proteins. This MetaCore PPI network is directed
and non-weighted. Also its network links mark the bi-functional nature of interactions leading to the
activation or the inhibition of one protein by another one. For some nodes link action is neutral or
unknown.

For the investigation of fibrosis PPI network we use the Google matrix algorithms developed
for the analysis of the World Wide Web [10,11] and other directed networks like Wikipedia networks,
world trade networks and others (see review [12]). Such an approach to network characterization
is based on the concept of Markov chains invented by Markov in an article published 1906 in the
proceeding of the Kazan University [13].

The important method for analysis of directed networks is the reduced Google matrix
(REGOMAX) algorithm developed and described in detail in [14,15]. The REGOMAX algorithm
has been applied to PPI networks of SIGNOR database as reported in [16,17]. However, the number of
nodes in the SIGNOR database is by a factor ten smaller than the number of nodes of the MetaCore
network and its use can only be considered as a test bed for of the numerical algorithms and its
conceptional base. A first description of the statistical properties of the global MetaCore network,
including PageRank, CheiRank and REGOMAX characteristics, was presented in [9]. However, this
work only represents a statistical study of the MetaCore network without any applications to a concrete
biological problem. In this work we apply the REGOMAX analysis to the specific biological problem
of fibrosis.

The important feature of the REGOMAX algorithm is that it constructs the Google matrix of a
selected subset of nodes Nr � N (here we have Nr = 54) taking into account not only direct links
between these Nr nodes but also all indirect pathways connecting them via the global MetaCore
network of much larger size N. The efficiency the REGOMAX approach was demonstrated for various
applications concerning the Wikipedia and world trade networks [18–21] and we also expect that this
method will provide useful and new insights in the context of fibrosis protein-protein interactions
using the MetaCore network.

The paper constructing as follows: Section 2 describes the data sets and Google matrix algorithms,
Section 3 presents the obtained results of the reduced Google matrix and sensitivity analysis for the
particular group of 54 proteins (of Table 1) we consider here and Section 4 provides the discussion of
the results and the conclusion; In the Appendix we provide additional Figures and a simple analytical
estimate for the sensitivity matrix to which we refer in the main part of the work; more detail numerical
data files obtained from the Google matrix computations are available at [22].

2. Data sets and methods

Here we describe the data sets, construction rules and algorithms of Google matrix.

2.1. Network data sets

The global MetaCore PPI network contains N = 40079 nodes with N` = 292191 links (without
self connections). The number of activation/inhibition links is N`+/N`− = 65157/49321 ' 1.3 and
the number of neutral links is N`n = N − N`+ − N`− = 177713. Here we mainly present the results
without taking into account the bi-functional nature of links. However, a part of the results takes into
account this bi-functionality of links using the Ising Google matrix approach described in [9,17]. The
subset of selected Nr = 54 fibrosis proteins (nodes) is given in Table 1; these nodes are represented
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by 4 TGF-β proteins/nodes (Kt = 1, 2, 3, 4), 20 “up-proteins” (Ku = 1, . . . , 20), 20 “down-proteins”
(Kd = 1, . . . , 20), both obtained from experiments [5] (as described above) and 10 new “X-proteins”
(or “X-nodes”; Kx = 1, . . . , 10) whose selection is explained later. The TGF-β 4 nodes correspond to
different isoforms of this protein.

The Google matrix approach used in this work is explained in detail in [10–12] and the related
REGONAX algorithm is described in [9,14,15,17]. Below we present a short description of these
methods following mainly the presentation given in [9], keeping the same notations.
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Table 1. Table of the subset of Nr = 54 selected fibrosis proteins (nodes). Here Kg represents the
global index of this group, Kt,u,d,x represent the index of the four subgroups of 4 TFG-β proteins, 20
up-proteins, 20 down-proteins and 10 additional X-proteins; K (K∗) represents the local PageRank
(CheiRank) index inside this group and KM (K∗M) represents the PageRank (CheiRank) index for the
global MetaCore network of N = 40079 nodes; the last column gives the associated protein names.

Kg Kt,u,d,x K K∗ KM K∗M Protein

1 Kt = 1 30 37 10780 26299 TGF-β 0
2 Kt = 2 9 14 235 5690 TGF-β 1
3 Kt = 3 13 33 968 25073 TGF-β 2
4 Kt = 4 20 45 4726 29508 TGF-β 3
5 Ku = 1 46 35 28737 25928 ADAMTS16
6 Ku = 2 17 34 3478 25137 FGF21
7 Ku = 3 52 39 40048 28152 TNFSF18
8 Ku = 4 16 26 2467 19160 ACAN
9 Ku = 5 14 31 1489 24511 RPH3A

10 Ku = 6 42 46 26600 29559 ADAMTS8
11 Ku = 7 51 47 34769 39960 MEGF6
12 Ku = 8 40 38 26295 27326 SV2B
13 Ku = 9 44 48 27111 36021 C1QTNF3
14 Ku = 10 50 49 34616 39841 ANO4
15 Ku = 11 32 24 12696 16566 IL11
16 Ku = 12 43 30 26624 23640 CDH10
17 Ku = 13 26 50 7263 30243 HTR2B
18 Ku = 14 19 16 4647 6551 LAMA1
19 Ku = 15 28 36 8342 26295 LAMA1
20 Ku = 16 18 17 4021 8252 RAPGEF4
21 Ku = 17 48 51 29945 36964 DNER
22 Ku = 18 36 18 22159 8569 GALNT3
23 Ku = 19 47 23 29145 15531 ACSBG1
24 Ku = 20 37 20 24786 8735 OLFM2
25 Kd = 1 35 40 19039 28262 CLEC3B
26 Kd = 2 41 41 26477 28290 SCARA5
27 Kd = 3 39 22 26109 11185 SLC10A6
28 Kd = 4 24 44 6360 29204 CXCL5
29 Kd = 5 33 19 14952 8729 MYOC
30 Kd = 6 22 28 5961 22288 IFITM1
31 Kd = 7 21 13 5599 4483 ANGPTL4
32 Kd = 8 38 25 25538 17434 SELENBP1
33 Kd = 9 34 52 18938 33179 FMO1
34 Kd = 10 49 53 34080 39427 GPR88
35 Kd = 11 23 27 6276 22141 HMGCS2
36 Kd = 12 53 43 37060 28328 LGI2
37 Kd = 13 29 11 9162 2485 PTN
38 Kd = 14 11 15 513 5974 ADORA2A
39 Kd = 15 27 29 7789 22652 GFRA1
40 Kd = 16 25 21 6718 8844 IL1R2
41 Kd = 17 54 42 35446 28306 IL1R2
42 Kd = 18 31 12 12148 3444 PEG10
43 Kd = 19 45 54 27829 36195 FMO2
44 Kd = 20 15 32 1973 24994 COX4I2
45 Kx = 1 1 4 3 13 β-catenin
46 Kx = 2 2 1 4 6 p53
47 Kx = 3 3 2 11 10 ESR1
48 Kx = 4 4 5 13 25 STAT3
49 Kx = 5 5 3 22 11 RelA
50 Kx = 6 6 6 38 82 PPAR-γ
51 Kx = 7 7 8 111 767 IKK-β
52 Kx = 8 8 7 179 198 SNAIL1
53 Kx = 9 10 9 237 1520 MMP-14
54 Kx = 10 12 10 578 2123 Flotillin-1
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2.2. Google matrix construction, PageRank and CheiRank

First, we construct the Google matrix G of the MetaCore network for the simple case where the
bi-functional nature of links is neglected. Furthermore, the directed links are non weighted. First one
defines an adjacency matrix with elements Aij being equal to 1 if node j points to node i and equal to 0
otherwise. In the next step, the stochastic matrix S describing the node-to-node Markov transitions is
obtained by normalizing each column sum of the matrix A elements to unity. For dangling nodes j
corresponding to zero columns of A, i.e. Aij = 0 for all nodes i, the corresponding elements of S are
defined by Sij = 1/N. The stochastic matrix S describes a Markov process on the network: a random
surfer jumps from node j to node i with the probability Sij, therefore following the directed links. The
column sum normalization ∑i Sij = 1 ensures the conservation of probability. The elements of the
Google matrix G are then defined by the standard form

