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Abstract

The human brain readily learns tasks in sequence without forgetting previ-
ous ones. Artificial neural networks (ANNs), on the other hand, need to be
modified to achieve similar performance. While effective, many algorithms
that accomplish this are based on weight importance methods that do not
correspond to biological mechanisms. Here we introduce a simple, biolog-
ically plausible method for enabling effective continual learning in ANNs.
We show that it is possible to learn a weight-dependent plasticity function
that prevents catastrophic forgetting over multiple tasks. We highlight the
effectiveness of our method by evaluating it on a set of MNIST classifica-
tion tasks. We further find that the use of our method promotes synaptic
multi-modality, similar to that seen in biology.

Keywords: Continual Learning, Machine Learning, Computational
Neuroscience, Synaptic Plasticity, Multi-task Learning

1. Introduction

Deep learning models such as artificial neural networks have become a
staple for researchers and engineers alike – facilitating advances in a vari-
ety of supervised learning tasks. The most impressive models in this area
tend to follow the traditional supervised learning format. Specifically, given
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a dataset Dtr = {(xi, yi)|i ∈ N} such that xi denotes a feature vector sam-
pled from the space X and yi denotes a corresponding target vector from
the space Y , learn a mapping fθ : X 7→ Y that minimizes a loss, e.g.

L(fθ, Dtr) =
1

N

∑N
i=1(fθ(xi)− yi)2 such that θ is the set of parameters for a

neural network. Deep learning models parameterizing f have been incredibly
successful in domains ranging from facial recognition to automatic handwrit-
ing identification. (Taigman et al., 2014; Graves and Schmidhuber, 2009)

An important question to ask is whether this problem formulation readily
lends itself to learning multiple tasks in sequence. That is, given a set of
tasks T and datasets DT , is minimizing the loss L(fθ, DTi) for each task in
sequence the same as minimizing the joint loss L(fθ, DT )? Following the
work of Goodfellow et al. (2015) it became clear this is not the case. Indeed,
modern artificial neural networks struggle to learn multiple tasks in sequence
without forgetting previous knowledge, a phenomenon termed catastrophic
forgetting (Goodfellow et al., 2015).

Weight importance methods have been proven to be particularly adept at
increasing retention across a large number of tasks (Kirkpatrick et al., 2017;
Zenke et al., 2017). As the name suggests, weight importance methods aim
to penalize changes to the weights that contribute most to task accuracy on
previous tasks – thereby preventing weight changes that would result in the
loss of previously learned information. To date, the most successful weight
importance methods are Synaptic Intelligence(SI) and Elastic Weight Con-
solidation (EWC). EWC imposes a quadratic penalty on the distance from
the previous weights proportional to the corresponding location on the diag-
onal of the Fisher information matrix near the previous minimum. In doing
so, EWC attempts to estimate the importance of each parameter as inversely
proportional to the Laplace approximation of its expected posterior variance.
While effective, the method is expensive and requires frequent recomputation
of this diagonal, a process whose cost is directly proportional to the number
of outputs for a given task (Kirkpatrick et al., 2017). Synaptic Intelligence
aims to compute a per-parameter regularization strength based on a discrete
approximation of the parameter’s previous contribution to decreases in loss
(Zenke et al., 2017).

Despite their success, neither SI nor EWC represent compelling biological
mechanisms for continual learning. Both the EWC and SI papers correctly
make the argument that there is biological evidence for synaptic protection
(Yang et al., 2009). However, their methods for computing weight impor-
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tance either (1) require the computation of a complicated information matrix
near a previous task minimum (as in EWC) or (2) require the addition of
extra synaptic dimensions in which parameters importance is stored (as in
SI)(Kirkpatrick et al., 2017; Zenke et al., 2017).

