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Abstract  
Tackling breast cancer problems is like mastering a puzzle, and the mystery is not yet solved. 
Reported key genes in the literature could not be confirmed whether they are vital to breast cancer 
formations due to lack of convincing accuracy, although they may be biologically directly related to 
breast cancer based on present biological knowledge. It is hoped vital genes can be identified with 
the highest possible accuracy, e.g., 100% accuracy and convincing causal patterns beyond what has 
been known in breast cancer. One hope is that finding gene-gene interaction signatures and 
functional effects may solve the puzzle. This research uses a recently developed competing linear 
factor analysis method in differentially expressed gene detection to advance the study of breast 
cancer formation to its deepest root level as deep as possible. Surprisingly, three genes are detected 
to be differentially expressed in TNBC, and non-TNBC (Her2, Luminal A, Luminal B) samples with 
100% sensitivity and 100% specificity in one study of triple-negative breast cancers (TNBC, with 
54675 genes and 265 samples). These three genes show a clear signature pattern of how TNBC 
patients can be grouped. For another TNBC study (with 54673 genes and 66 samples), four genes 
bring the same accuracy of 100% sensitivity and 100% specificity. Four genes are found to have the 
same accuracy of 100% sensitivity and 100% specificity in one breast cancer study (with 54675 
genes and 121 samples), and the same four genes bring an accuracy of 100% sensitivity and 96.5% 
specificity in the fourth breast cancer study (with 60483 genes and 1217 samples.) These results 
show the four-gene-based classifiers are robust and accurate. The detected genes naturally classify 
patients into subtypes, e.g., seven subtypes. These findings demonstrate the clearest gene-gene 
interaction patterns and functional effects with the smallest numbers of genes and the highest 
accuracy compared with findings reported in the literature. The four genes are considered to be 
essential for breast cancer studies and practice. They can provide focused, targeted researches and 
precision medicine for each subtype of breast cancer. New breast cancer disease types may be 
detected using the classified subtypes, and hence new effective therapies can be developed.  
 
Keywords: Direct and indirect effects, breast cancer detection, gene-gene interaction, functional 
effects, joint risk competing. 
 
Introduction 
Breast cancer has been an unconquered plague for centuries. It has had the highest death rate among 
all cancers women have had for many years. It has caused enormous economic losses and costs. To 
save lives and protect women from breast cancers, enormous research efforts and money have been 
investigated. Although there have been some considerable signs of progress in breast cancer 
diagnoses and therapies, many women still suffer from being diagnosed with breast cancer and lost 
their lives every year. No apparent clues or research results show the most critical genetic causality 
in breast cancer formation. The most hopeful direction, finding critical genes, or primary 
differentially expressed genes related to breast cancer formation, has been drawing much attention 
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in breast cancer studies. The most recent editorial summary by Narod (2021) states "Results of two 
large case-control studies that analyzed the associations between a number of putative cancer 
susceptibility genes and breast cancer risk are now reported in the Journal. The study by Dorling et 
al. (2021, Breast Cancer Association Consortium) included 34 genes and 113,000 women from 25 
countries, and the study by Hu et al. (2021) included 28 genes and 64,000 women from the United 
States. Variants in 8 genes — BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM, and 
CHEK2 — had a significant association with breast cancer risk in both studies." 
 