Gij = αSij + (1− α)/N (1)

where α = 0.85 is the usual damping factor [10,11]. The Google matrix is also column sum normalized
and now the random surfer jumps on the network in accordance to the stochastic matrix S with
a probability α and with a complementary probability (1− α), to an arbitrary random node of the
network. The damping factor allows to escape from possible isolated communities and ensures that the
Markov process converges for long times rather quickly to a uniform stationary probability distribution.
The latter is given by the PageRank vector P which is the right eigenvector of the Google matrix G
corresponding to the leading eigenvalue, here λ = 1. The corresponding eigenvalue equation is then
GP = P. According to the Perron-Frobenius theorem, the PageRank vector P has positive elements
and their sum is normalized to unity. The PageRank vector elements P(j) gives the probability to find
the random surfer on the node j at the stationary state of the Markov process. Thus, all the nodes
can be ranked by monotonically by decreasing PageRank probability. The PageRank index K(j) gives
the rank of the node j with the highest (lowest) PageRank probability P(j) corresponding to K(j) = 1
(K(j) = N). The PageRank probability P(j) is proportional, on average, to the number of ingoing links
pointing to node j. However, it also takes into account the “importance” (i.e. PageRank probability) of
the nodes having a direct link to j.

It is also useful to consider a network obtained by the inversion of all link directions . For this
inverted network, the corresponding Google matrix is denoted G∗ and the corresponding PageRank
vector, called the CheiRank vector P∗, is defined such as G∗P∗ = P∗. A detailed statistical analysis
of the CheiRank vector can be found in [23,24] (see also [12]). Similarly to the PageRank vector, the
CheiRank probability P∗(j) is proportional, on average, to the number of outgoing links going out
from node j. The CheiRank index K∗(j) is also defined as the rank of the node j according to decreasing
values of the CheiRank probability P∗(j).

2.3. Reduced Google matrix

The concept of the REGOMAX algorithm was introduced in [14] and a detailed description of
the first applications to groups of political leaders having articles in Wikipedia networks (different
language editions) can be found in [15]. This algorithm determines effective interactions between
a selected subset of Nr nodes enclosed in a global network of size N � Nr. These interactions are
determined taking into account direct and all indirect transitions between Nr nodes via all the other
Ns = N − Nr nodes of the global network. We note that quite often in certain network analyses only
direct links of a subset of elected Nr nodes are taking into account and their indirect interactions via
the global network are omitted thus clearly missing the important interactions.

On a mathematical level the REGOMAX approach uses ideas similar to those of the Schur
complement in linear algebra (see e.g. [25]) and quantum chaotic scattering in the field of quantum
chaos and mesoscopic physics (see e.g. [26,27]). The Schur complement was introduced by Issai Schur
in 1917 (see history in [25]). In the context of Markov chains this approach was discussed in [28]. It
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is clear that the Schur complement attracted a lot of studies from far 1917. However, there are new
elements, developed in [14,15], related to a specific matrix decomposition of the Schur complement
which allows to understand its new features and to compute efficiently (numerically) the three related
matrix components in the framework of the reduced Google matrix approach for very large networks
(e.g. N ∼ 5× 106 as for English Wikipedia).

We write the full Google matrix G of the global network in the block form

G =

(
Grr Grs

Gsr Gss

)
(2)

where the label “r” refers to the nodes of the reduced network, i.e. the subset of Nr nodes, and “s” to
the other Ns = N−Nr nodes which form the complementary network acting as an effective “scattering
network”. The reduced Google matrix GR acts on the subset of Nr nodes, has the size Nr × Nr. It is
defined by

GRPr = Pr . (3)

Here Pr is a vector of size Nr, its components are the normalized PageRank probabilities of the Nr

nodes, Pr(j) = P(j)/ ∑Nr
i=1 P(i). The REGOMAX approach allows to find an effective Google matrix

for the subset of Nr nodes keeping fixed the relative ranking probabilities between these nodes. The
reduced Google matrix GR has the form [14,15]

GR = Grr + Grs(1− Gss)
−1Gsr. (4)

Furthermore it satisfies the relation (3) and it is also column sum normalized. The reduced Google
matrix GR can be represented as the sum of three components [14,15]:

GR = Grr + Gpr + Gqr. (5)

Here, the first component, Grr, corresponds to the direct transitions between the Nr nodes; the
second component, Gpr, is a matrix of rank 1 with all the columns being proportional (actually
approximately equal to the reduced PageRank vector Pr); the third component, Gqr, describes all the
“interesting indirect pathways” passing through the global network of G matrix. Without going into
the details we mention here that mathematically (and also numerically) Gpr is obtained from (4) by
extracting the contribution of the leading eigenvector of Gss (which is very close to the PageRank of the
complementary scattering network of Ns nodes) whose eigenvalue is close to unity but it is not exactly
unity since Gss is not column normalized and there is small escape probability from the Ns scattering
nodes to the selected subset with Nr nodes. This eigenvector dominates therefore the matrix inverse in
(4) and its contribution produces the rank 1 matrix Gpr and the remaining contributions of the other
eigenvectors of Gss to the matrix inverse provide the matrix Gqr which can be efficiently computed
by a rapid convergent matrix series (see [14,15] for details). This point is crucial since it allows for a
highly efficient numerical evaluation of all three components of GR also for the case where a direct
numerical computation of the matrix inverse of (1− Gss) is not possible due to very large values of N
(note Gss has the size Ns × Ns with Ns ≈ N � Nr). While Gpr, being typically numerical dominant,
has a very simple rank 1 structure the matrix Gqr contains the most nontrivial information related to
indirect hidden transitions. Actually, mathematically both components Gpr and Gqr arise from indirect
pathways through the scattering nodes (represented by the matrix inverse term in (4)) but Gpr can
be viewed as a uniform background generated by the long-time limit (i.e. the leading eigenvector of
Gss) of the effective process in the complementary scattering network. The component Gqr gives the
deviations from this background and in the following when we speak of “contributions from indirect
pathways” we refer essentially to the contributions of Gqr. It is possible that certain matrix elements of
Gqr are negative and if this happens this is also an important information since it indicates a reduction
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from the uniform background for certain links (matrix elements of GR, Grr and Gpr are always positive
due to mathematical reasons).

Furthermore, we also define the matrix G(nd)
qr which is obtained from the matrix Gqr by putting

its diagonal elements to zero (these elements correspond to indirect self-interactions of nodes). We
consider that this matrix contains the most interesting link information, direct links and “relevant”
indirect links describing the deviations from the uniform background due to Gpr. The contribution of

each component is characterized by their weights WR, Wpr, Wrr, Wqr (W(nd)
qr ) respectively for GR, Gpr,

Grr, Gqr (G(nd)
qr ). The weight of a matrix is given by the sum of all the matrix elements divided by its

size Nr (WR = 1 due to the column sum normalization of GR). Examples of interesting applications and
studies of reduced Google matrices associated to various directed networks are described in [16–19].

2.4. Bi-functional Ising MetaCore network

To take into account the bi-functional nature (activation and inhibition) of MetaCore links, we use
the approach proposed in [17] with the construction of a larger network where each node is split into
two new nodes with labels (+) and (−). These two nodes can be viewed as two Ising-spin components
associated to the activation and the inhibition of the corresponding protein. In the construction of the
doubled “Ising” network of proteins, each elements of the initial adjacency matrix is replaced by one
of the following 2× 2 matrices

σ+ =

(
1 1
0 0

)
, σ− =

(
0 0
1 1

)
, σ0 =

1
2

(
1 1
1 1

)
(6)

where σ+ applies to “activation” links, σ− to “inhibition” links, and σ0 when the nature of the
interaction is “unknown” or “neutral”. For the rare cases of multiple interactions between two
proteins, we use the sum of the corresponding σ-matrices which increases the weight of the adjacency
matrix elements. Once the "Ising" adjacency matrix is obtained, the corresponding Google matrix is
constructed in the usual way as described above. The doubled Ising MetaCore network corresponds to
NI = 80158 nodes and NI,` = 939808 links given by the non-zero entries of the used σ-matrices.