Unlike their artificial counterparts, humans are excellent at learning tasks
in sequence. We routinely learn multiple languages and our proficiency in
one does not imply that we have forgotten the others. It is well known that
humans have a mass of genomic and eventually connectomic priors that can
intelligently guide learning dynamics (Zador, 2019). We propose a simple
prior – a fixed function that maps synapse strength to learning rate. In con-
trast to SI and EWC, we show that it is not necessary to compute weight
importance explicitly to alleviate catastrophic forgetting. Instead, we find
that it is possible to meta-learn parameters for this weight-dependent learn-
ing rate function. We further show that this prior mapping can effectively
prevent catastrophic forgetting in ANNs on sequences of supervised learn-
ing tasks. Finally, we find that this method allows the network to naturally
induce a form of the synaptic consolidation approximated by SI and EWC
(Kirkpatrick et al., 2017; Zenke et al., 2017).

2. Methods

We wanted to develop a continual learning method that is both simple
and reasonably effective. Moreover, we hoped to develop an algorithm for
which there are already potential biological mechanisms. A weight-dependent
plasticity function fit all of these requirements. Neuronal plasticity has al-
ready been shown to be activity dependent (Cingolani et al., 2008). As such,
a weight-dependent plasticity function would be a simple and biologically
plausible analog. Specifically, we propose a set of algorithms in which we
optimize hyperparameters φ = {a1, µ, σ, γ, ζ, λ} over an arbitrary number of
tasks for a learning rate function f(W ) which takes weights as input and
outputs a learning rate multiplier.

To design the function f , we draw inspiration from biology. Past work
suggests that long-term memories are stored in stable synaptic networks
(Yang et al., 2009). To induce this stability, the learning rate function needs
to approach zero or dip for some values of the network parameters θ. In this
way, the function can trap weights in an important region; this is illustrated
in Figure 1b. It is important that base learning rate be parameterized as well,
so the network is allowed to learn more quickly in certain weight ranges. To
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Algorithm 1 Sticky Gradient

1: Requires: Set of tasks T
2: Requires: Hyperparameters: a1, µ, σ, γ, ζ, α, λ, E
3: f(x; a1, λ, γ) = −λe−γ(x−a1)2 + λ
4: Sample θ from N(µ, σ2)
5: for DTi ∈ DT do
6: for epochs ∈ E do
7: for Bj ∈ DTi do
8: g = ∇θ(Lθ(Bj) + ζ|θ|)
9: g′ = g � (1[sgn(θ − a1) 6= sgn(g)] � f(θ; a1, λ, γ) +

1[sgn(θ − a1) = sgn(g)])
10: θ′ = θ − αg′

these ends, we chose f to be a negative Gaussian function with an added
multiplier/offset parameter. Specifically,

f(x; a1, λ, γ) = −λe−γ(x−a1)2 + λ (1)

such that a1, λ, and γ are hyperparameters describing the location, depth,
and width of the dip – respectively. To encourage weights to fall into these
dips, we only apply f to parameters with gradients going away from a1.
Crucially, if λ > 1, weights with gradients leading away from the dip may be
pushed away more quickly than they otherwise would have been. This allows
for the creation of a second group of strongly inhibitory weights that can help
sparsen the heavy activity induced by the pooling of positive weights at a1.

It is important that this type of regularization not override the ability of
the network to learn. In essence, a good learning rate function f traps as
few parameters as is necessary to remember the previous task but leaves the
rest free to learn representations for new tasks. To affect this dynamic, we
add L1 regularization to the system – decreasing gradients towards the well.
We provide a visualization of the function in Figure 1b.

In short, we propose a modified update rule. We compute the learning
rate multiplier dictated by the function f and parameterized by φ and apply
it to the classification gradients going away from a1.(Algorithm 1 )

2.1. Meta-learning

To learn the parameters φ, we employ a simple Tree-Structured Parzen
Estimator (TPE) to intelligently search over parameter space (Bergstra et al.,
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(a) Illustration of Method

(b) Example Weight Plasticity Function

Figure 1: (a) Graphical illustration of the effect of our algorithm; our method traps weights
close to attractor values and allows movement of weights that are far away (b) Example
plasticity function – remains constant at around 4 and dips to zero near 0.279

2011). To prioritize many-task retention, we use a modified meta-objective
function in which averages from later tasks are weighted more than those of
earlier tasks. Suppose that θj are the parameters of a neural network after
being trained on task j. Suppose further that Aφ,θj(i, j) denotes validation
accuracy on the ith task after being trained on the jth task with learnable
hyperparameters φ and network state θj. Let N be the total number of tasks.
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a1 µ σ γ ζ λ

0.279 0.00363 0.0204 4.70 0.000574 4.12

Table 1: Learned hyperparameters from 30 trial meta-search. Surprisingly, the meta-
optimization yields a large value of λ, implying different learning rate for gradients going
away from the attractor is important. The function f with these parameters is visualized
in Figure 1b.