Differential expression analysis between tumor and non-tumor cells helps breast cancer prognosis 
prediction at a relatively early stage, identifying some clear patterns from patients to patients, 
recommending different precision therapies according to breast cancer subtypes. Efforts have been 
made in identifying genes associated with breast cancer symptoms. For example, in a systems 
biology comprehensive analysis on breast cancer to identify key gene modules and genes associated 
with TNM-based clinical stages (Amjad et al. 2020), the authors have identified various numbers of 
genes that can be key genes related to breast cancers at different cancer stages.  Malvia et al. (2019) 
studied gene expression profiles of breast cancers in Indian women, obtained 2413 differentially 
expressed genes, and demonstrated the existence of molecular subtypes in Indian women. Lv et al. 
(2019) aimed to explore some novel genes and pathways related to TNBC prognosis through 
bioinformatics methods as well as potential initiation and progression mechanisms. 755 differentially 
expressed overlapping mRNAs were detected between TNBC/non-TNBC samples and normal 
tissue. The authors found eight hub genes associated with the cell cycle pathway highly expressed 
in TNBC. Additionally, a novel six-gene (TMEM252, PRB2, SMCO1, IVL, SMR3B, and COL9A3) 
signature from the 755 differentially expressed mRNAs were constructed and significantly 
associated with prognosis as an independent prognostic signature. Zhong et al. (2020) conducted a 
robust rank aggregation (RRA) analysis based on genome-wide gene expression datasets involving 
TNBC patients from the Gene Expression Omnibus (GEO) database to identify key genes associated 
with TNBC. A total of 194 highly ranked differentially expressed genes (DEGs) were identified in 
TNBC vs. non-TNBC. Gene oncology (GO) and Kyoto Encyclopedia of Genes and Genomes 
pathway (KEGG) enrichment analysis was utilized to explore the identified genes' biological 
functions. The authors also found that some genes are positively correlated to the life expectancy 
(P<0.05) of TNBC patients. Lin et al. (2020) identified potential key genes for HER-2 positive breast 
cancer based on bioinformatics analysis. A total of 54 up-regulated DEGs and 269 downregulated 
DEGs were identified. Among them, 10 hub genes including CCNB1, RAC1, TOP2A, KIF20A, 
RRM2, ASPM, NUSAP1, BIRC5, BUB1B, and CEP55 demonstrated by connectivity degree in the 
PPI network were screened out. Chen et al. (2018) systematically searched the electronic databases 
of MEDLINE (PubMed), Embase, and Cochrane Library to identify relevant publications from 
April, 1959 to November, 2017. identified 16 qualified studies from 527 publications with 46,870 
breast cancer patients including 868 BRCA1 mutations carriers, 739 BRCA2 mutations carriers, and 
45,263 non-carriers. The results showed that breast cancer patients with BRCA1Mut carriers were 
more likely to have TNBC than those of BRCA2Mut carriers (OR: 3.292; 95% CI: 2.773–3.909) or 
non-carriers (OR: 8.889; 95% CI: 6.925–11.410). Deng et al. (2019) identified potential crucial 
genes and key pathways in breast cancer using bioinformatic analysis. 203 up-regulated and 118 
down-regulated DEGs were identified. Six hub genes were selected and validated in clinical sample 
for further analysis due to the high degree of connectivity, including CDK1, CCNA2, TOP2A, 
CCNB1, KIF11, and MELK. They were all correlated to worse overall survival (OS) in breast cancer. 
Zhu et al. (2020) identified some key genes and pathways associated with irradiation in breast cancer 
tissue and breast cancer cell lines. A total of 82 DEGs (74 up-regulated and 8 downregulated genes) 
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were identified. Two characteristic subnetworks and 3 hub genes (FOS, CCL2, and CXCL12) were 
strongly distinguished in PPI network. Dong et al. (2018) aimed to identify the key pathways and 
genes and find the potential initiation and progression mechanism of TNBC. 56 up-regulated and 
151 downregulated genes were listed and the gene oncology (GO) and Kyoto Encyclopedia of Genes 
and Genomes pathway (KEGG) enrichment analysis was performed. The authors found that SOX8, 
AR, C9orf152, NRK and RAB30, and other key genes and pathways might be promising targets for 
the TNBC treatment. Lu et al. (2019) identified five hub genes (PHLPP1, UBC, ACACB, TGFB1, 
and ACTB) associated with HER2+BC with brain metastasis. The GSEA analysis revealed that the 
ribosomal pathway seems to play a very important role in the pathogenesis of HER2+BC with brain 
metastasis. Such studies are many. This paper won't be able to review all of them. Readers can search 
and find interesting topics online.  
 
The reported genes in the published work point out some promising directions in breast cancer 
research and treatments. But it is not clear whether or not they are fundamental causes or direct 
causes of breast cancer. The problem is mainly due to the following three main limitations. 1) The 
number of human genes is ultra-large compared to the number of patients in affordable study designs. 
Identifying a few key (single digit) genes that are uniformly optimal across different trials, different 
study purposes, different measurement methods, and different cohorts is rather challenging. From 
the aforementioned research outcomes, we can see there are many different genes are identified. As 
a result, it's impossible to see which one is the most important one, which can be a driver of breast 
cancer disease. 2) The inefficient detecting power of existing analysis methods due to restricted 
model assumptions cannot deal with heterogeneous populations (different breast cancer subtypes). 
As a result, the sensitivity and specificity of many published gene classifiers are not satisfactory. 3) 
It isn't easy to extract informative messages from existing models and analysis methods. Also, many 
gene-related classifiers are not interpretable as gene-gene inter-relationships and functional effects 
are hardly expressed. As a result, scientific research progress in breast cancer studies is still limited. 
Much literature attention has been focused on individual genes and their expression levels, i.e., not 
gene-gene interactions, genes-subtypes (of breast cancers) interactions, and functional effects. As a 
result, the fundamental genetic causes of breast cancer formations can be masked by those 
suboptimal focuses, and the researches can still be in a primitive state.  Many unknown factors exist. 
They can be essential to conquer the breast cancer plague, and therefore there is an urgent need for 
identifying critical DEGs with the highest possible sensitivity and specificity for breast cancer 
detection. 
 