Now, the PageRank vector associated to this doubled Ising network has two components P+(j)
and P−(j) for every node j of the simple network. Due to the particular structure of the σ-matrices (6),
one can show analytically the exact identity, P(j) = P+(j) + P−(j), where P(j) is the PageRank of the
initial single PPI network [17]. The numerical verification shows that the identity P(j) = P+(j) + P−(j)
holds up to the numerical precision ∼ 10−13.

As in [17], we characterize each node by its PageRank “magnetization” given by

M(j) =
P+(j)− P−(j)
P+(j) + P−(j)

. (7)

By definition, we have −1 ≤ M(j) ≤ 1. Nodes with positive M are mainly activated nodes and those
with negative M are mainly inhibited nodes.

In this work the results are mainly presented for the simple network without taking into account
the bi-functional nature of links. However, for an illustration we also present some results for the
bi-functional network, keeping for further studies a more detailed analysis of this case.

2.5. Sensitivity derivative

The reduced Google matrix GR of the fibrosis network describes effective interactions between Nr

nodes taking into account all direct and indirect pathways via the global MetaCore network.
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As in [9], we determine the sensitivity of PageRank probabilities with respect to a small variation
of the matrix elements of GR. The PageRank sensitivity of the node j with respect to a small variation
of the link b→ a is defined as

D(b→a)(j) =
1

Pr(j)
dPrε(j)

dε

∣∣∣∣
ε=0

= lim
ε→0

1
εPr(j)

[Prε(j)− Pr(j)] . (8)

Here, for fixed values of a and b, Prε(j) is the PageRank vector computed from a perturbed matrix
GRε where the elements are defined by GRε(a, b) = GR(a, b)(1 + ε)/[1 + εGR(a, b)]; GRε(c, b) =

GR(c, b)/[1 + εGR(a, b)] if c 6= a and GRε(c, d) = GR(c, d) if d 6= b and for arbitrary c (including c = a).
In other words the element GR(a, b), corresponding to the transition b→ a, is enhanced/multiplied
with (1 + ε) and then the column b is resum-normlized by multiplying it with the factor 1/[1 +

εGR(a, b)] and all other columns d 6= b are not modified. We use here an efficient algorithm described
in [29] to evaluate the derivative in (8) exactly without usage of finite differences (see also the Appendix
for some details on this and other related points). In the following, we consider the case where j = a and
we define the “sensitivity matrix” as Dab = D(b→a)(a). It turns out from the numerical computations
that for the cases considered here all values of Dab are positive: Dab > 0 which can also be analytically
understood as explained in the Appendix.

2.6. Determination of external X-proteins

From the experimental results of [5] we have 44 nodes of our selected subset (see first 44 rows of
Table 1). Of course, the interactions between these nodes are very important but it is also important
to determine how these 44 fibrosis proteins are influenced by external nodes. To find the most
important and influential external nodes we take 5 top up- and 5 down-proteins with Ku = 1, . . . , 5
and Kd = 1, . . . , 5 from Table 1. Then we determine all external nodes having direct ingoing 134 links
to one of these 5 + 5 fibrosis proteins. There are 122 such proteins. The first 44 proteins of Table 1
together with these 122 external proteins (ordered by their PageRank index) constitute an intermediary
group of size 166 for which we compute first the reduced Google matrix by (4) and which we note
as G(166)

R and from this the associated sensitivity matrix D(166)
ab (8) (with j = a; see also Figure A3).

Then we compute the sum of sensitivities D(5+5)
s (b) = ∑9

a=5 D(166)
ab + ∑29

a=25 D(166)
ab (a-sum over top 5

up- and top 5 down-proteins) for b = 45, . . . 166 (new external proteins). Then we select the top 10
external proteins b with highest values of D(5+5)

s (b). In the following we call this new subgroup the
subgroup of X-proteins (or X-nodes). They are given in the last 10 rows of Table 1 (for Kg = 45, . . . , 54
and Kx = 1, . . . , 10). We mention that these 10 X-proteins have index values of (1, 2, 3, 4, 6, 8, 10, 15, 27)
with respect to the initial list of 122 external proteins (which were already PageRank ordered). It turns
out that this procedure selects automatically 10 external nodes which have approximately the strongest
PageRank values. This can be understood by the fact that the matrix D(166)

ab is roughly proportional to
P(b) except for a small number cells with strong peak values (see also Figure A3 and the Appendix for
a theoretical explanation). In this way we obtain the full subset of 54 fibrosis proteins given in Table 1.
The REGOMAX analysis is performed for these 54 fibrosis proteins and unless stated otherwise all
results for GR, Dab etc. refer to this group of 54 proteins.

3. Results

In this Section we present the results of Google matrix analysis of fibrosis protein-protein
interactions.
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Figure 1. Density of nodes W(KM, K∗M) on PageRank-CheiRank plane (KM, K∗M) averaged over
100 × 100 logarithmically equidistant grids for 0 ≤ ln KM, ln K∗M ≤ ln N, the density is averaged
over all nodes inside each cell of the grid, the normalization condition is ∑KM,K∗M W(KM, K∗M) = 1.
Color varies from blue at zero value to red at maximal density value. In order to increase the visibility
large density values have been reduced to (saturated at) 1/16 of the actual maximum density and
typical green cells correspond to density values of∼ 1/28 of the (reduced) maximum density. The x-axis
corresponds to ln KM and the y-axis to ln K∗M with KM (K∗M) being the global PageRank (CheiRank)
index for the full MetaCore network. The crosses mark the positions of the 54 proteins of Table 1 with
colors: red for the X-proteins, pink for the TGF-β subgroup and white for the up- and down-protein
subgroups.

3.1. Fibrosis proteins on PageRank-CheiRank plane

As in [9] we determine the density distribution of all proteins of the MetaCore network on the
PageRank-CheiRank plane of logarithms (ln K, ln K∗) of indexes (K, K∗) which is shown in Figure 1.
The whole plane is divided on 100× 100 logarithmically equidistant cells and the density is defined as
the number of proteins in a given cell divided by a total possible nodes in a given cell (this approach
is discussed in more detail e.g. in [24]). The highest density is located at top indexes K, K∗ but in
this region there is a relatively small number of proteins. The positions of fibrosis proteins of Table 1
are marked by crosses of 3 colors: red for 10 external X-proteins (Kx = 1, . . . , 10), pink for 4 TGF-β

proteins (Kt = 1, 2, 3, 4) and white for the 40 up- and down-proteins (Ku, Kd = 1, . . . , 20). We see that
X-proteins have highest rank positions; 2 of the TGF-β proteins approximately follow after Kx values of
PageRank and 2 others have significantly lower K-rank positions (positions in K∗-rank are rather low);
proteins Ku and Kd have on average rather low rank positions (very large K, K∗ values). Therefore the
X-proteins have the highest network influence and communicativity (small K, K∗ values).
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The presentation of Figure 1 uses the global MetaCore rank index values (in the following these
values are noted as KM, K∗M; see also Table 1). For the selected subset of 54 fibrosis proteins we note
their local rank indexes in this group as K, K∗ which are also given in Table 1. The distribution of these
54 local rank indexes on the PageRank-CheiRank plane of size 54× 54 is given in Appendix Figure A1.