Then the optimization problem can be formulated as

arg max
φ

∑N
j=1

log(j)

j

∑j
i=1Aφ,θj(i, j)

N
∑N

j=1 log(j)
(2)

We optimize the model on an arbitrary set of ten PMNIST tasks. Re-
markably, we find that it takes as few as 30 trials to find an effective set of
parameters, given by Table 1.

3. Experiments

3.1. Permuted MNIST

We use permuted MNIST (PMNIST), a simple variant of the MNIST
dataset to evaluate our method in a multi-task setting. PMNIST is simply
a derivative of the MNIST dataset in which the handwritten images are
normalized, flattened, and randomly permuted n-times such that n is the
desired number of tasks (Goodfellow et al., 2015).

3.2. EWC Comparison

To establish the value of this method, we compare it to EWC on the
permuted MNIST benchmark (Kirkpatrick et al., 2017). We use a simple
feed-forward architecture with a single ReLU hidden layer consisting of 2000
units and instantiate three networks to be trained using EWC with a penalty
multiplier of 1000, the sticky gradient method, or a vanilla learning algo-
rithm (control) (Kirkpatrick et al., 2017). All networks are trained for a
single epoch on ten tasks, different than those used in the meta-optimization
process, and optimized using Adam with a base learning rate of 1e-4. It is
important to note that we sample a new set of ten tasks for each random seed
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(a) Average test accuracy across all tasks (b) Average test accuracy on past tasks

(c) Test accuracy on current task

Figure 2: (a) Baseline Comparison Study detailing the test accuracy of trials of trials
under 10 different random seeds. Accuracy on all tasks is recomputed after every task
on a held-out test set and averaged; error bars denote 95% confidence intervals. EWC
and the sticky gradient method outperform the control by an average margin of around
19%, but EWC outperforms our method by an average margin of 2.5 % at ten tasks. (b)
Average test accuracy on all tasks, not including the current one. Accuracy is computed
on all previous tasks after every task except the first and averaged; error bars are 95%
confidence intervals. Our method lags further behind EWC in this metric – at around a
2.7% performance penalty. (c) Test accuracy on current task; error bars denote a 95%
confidence interval. Unsurprisingly, neither our method nor EWC retain a strong ability
to learn new tasks, both lag the control’s current task performance by around 9% at ten
tasks. Interestingly, our network seems to be significantly better at learning new tasks at
10 tasks than EWC by a margin of 2.2%.

utilized but do not alter φ. That is, the meta-parameters remain constant
across different samples of 10 tasks from PMNIST.

Both the sticky gradient method and EWC enjoy a hefty benefit over the
control at ten tasks. While EWC outperforms our method by an average ac-
curacy of 2.5% at ten tasks, we observe that this difference seems to decrease
across tasks (Fig. 2a). However, our method does seem to better retain the
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ability to learn new tasks, enjoying a 3% benefit on the most recent task at
10 tasks (Fig. 2c). It is unsurprising, then, that our method underperforms
EWC on a test set containing all previous tasks by about 2.7%. Sticky gradi-
ent method seems to penalize movement more heavily than EWC, resulting
better adaptability but inferior retention (Fig. 2b).

3.3. Ablation Studies

Given that this method is an amalgamation of other methods – we find it
necessary to disentangle the effects of each of these sub-procedures from the
whole. Controlling for φ, we test every combination of L1 regularization, the
sticky gradient method, and initialization distribution. We denote network
initialization from a learned normal distribution parameterized by µ and σ
as smart initialization. All networks are simple feed-forward MLPs with a
single hidden layer of 2000 units coupled with ReLU activations, trained for
a single epoch, and optimized by Adam with a base learning rate of 1e-4.