3.2. Reduced Google matrix of fibrosis

GR Gpr

Grr Gqr

0

0.25

0.5

0.75

1

Figure 2. Color density plots of the matrix components GR, Gpr, Grr, Gqr for the group of Table 1; the
x-axis corresponds to the first (row) index (increasing values of Kg) from top to down) and the y-axis
corresponds to the second (column) index of the matrix (increasing values of Kg from left to right).
The outside tics indicate multiples of 10 of Kg. The numbers in the color bar correspond to

√
|g|/gmax

with g being the value of the matrix element and gmax being the maximum value. In order to increase
the visibility for the cases of GR, Grr, Gqr the maximum value has been reduced (saturated) to the
value of the 3rd largest value of g for each case and the cells corresponding to the 1st and 2nd largest
values are reduced to the saturation value. In particular GR(45, 15) (GR(46, 13)) has been reduced
from 0.876387 (0.297512) to GR(49, 3) = 0.208777; Grr(45, 16) (Grr(29, 24)) has been reduced from
0.850004 (0.121432) to Grr(29, 54) = 0.019322 (same 3rd value also for the other three cells in column
54); Gqr(49, 3) (Gqr(40, 41)) has been reduced from 0.240629 (0.062024) to Gqr(46, 32) = 0.041108. For
the matrix Gqr there are some negative values and here we show their absolute values (see text).

The reduced Google matrix GR of 54 fibrosis proteins and its 3 matrix components Gpr, Grr, Gqr

are shown in Figure 2. The weights of these matrices are: Wpr = 0.9522, Wrr = 0.0228, Wqr = 0.0250,

(W(nd)
qr = 0.0211) and WR = 1 (due to the column sum normalization of GR). Thus the weight of Gpr

is significantly higher as compared to the two other components. This behavior is quite typical and
was also observed for Wikipedia networks (see e.g. [15,18,19]). The physical reason of this is that Gpr

is obtained from the contribution of the leading eigenvector of the matrix Gss whose eigenvalue is
close to unity and dominates numerically the matrix inverse in (4) (see also the discussion in the last
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section and [14,15] for details). Furthermore Gpr has a very simple structure since it is of rank one, i.e.
all columns are exact multiples of the first column. Furthermore, these columns are approximately
equal to the local PageRank vector. Therefore the component Gpr does not provide any new interesting
information about possible interactions other that it trivially reproduces the PageRank vector.

Numerically GR is dominated by Gpr (with its high weight Wpr = 0.9521). However, the other
two components give us important additional information about direct interactions between the
54 fibrosis proteins (Grr) , and, even more important, about all indirect interactions (Gqr) between
these proteins via the global MetaCore network performing an effective summation over all indirect
pathways (see [14,15] for details). The weights of the components of Grr and Gqr are comparable.
We also see that nearly all direct transitions visible in Grr are from X-proteins to other proteins (all
subgroups) which is not astonishing due to the selection rule that any X-node must have at least one
direct link to the first 5 top- or first 5 up-proteins and also due to the fact the they have rather high
PageRank but also CheiRank positions (according to Table 1, Figure 1 and Appendix Figure A1). Since
the PageRank probabilities are higher for X-proteins (see Figure 1) there are rather strong transitions to
these X-proteins well visible for GR, Gpr and to a lesser extent also in Gqr. We note that the component
Gqr has a small number of non-vanishing diagonal matrix elements which appear due to the possibility
that a pathway over the global MetaCore network can return to an initial protein.

Grr+Gqr
(nd)

-1

-0.5

0

0.5

1

Figure 3. Color density plot Grr + G(nd)
qr for the group of Table 1 (same plot style and color bar as

Figure 2). The matrix element at (45, 16) ((49, 3)) has been reduced from 0.849861 (0.240632) to the

value 0.121433 at (29, 24); a few matrix elements of Grr + G(nd)
qr have negative values visible as cyan

color (see text).

It should be noted that a few matrix elements of Gqr have negative values. Such a situation
has been already found for other directed networks, e.g. Wikipedia networks studied in [15]. To be
more precise for Gqr and Grr + G(nd)

qr there about 340 out of 2916 negative values (≈ 11%). Most of
them are very small. However, there are 10 values between −0.00668 and −0.00334 for both matrices

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465138


12 of 28

corresponding to 5-10% of the red-color saturation value used for Gqr. However, in Figure 2 only the
modulus of matrix elements is shown in order to have a uniform style for all components (the 10
strongest negative values of Gqr correspond to green color with color bar values of 0.3 to 0.4 and after
taking the modulus). Of course, the matrix elements of GR, Grr and Gpr are always positive due to
strict mathematical properties.

Figure 3 shows the effective matrix of transitions for direct links and relevant indirect pathways
(without self interactions) which is obtained as the sum of the two components Grr + G(nd)

qr . There are
also some cells with cyan color for negative matrix elements (corresponding to −0.3 to −0.2 in units of
the color bar for the strongest 10 negative values). Most links are due to the interactions from Kx to
Kt, Ku, Kd proteins but there are also some other significant transitions between the other members of
the group of 54 proteins.

3.3. Network diagrams of fibrosis interactions
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Figure 4. Effective friend and follower networks generated from GR and Grr + G(nd)
qr . Starting from 5

top nodes the 4 strongest friends/followers for each initial node are selected and links are shown by
thick black arrows. For each selected new node further 4 strongest friends/followers are selected and
corresponding new links are shown by thin red arrows. In this procedure the direct links between two
nodes belonging both to one of the two subgroups of X-proteins or TGF-β proteins are not taken into
account. The node labels Tj, Uj, Dj, Xj (with j being an integer value) correspond the local subgroup
index Kt = j, Ku = j, Kd = j or Kx = j respectively which are given in Table 1. Further details about
precise selection rules of links, top nodes and color attribution are given in the text.
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In this section we discuss two types of effective networks (of most important PPI links) obtained
from the two matrices GR and Grr + G(nd)

qr , the latter containing the “interesting” links without the
uniform background generated by the component Gpr (and without self-interactions). We remind

that the value of a matrix element g(a, b) (with g being either GR or Grr + G(nd)
qr ) corresponds to the

strength of the link b → a. If this value is sufficiently high we say that a is a “friend” of b and b is a
“follower” of a. This distinction allows to construct for each matrix two types of effective networks
by choosing a few number of “top nodes” and adding a certain number of the strongest friends (or
followers) according to the values of |g(a, b)| and repeating this procedure for a modest number of
depth levels.

In Figure 4, we show four graphical representations of such effective networks for the two cases
of friend or follower networks and the two matrices GR and Grr + G(nd)

qr visible in Figures 2 and 3. In
these figures and the remainder of this subsection we use the short notations Tj, Uj, Dj or Xj for a
protein/node where j = 1, 2, . . . is the integer value of the subgroup index Kt, Ku, Kd or Kx respectively
with real protein names given in Table 1.

To construct the effective network for a matrix component g (with g being either GR or Grr + G(nd)
qr )

we first choose 5 initial top nodes/proteins corresponding to U1, U2 (ADAMTS16, FGF21), D1, D2
(CLEC3B, SCARA5) and X9 (MMP-14). U1, U2 (D1, D2) have the strongest positive (negative) TGF-β
response observed experimentally in [5]. The node corresponding to X9 (MMP-14) produces the
strongest sensitivity Dab (among those elements Dab where a is an up- or down protein and b is a
TGF-β or X-protein; see next subsection for details on this). These 5 proteins form the set of level-0
nodes which are placed on a large circle.

We attribute the color red to the combined subgroups of 10 external X-proteins (Kx = 1, . . . , 10)
and 4 TGF-β proteins (Kt = 1, 2, 3, 4) The transitions inside this red group are not taken into account
since we are mainly interested in the influence of this group on the other up- and down-proteins.
We attribute two colors to the up-proteins (olive green to U1, green to U2) and two colors to the
down-proteins (cyan to D1, blue to D2). Inside the group of up-proteins, we attribute the color olive
green to a protein Uj if Uj is a stronger follower of U1 than of U2 with respect to g = Grr + G(nd)

qr ,
i.e. if g(Ku = 1, Ku = j) > g(Ku = 2, Ku = j) and green otherwise. In other words, we compare the
strength of the links Uj → U1 and Uj → U2 to determine if Uj has the color olive green of U1 or
green of U2. In a similar way, comparing the strength of the two links from a Dj protein to either D1
or D2, we attribute the two colors cyan and blue to down-proteins. This attribution rule, using the
strongest followers with respect to Grr + G(nd)

qr of the two top nodes inside a subgroup, ensures that for
all colors there is a considerable number of proteins and it is the same for all four network diagrams
(both matrices and both friend/follower cases).