Figure 3: Ablation Study detailing the test accuracy of trials of trials under 10 different
random seeds. Accuracy on all previous tasks is recomputed after every task on a held-
out test set and averaged; error bars denote 95% confidence intervals. The sticky gradient
method is present in both of the two most accurate graphs. The control simply refers to
a network initialized with a standard Kaiming initialization and no L1 regularization (He
et al., 2015).

We find that the sticky gradient method, coupled with both the L1 regu-
larization and smart initialization has the best average accuracy at 10 tasks
– around 3% better than its closest competitor, a combination of the sticky
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gradient and smart initialization, and about 6% better than its second closest
competitor – simple smart initialization. Methods with the sticky gradient
and smart initialization retain a heavy benefit over the control throughout
the training process, starting at around four tasks (Fig. 3 ). For brevity, we
now refer to the combination of the sticky gradient, L1 regularization, and
smart initialization as the sticky gradient method.

3.4. Shared Information

Sets of real world image-processing tasks almost never have uncorrelated
inputs. As such, we evaluate the method on variations of the PMNIST
dataset for which a proportion of pixels are not permuted. We compare a
baseline 2000 ReLU ANN with Kaiming initialization against a network of
the same architecture equipped with the sticky gradient method for different
levels of shared information (He et al., 2015). Batch size was set to 50 and
each network was trained for a single epoch on every task and optimized via
Adam.

Figure 4: Accuracy profiles from runs for 10 random seeds for different levels of shared
information; error bars denote 95% confidence intervals. Our method retains a benefit
over the control until the amount of shared information reaches 60%. After this point, the
sticky gradient’s inability to tweak frozen weights for similar tasks outweighs its ability to
retain previous knowledge.

We find that the sticky gradient method does not lose a benefit until the
proportion of shared information reaches 0.6 (Figure. 4). This illustrates the
effectiveness of our method on correlated tasks akin to real-world scenarios
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in which agents may be asked to complete tasks which leverage knowledge
gained from previous tasks. However, it also points out a trade-off that our
method makes between expressivity and retention. As the sticky gradient
network trains, more weights get caught in the dip of the weight-plasticity
function and are unable to shift in response to new examples that may im-
prove performance.

3.5. Weight Dynamics

It is also instructive to look at the dynamics of the weights during training.
To visualize only important connections, we remove weights which are within
a small tolerance of zero (1e-5). We expect the sticky gradient weights to
behave quite differently than those of the control over the course of training.
We discover that this is indeed the case – the eventual weights for the sticky
gradient method are essentially trimodal. There is a group of weights near
zero, another near the dip of the weight-plasticity function, and yet another
contingent of strongly inhibitory weights. In contrast, both the control and
EWC exhibit clear unimodality around 0 (Figure 5 ) .

In essence, the sticky gradient method seems to encourage the freezing
of information dense synapses near the attractor, and the masked gradient
multiplier induces a sort of symmetry by increasing the rate at which far-
away weights move away from the attractor. This interplay allows for a sort
of balancing in which a contingent of inhibitory neurons arises to combat
the excitatory effect of their positive counterparts near the attractor. We
hypothesize that it is this balanced concentration of information in these pa-
rameters that enables superior retention of knowledge from previous tasks.

4. Discussion

We show that groups of synapses endowed with even the simplest prior
measures of weight-dependent plasticity can be used to enable continual
learning in ANNs. Specifically, we show that it is possible to meta-learn pa-
rameters for a flipped gaussian function mapping weights to plasticity that
aids in continual learning.