For each of the 5 level-0 proteins, noted a, we first search the 4 strongest friends (followers), noted
b, with largest value of |g(b, a)| (or |g(a, b)|) corresponding the strongest link a→ b (or b→ a), where
the matrix g is either GR or Grr + G(nd)

qr . The new nodes b (if not yet present in the set of level-0 nodes)
nodes form the set of new level-1 nodes and they are placed on medium size circles of level 1 around
the corresponding “parent” node a of level-0. The links between the nodes a and b are drawn as thick
black arrows with direction a→ b (b→ a) for the friend (follower) case. If a node b already belongs to
the set of level-0 nodes we also draw a thick black arrow but using its already existing position on
the initial large circle. If a node b has several parent nodes a we place it only on one medium circle
preferably around a parent node of the same color if possible.

This procedure is repeated once: for each level-1 protein we determine the 4 strongest level-2
friends (or followers) which are placed on smaller circles of level 2 around the corresponding level-1
protein provided that they are not yet present in the former sets of level-0 or level-1 proteins. The
links corresponding to this stage are drawn as thin red arrows with the same directions as in the first
stage (we also draw thin arrows for a selected nodes who were already previously selected and using
their former positions). As already mentioned above, links where both proteins (a and b) belong to
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the combined set of X- and TGF-β proteins are not taken into account (otherwise they would strongly
dominate these diagrams). We limit our-self to two stages of the procedure (i.e three levels of nodes)
because otherwise the diagrams would require still smaller circles and many nodes would be hidden
by former nodes. We note for the friend-GR diagram a further third stage would not add any new
nodes since the strongest friends of level-2 are already in the network. For the other cases additional
further stages would only add a few number of new nodes with a quite rapid saturation of the network
at some limit level where no new nodes are selected.

Figure 4 shows diagrams of level-2 networks for the cases of friend (top row) and follower
(bottom row) diagrams and the two matrices g = GR (left column) or g = Grr + G(nd)

qr (right column).

Concerning the two cases of g = Grr + G(nd)
qr about 15% of the shown arrows correspond to negative

values of the matrix element of g (link strength is determined by the modulus of the matrix element).
For the friend network of GR there is a dominance of links (black arrows) U1, U2, D1, D2→ Xj

for certain X-proteins Xj which can be understood by the fact most Xj proteins have a significantly
higher PageRank probabilities than the other proteins. Furthermore, the total number of nodes in
this diagram is quite small because the strongest friends of level-1 nodes (X1, X2, X3, U4, U5, D14) are
mostly other level-1 nodes and there is only one new level-2 node (D20). This diagram is obviously
dominated by the uniform background (of the component Gpr contributing to GR) which tends to
select mostly the “same new friends” at each level.

For the friend case of Grr + G(nd)
qr the network structure is significantly richer, since here the global

PageRank transitions (due to the uniform background of Gpr) do not play a role. The group around U1
includes T2, T3, T4. Thus we see a formation of groups of friends around U1 and especially U2 with
many friends, smaller groups of friends appear around D1, D2 and X9.

For the follower network of Grr + G(nd)
qr , the largest groups of followers are again formed around

U1, U2. In the group around U1 we have only other up-proteins while in the group around U2 we have
up-, down- and X-proteins. The third group around X9 is composed of several up- and down-proteins
as well as one TGF-β protein (T1) on level 2. The fourth group around D1 includes D3, D20 and X5
but there are also two other followers U7, U9 but which are placed on the U1-circle. The fifth group
around D2 includes only X8 (on its own circle) and U7, U9, U10 from the U1-circle.

The follower network of GR matrix has a similar structure, since for followers the contribution of
Gpr is not so significant such that several links of followers of GR and Grr + G(nd)

qr are similar.
It should be noted that the few negative matrix elements of Gqr have a modest impact on the

network diagrams of Grr + G(nd)
qr (∼ 15% of links and only one stage 1 link for the friend case).

These network diagrams allow to obtain a qualitative graphical view on the most significant
fibrosis PPI interactions from a friend or a follower point of view.

We note that in principle it is possible to choose another initial set of 5 proteins at level-0. In
Appendix Figure A2, we show the network diagrams for the modified level-0 set: D1, D2, U9, U18
and X9. Here the 4 up- and down-proteins have the highest sensitivity with respect to X-proteins (see
next section). Some features are quite similar as to the first case: the friend diagram of GR has only a
modest number of nodes with a domination of X-proteins and generally the groups associated to the
two up-top nodes appear somewhat larger than the groups for the two down-top nodes.

3.4. Sensitivity of fibrosis proteins

In addition to the matrix components GR, Gpr, Grr, Gqr and the network diagrams (of GR and

Grr + G(nd)
qr ) it is also important to analyze the sensitivity matrix Dab defined previously in (7). This

matrix Dab gives the sensitivity of a protein a with respect to a small variation of the transition matrix
element of GR from protein b to a on the basis of logarithmic derivative of the PageRank probability
(see subsection 2.5 and also the Appendix for more technical details on this).

As described previously (see subsection 2.6), we first compute the sensitivity matrix D(166)
ab

associated to G(166)
R being the reduced Google matrix for a larger intermediary subset containing the
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44 TGF-β, up- and down-proteins and further 122 external proteins having direct links (of the full
MetaCore network) to the first 5 up- (Ku = 1, . . . , 5) and the first 5 down-proteins (Kd = 1, . . . , 5). This
matrix is shown in Appendix Figure A3.

Then from the set of 122 external proteins we select the 10 proteins b with the largest effective
sensitivity given by the sum D(5+5)

s (b) = ∑9
a=5 D(166)

ab + ∑29
a=25 D(166)

ab (see Subsection 2.6) which form
the group of 10 X-proteins. The 44 TGF-β, up- and down-proteins together with these 10 X-proteins
form our main group of 54 proteins given Table 1 and for which have presented results of the reduced
Google matrix in the last subsections.

The sensitivity matrix Dab of size 54× 54 for this main group is shown in Figure 5 with zoomed
parts visible in Figure 6.

Figure 5. Color density plot of the sensitivity matrix Dab of fibrosis proteins of Table 1; the axes and
colors are defined as in Figure 2 (without saturation); the strongest top 40 sensitivity values are given
in Table 2.
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(a) (b)

Figure 6. Zoomed parts of sensitivity matrix Dab of Figure 5. Both panels show a selected sub-region of
Figure 5 with the index a (vertical axis from top to down) belonging to the set of up-nodes (a = 5, . . . , 24
in panel (a)) or down-nodes (a = 25, . . . , 44 in panel (b)) and the index b (horizontal axis from left to
right) corresponds for both panels to the 4 nodes of the TGF-β subgroup (b = Kt = 1, . . . 4 for 4 left
columns in each panel) and the 10 nodes of the X-proteins (b = 45, . . . 54 or Kx = 1, . . . , 10 for 10 right
columns in each panel).
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Table 2. List of 40 top protein pairs (a, b) with strongest sensitivity matrix element Dab with a belonging
to the subgroups of up- or down-proteins and b belonging to the subgroups of TGF-β and X-proteins.
The first column gives the ranking index Ks of Dab matrix elements ordered by a decreasing value, the
2nd to 4th columns provide the Kg, Ku,d indexes and the name of the protein (a), the 5th to 7th columns
provide the Kg, Kt,x indexes and the name of the protein (b), and the 8th column shows the value of
Dab. See also Figure 5 which shows a color density plot for all matrix elements Dab and Table 1 for the
list of considered proteins. An ordered list of all 560 values of sensitivity influence values Dab of TGF-β
or X-proteins (for “b”) on up-/down proteins (for “a”) is available at [22].