Our method bears similarity to Zenke et al.’s Synaptic Intelligence and
Kirkpatrick et al.’s Elastic Weight Consolidation in that we aim to regulate
plasticity in response to some measure of weight importance. However, both
of these methods do this explicitly by keeping track of this measure of weight
importance and penalizing it in the loss (Kirkpatrick et al., 2017; Zenke et al.,
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Figure 5: Weight distributions from Kaiming initialized control, EWC, and sticky gradient
network. We truncate the y-axis for the sticky gradient histogram to ensure that the non-
zero peaks remain visible. The EWC and control networks seem to exhibit similar patterns
of unimodality around 0, differing only in width. The sticky gradient network produces an
interesting distribution of weights with local modes near -0.06, 0, and 0.279 (the attractor
value).

2017). In contrast, we allow the meta-learner to implicitly come up with a
region of a high weight importance based on training dynamics by meta-
learning parameters for the weight-plasticity function.

Of all the plasticity-related methods for continual learning, ours is po-
tentially the easiest to justify biologically. While SI requires complicated
handwaving about the plausibility of a separate store of importance in neu-
rons, we do not make use of extra neuronal dimensions (Montgomery and
Madison, 2002). Indeed, we show that it is possible to effectively allevi-
ate catastrophic forgetting simply by creating a global mapping of synapse
strength to importance. This mapping is eminently biologically plausible
– there is already evidence that plasticity is activity dependent (Cingolani
et al., 2008). This almost certainly implies that plasticity is also weight
dependent and therefore that our method is biologically grounded.

The weight distributions created by the sticky gradient method are actu-
ally startlingly reminiscent of recent work concerning distributions of synap-
tic weights in mouse connectomes. In this study, the authors find that,
controlling for cell type, synapse strength can be described as a bimodal
mixture of log-normal distributions (Dorkenwald et al., 2019). Indeed, the
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weight distributions produced by the sticky gradient method show marked
multi-modality due to pooling near the attractor. While this bimodality does
not exactly match that described in the study, the similarity that exists even
under these radically different conditions undeniably adds to the biological
plausibility of our method (Dorkenwald et al., 2019).

There are a number of straightforward extensions to this work that we
plan to pursue. First, we would like to add an extra parameter to Eq. 1
such that the minimum learning rate is not zero. In doing so, the meta-
optimization procedure would shed some light on how much freedom frozen
synapses should be given to allow for movement towards joint optima. We
also plan to test wider and deeper networks with the sticky gradient method
and see if the expressivity constraints imposed by the method can be over-
come simply with bigger networks.

Our work points to the effectiveness of this particular brand of biologi-
cal prior on enabling continual learning in artificial neural networks. More
broadly, our research highlights the ability of artificial neural networks to
benefit from even incredibly simple plasticity-related priors. This opens a
number of avenues for further work in which a broader class of system-wide
plasticity-related priors can be leveraged to effectively manipulate training
dynamics for a wide variety of learning environments.
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Base Learning Rate 10−4

Epochs per Task 1

Hidden Layer Width 2000

Depth 1

N. Hidden Layers 1

Optimizer Adam

Table 2: Hyperparameters for PMNIST Experiment

6. Appendix

6.1. Permuted MNIST Experiments

We use fully-connected feedforward 2000 ReLU multi-layer perceptrons
for classification on every task. To enable the control networks to better
retain knowledge from previous tasks, we train each model for a single epoch
on each dataset. A full list of fixed hyperparameters is given by Table 2. All
networks trained with the sticky gradient method meta-optimize parameters
on a validation set, disparate from the training set. All networks are tested
on held-out test sets over 10 random seeds. Additionally, we use an Adam
optimizer every epoch but reset its state after every task to prevent differing
learning rates per task.

6.2. Meta-Learning

We use a simple TPE-mediated search to find φ under the following condi-
tions over 30 trials using the search ranges in Table 3 (Bergstra et al., 2011).
Parameters were assumed to have a uniform prior over the log domain of
the specified ranges. All networks are trained using hyperparameters φ for
a single epoch per task for 10 tasks using the Adam optimizer with learning
rate 1e− 4.

a1 µ σ γ ζ λ

0.01 - 10.0 1e-3 - 8.0 0.01 - 7.0 0.01 - 7.0 1e-7 - 1e-3 4.0 - 10.0

Table 3: Ranges for meta-search
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