Ks Kg(a) Ku,d(a) Protein(a) Kg(b) Kt,x(b) Protein(b) Dab

1 25 Kd = 1 CLEC3B 53 Kx = 9 MMP-14 0.263109
2 22 Ku = 18 GALNT3 46 Kx = 2 p53 0.259298
3 13 Ku = 9 C1QTNF3 50 Kx = 6 PPAR-γ 0.225877
4 26 Kd = 2 SCARA5 52 Kx = 8 SNAIL1 0.219938
5 27 Kd = 3 SLC10A6 50 Kx = 6 PPAR-γ 0.214345
6 29 Kd = 5 MYOC 54 Kx = 10 Flotillin-1 0.200157
7 19 Ku = 15 LAMA1 46 Kx = 2 p53 0.199892
8 43 Kd = 19 FMO2 47 Kx = 3 ESR1 0.196550
9 29 Kd = 5 MYOC 45 Kx = 1 β-catenin 0.196394

10 39 Kd = 15 GFRA1 45 Kx = 1 β-catenin 0.184019
11 6 Ku = 2 FGF21 46 Kx = 2 p53 0.182339
12 20 Ku = 16 RAPGEF4 45 Kx = 1 β-catenin 0.182303
13 28 Kd = 4 CXCL5 46 Kx = 2 p53 0.181444
14 10 Ku = 6 ADAMTS8 45 Kx = 1 β-catenin 0.177848
15 42 Kd = 18 PEG10 45 Kx = 1 β-catenin 0.177726
16 35 Kd = 11 HMGCS2 45 Kx = 1 β-catenin 0.177443
17 15 Ku = 11 IL11 45 Kx = 1 β-catenin 0.177227
18 35 Kd = 11 HMGCS2 46 Kx = 2 p53 0.176906
19 21 Ku = 17 DNER 45 Kx = 1 β-catenin 0.176820
20 11 Ku = 7 MEGF6 45 Kx = 1 β-catenin 0.176612
21 36 Kd = 12 LGI2 45 Kx = 1 β-catenin 0.176606
22 7 Ku = 3 TNFSF18 45 Kx = 1 β-catenin 0.176603
23 41 Kd = 17 IL1R2 45 Kx = 1 β-catenin 0.176598
24 14 Ku = 10 ANO4 45 Kx = 1 β-catenin 0.176556
25 34 Kd = 10 GPR88 45 Kx = 1 β-catenin 0.176432
26 23 Ku = 19 ACSBG1 45 Kx = 1 β-catenin 0.176323
27 5 Ku = 1 ADAMTS16 45 Kx = 1 β-catenin 0.176315
28 12 Ku = 8 SV2B 45 Kx = 1 β-catenin 0.176264
29 17 Ku = 13 HTR2B 45 Kx = 1 β-catenin 0.176197
30 16 Ku = 12 CDH10 45 Kx = 1 β-catenin 0.176192
31 24 Ku = 20 OLFM2 45 Kx = 1 β-catenin 0.176038
32 32 Kd = 8 SELENBP1 45 Kx = 1 β-catenin 0.175939
33 33 Kd = 9 FMO1 45 Kx = 1 β-catenin 0.175776
34 33 Kd = 9 FMO1 46 Kx = 2 p53 0.175367
35 30 Kd = 6 IFITM1 45 Kx = 1 β-catenin 0.175056
36 44 Kd = 20 COX4I2 45 Kx = 1 β-catenin 0.174371
37 23 Ku = 19 ACSBG1 46 Kx = 2 p53 0.174167
38 34 Kd = 10 GPR88 46 Kx = 2 p53 0.173893
39 5 Ku = 1 ADAMTS16 46 Kx = 2 p53 0.173822
40 14 Ku = 10 ANO4 46 Kx = 2 p53 0.173770

The list of all 560 sensitivity matrix values Dab with a belonging to the subgroups of up- or
down-proteins and b belonging to the subgroups of TGF-β and X-proteins is available at [22]. The
strongest 40 Dab values of this list are shown in Table 2. Among the top 3 pairs we find that the protein
MMP-14 gives the top sensitivity (influence) on the protein CLEC3B (Dab = 0.263109); next is the
protein p53 giving the sensitivity (Dab = 0.259298) on the protein GALNT3, and the third place is for
the sensitivity of C1QTNF3 from PPAR-γ (Dab = 0.225877).
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We mention that the appearance of MMP-14 (Kx = 9) at the top position of Table 2 is the reason
why we selected this protein as one of the 5 top nodes in the net diagrams discussed in the last
subsection. For the net diagrams shown in Figure 4, the other four top nodes were simply chosen as
the first two up- (Ku = 1, 2) and down-proteins (Kd = 1, 2). However, for the net diagrams shown
in Appendix Figure A2 also the two top up- and down-nodes were chosen by the criterion of top
positions in Table 2 resulting in Ku = 9, 18 and Kd = 1, 2.

We have also computed the effective TGF-β sensitivity on up- or down-proteins (noted a) defined
by the sum D(TGF−β)

s (a) = ∑4
b=1 Dab. Ordering these values in decreasing order we obtain the ranking

index K(TGF−β)
s = 1, . . . , 40 whose dependence on Ku and Kd is visible Appendix Figure A4. We see that

for the up-proteins we have 14 ranking values located at K(TGF−β)
s ≤ 20 and for the down-proteins only

6 values at K(TGF−β)
s ≤ 20 (with 3 values at K(TGF−β)

s = 18, 19, 20). This shows that the overall influence
of TGF-β proteins is somewhat stronger on the up-proteins as compared to the down-proteins.

However, we mention that the different values of D(TGF−β)
s (a) used to determine this ranking

have only modest size variations in the interval 0.0250 to 0.0465 with most values between 0.040
and 0.043. Furthermore, in global the external X-proteins have a much higher influence (on up- and
down-proteins) than the TGF-β proteins. For instance in Table 2 the TFG-β proteins do not appear at
all (in the three “b” columns) and in the full list of 560 entries the first appearance of a TFG-β protein is
at the ranking position Ks = 319.

Both of these points can be explained by the approximate expression Dab ≈ [1− Pr(a)]Pr(b) ≈
Pr(b) which is derived in the appendix for a simplified model of a rank 1 GR matrix but which also
holds approximately for arbitrary GR matrices due to the strong numerical weight of the rank 1
component Gpr. This behavior is also confirmed, for a “uniform background”, by Figures 5 and 6 for

Dab and Appendix Figure A3 for D(166)
ab . However, there are typically some exceptional peaks at a few

values of the (a, b) index pair where strong deviations from this simple expression are possible and
which are due to the components of Grr and Gqr in GR.

Essentially Dab ∼ Pr(b) does not (strongly) depend on a explaining that the values of the partial
sum D(TGF−β)

s (a) = ∑4
b=1 Dab show only modest size variations. Furthermore, Table 2, containing the

largest Dab values (with b being either an X or a TGF-β protein and a being an up- or down protein), is
dominated by X-proteins which have mostly larger Pr(b) values than the TGF-β proteins.

We also determine the global influence on the whole group of fibrosis up- and down-proteins by
computing the sum D(u/d)

s (b) = ∑44
a=5 Dab (i.e. the a-sum is over up- and down-proteins) for each X

or TGF-β protein b. The resulting values of this quantity are provided in Table 3. According to the
simple expression for Dab we have a linear dependence of D(u/d)

s (b) on Pr(b) and due to the a-sum
the effect of exceptional peaks is strongly reduced. This linear dependence is clearly visible in Table 3
and Appendix Figure A5. A simple linear fit D(u/d)

s (b) = ηPr(b) provides the value η = 39.5± 1.4 for
the coefficient and a more general power law fit D(u/d)

s (b) = η̃[Pr(b)]κ results in a similar coefficient
η̃ = 41.9± 4.3 and an exponent κ = 1.017± 0.028 close to unity.

However, Table 3 also shows that at the ranking positions 9 (Kx = 9 for MMP-14) and 10 (Kt = 2
for TGF-β 1) there is one ranking inversion between D(u/d)

s (b) and Pr(b). The value of D(u/d)
s (Kx = 9)

is roughly 30% larger than D(u/d)
s (Kt = 2) while the PageRank value of the former is very slightly

(0.15%) smaller than the value of the latter (both PageRank values are nearly identical). In Appendix
Figure A5 both of these proteins correspond to two data points with a certain visible (vertical) difference
for D(u/d)

s (b) but with no visible (horizontal) difference for Pr(b).
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Table 3. Values of the sum D(u/d)
s (b) = ∑44

a=5 Dab (i.e. the a-sum is over up- and down-proteins) for
b belonging to the TGF-β or the X-proteins subgroups. The list is ordered with respect to decreasing

D(u/d)
s (b) values with the first column giving the corresponding ranking index; the 2nd and 3rd

columns giving the Kg, Kt,x indexes; the 4th and 5th columns containing the local PageRank index K

and the name of the protein b and the 6th and 7th columns giving the values of D(u/d)
s (b) and the local

PageRank probability Pr(b). Both K and Pr(b) correspond to the group of 54 fibrosis proteins of Table 1.

Rank Kg(b) Kt,x(b) K Protein(b) D(u/d)
s (b) Pr(b)

1 45 Kx = 1 1 β-catenin 6.809993 0.175768
2 46 Kx = 2 2 p53 6.789229 0.171249
3 47 Kx = 3 3 ESR1 4.513399 0.113285
4 48 Kx = 4 4 STAT3 4.109638 0.104088
5 49 Kx = 5 5 RelA 3.343309 0.085443
6 50 Kx = 6 6 PPAR-γ 3.086237 0.070668
7 51 Kx = 7 7 IKK-β 1.696330 0.043249
8 52 Kx = 8 8 SNAIL1 1.477019 0.034269
9 53 Kx = 9 10 MMP-14 1.368302 0.029121

10 2 Kt = 2 9 TGF-β 1 1.081828 0.029166
11 54 Kx = 10 12 Flotillin-1 0.787569 0.016863
12 3 Kt = 3 13 TGF-β 2 0.333981 0.012451
13 4 Kt = 4 20 TGF-β 3 0.159633 0.004157
14 1 Kt = 1 30 TGF-β 0 0.081261 0.002090

We argue that the obtained high sensitivity values shown in Figures 5, 6 and Table 2 can be tested
in experiments similar to those reported in [5]. Also the global influence D(u/d)

s from Table 3 gives us a
prediction of the globally stronger influence of the X-proteins than the TGF-β proteins. These results
open new perspectives for external proteins influence on fibrosis.

3.5. Bi-functional of fibrosis network

Here we present in short certain results for the bi-functional MetaCore network. The doubled
Ising MetaCore network has NI = 80158 nodes and NI,` = 939808 links. We compute the reduced
Google matrix GR for the doubled number of nodes 2× 54 = 108 (by attributing (+) and (−) labels to
each node) for the fibrosis proteins of Table 1. Here we present only some selected characteristics, all
data for the Ising Google matrix are available at [22].
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Figure 7. PageRank “magnetization” M(j) = (P+(j)− P−(j))/(P+(j) + P−(j)) of proteins of Table 1
shown on the PageRank-CheiRank plane (K, K∗) of local indices; here j represents a protein node
in the initial single protein network and P±(j) are the PageRank components of the bi-functional
Ising MetaCore network (see text). The values of the color bar correspond to M/ max |M| with
max |M| = 0.690937 being the maximal value of |M(j)| for the shown group of proteins. Note that the
positions in PageRank-CheiRank plane are identical to the positions of Appendix Figure A1 and the
corresponding K, K∗ values are given in the 3rd and 4th column of Table 1.

In Figure 7 we show the magnetization M(j) = (P+(j)− P−(j))/(P+(j) + P−(j)) of proteins of
Table 1 with their location on PageRank-CheiRank plain (K, K∗). We remind that P±(j) is the PageRank
value of the node j with label (±) and that the sum satisfies P(j) = P+(j) + P−(j) where P(j) is the
PageRank value of the node j of the simple network. The magnetization is positive for nodes which are
more likely to be activated or in other words which have on average more incoming activation links
(and/or coming from other nodes with larger PageRank values) than inhibition links while negative
values correspond to nodes being more likely to be inhibited by other nodes.

According to Figure 7 the majority of proteins have values of M being close to zero (neutral action
on average coming from other nodes) but also there are some nodes with with significant positive
values such as RAPGEF4 (at K = 18, K∗ = 17, Kg = 20, Ku = 16, M = 0.690937) corresponding to
the only red box (maximum value of 1 in units of the color bar) and HMGCS2 (at K = 23, K∗ =

27, Kg = 35, Kd = 11, M = 0.550286) with an orange-brown box (value of 0.8 in units of the color bar).
There are about further 9 proteins with various degrees of green color (M values between 0.2 and 0.4
corresponding to 0.3 to 0.6 in units of the color bar). The two proteins with strongest negative values of
M are CLEC3B (at K = 35, K∗ = 40, Kg = 25, Kd = 1, M = −0.463912) with a light cyan box (value of
−0.7 in units of the color bar) and ACAN (at K = 16, K∗ = 26, Kg = 8, Ku = 4, M = −0.342585) with
a cyan box (value of −0.5 in units of the color bar). There are about 5 further proteins with various
degrees of cyan color (M values between −0.28 and −0.17 corresponding to −0.4 to −0.25 in units
of the color bar). We note that CELC3B is also selected in both network diagrams of Figure 4 and
Appendix Figure A2 as one of the two down-top-nodes either because it is the first protein in the list of
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down-proteins or because it appears at the top position of Table 2 for the strongest sensitivity value
Dab (with a being CELC3B and b being the X-protein MMP-14). One may also note that Appendix
Figure A1 shows the same (K, K∗) positions as Figure 7 and allows to identify which of the boxes
belong to the subgroups of TGF-β proteins, up- or down-proteins, or X-proteins, The complete table of
magnetization values used for Figure 7 including the values of K, K∗, Kg etc. is available in one of the
data files provided in [22].

GR Grr+Gqr
(nd)

Figure 8. Color density plots of GR and Grr + G(nd)
qr for the bi-functional Ising MetaCore network and

the extended group of 108 nodes by attribution of labels (+) and (−) to each node of Table 1. The
matrix plot style is similar as in Figure 2 with outside tics indicating multiples of 20 of the index values.
The color bar is as in Figure 2 with the same translation of colors to matrix values. The saturation value
is for both panels the 6th largest value for each matrix and larger values are reduced to this value. The

strongest cell values are reduced from 0.437575 (0.424939) to 0.101874 (0.060717) for GR (Grr + G(nd)
qr ).

In Figure 8 we show the matrices components GR and Grr + G(nd)
qr for the group of selected

108 nodes corresponding to the Ising MetaCore network. Their structure is quite similar to the
corresponding components for the group of 54 nodes for the simple network shown in Figures 2 and 3,
i.e. GR is dominated by the uniform background due to the component Gpr with some exceptional
peak values and large values if the first (vertical) matrix index correspond to an X-protein with large
PageRank probability. For Grr + G(nd)

qr the structure is more sparse showing the most significant direct
and relevant indirect transitions. We note that for the Ising case, the matrix values are identical for the
two labels of given node in horizontal position (except for the diagonal elements of Grr + G(nd)

qr which
have been artificially put to zero) which is a mathematical property of these matrices. However, in
vertical direction there are significant differences between the two Ising labels especially for Grr + G(nd)

qr .
Further detailed analyses of the Ising MetaCore network with applications on fibrosis interactions

are kept for future studies. However, an interested reader can find additional numerical results at
[22]. In particular figures for the Ising network diagrams obtained from the Ising versions of GR and
Grr + G(nd)

qr in the same way as in subsection 3.3 are available there.

4. Conclusion

In this work we presented the Google matrix analysis of protein-protein interactions of fibrosis.
The group of 54 proteins actively participating in the fibrosis process is determined on the basis of
INSERM experimental results presented in [5] which give 44 proteins and in addition we add 10
external proteins with strongest sensitivity (on certain 10 proteins of the 44-group) which is computed
in the context of the REGOMAX approach applied to the MetaCore network [6]. Our results allow to
identify the most important interactions between this fibrosis group of 54 proteins. We hope that these
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Appendix Figure A1. Positions of the 54 proteins of Table 1 in the local PageRank-CheiRank. Note that
these positions are identical to the positions of Figure 7 and the corresponding K, K∗ values are given
in the 3rd and 4th column of Table 1. Pink full circles correspond to the subgroup of TGF-β nodes, full
black boxes correspond to the subgroups of up- and down-proteins and red squares correspond to the
subgroup of X-proteins.

algorithms allow to predict those proteins which will produce a significant influence on the fibrosis
process. We expect that future experiment will allow to check these predictions obtained from the
Google matrix analysis.

Appendix

A1. Additional figures for REGOMAX results

Here we present additional Appendix Figures A1,. . . , A5 for the main part of this article.
Appendix Figure A1 provides complementary information to Figure 1.
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Appendix Figure A2. Effective network diagram for the same cases as in Figure 4 but using different
5 top nodes being the first X-node, the first two up-nodes and the first two down-nodes according to
Table 2.

Appendix Figure A2 provides the network diagrams similar as in Figure 4 but with a different
choice of 5 top nodes based on the criterion of top positions in Table 2.
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Appendix Figure A3. Color density plot of the sensitivity matrix D(166)
ab for the intermediary group of

166 proteins being the first 44 proteins of Table 1 (TGF-β, up- and down-subgroups) and 122 further
proteins (in PageRank order) determined by having a direct link to one of the top 5 up-nodes (Ku ≤ 5)
or top 5 down-nodes (Kd ≤ 5; see also text).

Appendix Figure A3 shows the sensitivity matrix D(166)
ab for the intermediary group of 166 proteins

which was used to determine the additional 10 X-proteins as explained in subsection 2.6.
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Appendix Figure A4. Effective ranking K(TGF−β)
s index of the TGF-β sensitivity versus Ku/Kd of

up- (red boxes) and down-proteins (blue full circles). The ranking index K(TGF−β)
s is determined by

ordering the sum D(TGF−β)
s (a) = ∑4

b=1 Dab in decreasing order for a = 5, . . . , 44 (i.e. a belongs to one
of the sets of up- or down-proteins) and where Dab is the sensitivity matrix for the 54 nodes of Table 1
(see also Figure 5).

Appendix Figure A4 provides an additional analysis of the overall influence of the TGF-β proteins
on the up- and down-proteins which is discussed in subsection 3.4.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465138


26 of 28

0.1

1

10

0.01 0.1

D
s(u

/d
) (b

)

Pr(b)

Appendix Figure A5. Dependence of the sum of sensitivities D(u/d)
s (b) from Table 3 on the (local)

PageRank probability Pr(b); the straight green line shows the fit dependence D(u/d)
s (b) = ηPr(b) with

the obtained numerical value η = 39.5± 1.4; the dashed red line corresponds to the power law fit

D(u/d)
s (b) = η̃[Pr(b)]κ with η̃ = 41.9± 4.3 and κ = 1.017± 0.028.

Appendix Figure A5 provides the graphical and fit verification of the linear behavior between the
two quantities D(u/d)

s (b) and Pr(b) appearing the last two columns of Table 3.

A2. Simple estimate for the sensitivity matrix

In the second part of this appendix we remind some details (see [29]) about the numerical
computation of the sensitivity (8) and provide an analytic approximation based on a simplified model.
Let (a, b) be an arbitrary index pair and Gε be the perturbed Google matrix obtained from a general
unperturbed Google matrix G0 by multiplying its element G0(a, b) at position (a, b) by (1 + ε) and
then sum-renormalizing the column b to unity. The elements in the other columns are not modified. In
a more explicit formula we have:

∀c,d Gε(c, d) =
(1 + ε δcaδdb) G0(c, d)

1 + ε δdb G0(a, b)
(A1)

where δca = 1 (or 0) if c = a (or c 6= a). Note that the denominator is either 1 if d 6= b or the modified
column sum 1 + ε G0(a, b) of column b if d = b. Expanding (A1) up to first order in ε we obtain
Gε = G0 + ε∆G + . . . with ∆G having the elements:

∀c,d ∆G(c, d) = δcaδdb G0(c, d)− δdb G0(a, b) G0(c, d) . (A2)

Let Pε be the sum-normalized PageRank vector of Gε determined by the conditions Gε Pε = Pε and
the normalization ET Pε = 1 where ET = (1, . . . , 1) is a (row) vector with unit entries. Note that the
column sum condition of Gε can be written as ET Gε = ET and of course for ε = 0 we also have
G0 P0 = P0, ET P0 = 1 and ET G0 = ET . Furthermore we write the perturbed PageRank vector in the
form Pε = P0 + ε∆P + . . . where the ∆P must satisfy the condition ET ∆P = 0. Then the sensitivity (8)
is directly related to ∆P by :

D(b→a)(j) =
∆P(j)
P0(j)

. (A3)
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Expanding the PageRank equation Gε Pε = (G0 + ε∆G + . . .)(P0 + ε∆P + . . .) = Pε = P0 + ε∆P + . . . to
order one we first obtain the unperturbed PageRank equation G0 P0 = P0 and a further inhomogeneous
equation :

∆P = G0 ∆P + ∆G P0 (A4)

which can be efficiently numerically solved by iteration (choosing initially ∆P = 0 on the right hand
side) once P0 has been computed (see [29] for details on this point). This provides a numerical precise
scheme to compute the sensitivity in the limit ε→ 0 without the need to take finite ε-differences.

Now, we consider a particular very simple model where G0 has identical columns being the
PageRank P0, i.e. G0 = P0 ET or more explicitely G0(c, d) = P0(c) for all values of c, d. Then we obtain
from (A2)

∀c,d ∆G(c, d) = δcaδdb P0(c)− δdb P0(a) P0(c) (A5)

and from (A4)
∆P = (P0 ET)∆P + ∆G P0 = ∆G P0 (A6)

since ET ∆P = 0. Inserting (A5) in (A6) we obtain (replacing c = j and performing the d-sum for the
matrix vector product)

∀j ∆P(j) = [δja − P0(a)] P0(j) P0(b) (A7)

and from (A3)
D(b→a)(j) = [δja − P0(a)] P0(b) . (A8)

Choosing j = a this gives the sensitivity matrix

Dab = D(b→a)(a) = [1− P0(a)] P0(b) ≈ P0(b) (A9)

where the last approximation holds if typically P0(a)� 1.
This result is of course only valid for the simplified model of identical columns (being the

PageRank vector) in G0. However, when G0 represents a typical reduced Google matrix, with Nr � N,
the component Gpr which has the strongest numerical weight (typically ∼ 95%) is of the form Gpr =

P̃0 ẼT where P̃0 ≈ P0 and ẼT ≈ ET except for a few number of components j where strong deviations
between P̃0(j) and P0(j) (and similarly between Ẽ(j) and E(j)) are possible.

Our examples of Dab visible in Figure 5 and of D(166)
ab of Appendix Figure A3 confirm the typical

behavior Dab ∼ P0(b) for a “uniform background” but there are some exceptional peak values which
arise from the deviations from Gpr to the simplified model and also from the contributions of Grr and
Gqr. This also explains our numerical finding that all matrix elements of Dab are positive. Actually,
according to (A8) we expect that D(b→a)(j) is typically positive if j = a and negative if j 6= a.

Furthermore, when taking the partial a-sum over up- and down-nodes of Dab the effect of
exceptional peaks is strongly reduced thus explaining the linear behavior D(u/d)

s (b) ≈ ηPr(b) visible
in Table 3 and Figure A5.
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