This work aims to lift the veil of breast cancers by discovering the joint functional effects of four or 
fewer critical DEGs that show the highest detecting power of breast cancer in four gene expression 
RNA-seq datasets. According to our analysis, these four genes and their functional effects describe 
breast cancers' overall features at the genomic level, with the highest possible sensitivity (up to 
100%) and specificity (up to 100%) for breast cancer detection. In addition, they are invariance 
preserving with the same group of patients but measured in different scales, and they are robust from 
one trial to another trial. 
 
Statistical Methodology 
The most recently developed max-linear competing factor models (Cui and Zhang, 2018), max-linear 
regression models (Cui et al. 2020), and max-linear logistic models (Xu 2019, Zhang 2021) have 
proven to be powerful models and analysis approaches to study heteroscedastic populations and 
competing risks and resources. The theoretical foundations of these models have been established in 
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Cui and Zhang (2018), Cui et al. (2020), Malinowski et al. (2018), Xu (2019), and Zhang (2020, 
2021). The difference between the max-linear competing models and the classical statistical models 
is that the original linear combination of predictors is replaced by the maximum of a set of linear 
combinations of predictors, called competing factors or competing-risk factors. The max-linear 
competing factor models are different from existing popular classification models such as random 
forest, support vector machine, group lasso-based machine learning methods, and deep learning 
methods. However, the max-linear competing factor models are interpretable and outperform 
existing methods (Cui et al. 2020). This study implements the max-linear logistic regression model 
to build a competing factor breast cancer classifier. For completeness, the model is stated as follows. 
 

Suppose there are 𝑖 1, … , 𝑛 patients with breast cancer status label 𝑌 1 for cancer and 𝑌 0 

for cancer-free, and 𝑌  is related to G groups of genes by 

Φ 𝑋 , , 𝑋 , , … , 𝑋 , , 𝑗 1, … , 𝐺, 𝑔 0                                                                   1  

where 𝑖 is the 𝑖th individual in the sample, 𝑔  is the number of genes in 𝑗th group. The competing 
(risk) factor classifier for the 𝑖th outcome variable is defined as 

log
𝑝

1 𝑝
𝑚𝑎𝑥 𝛽 Φ 𝛽 , 𝛽 Φ 𝛽 , … , 𝛽 Φ 𝛽                                       2  

where 𝛽 's are intercepts, Φ  is a 1 𝑔   observed vector, 𝛽  is a 𝑔 1 coefficient vector which 
characterizes the contribution of each predictor to the outcome variable 𝐘 in the jth group to the risk, 
and 𝛽 Φ 𝛽  is called the jth competing risk factor, i.e., jth signature. The unknown parameters 
are estimated from 

𝛽
^

, 𝑆
^

arg min , ⊂ , , ,…, 𝐼 𝑝 0.5 𝐼 𝑌 1 𝐼 𝑝 0.5 𝐼 𝑌 0  

where 0.5 is a probability threshold value that is commonly used in machine learning classifiers, 
I(.) is an indicate function, 𝑝  is defined in the equation (2). 𝑆 1,2, … ,54675 is the index set of 
all genes, 𝑆 1 , 1 , … , 1 , 𝑆 2 , … , 2 , … , 𝑆 𝐺 , … , 𝐺  are index sets 

corresponding  to (1), and 𝑆
^

1 , 1 , … , 1 ; 2 , … , 2 ; … ; 𝐺 , … , 𝐺 is the final gene set 
selected in the final classifiers. 
 
The goal is to identify the clearest patterns of gene-gene interactions and functional effects related 
to breast cancer samples and non-tumor samples. We start with three competing factors in max-linear 
logistic regression models, with each factor having only three genes randomly drawing from 54675, 
54673, or 60483 genes. Then, a Monte Carlo method with extensive computation is used to find the 
final model with the best performance of sensitivity and specificity and the smallest number of genes. 
Finally, the complete computing description is listed in Zhang (2021) in which five Covid-19 critical 
genes and seven subtypes were identified. 
 
Data Descriptions 
There are four datasets used in this study. The first dataset is triple-negative breast cancer (TNBC, 
North American cohort) study conducted by Burstein et al. (2015) and den Hollander (2016) with 
54675 genes, 198 TNBC tumor samples, and 67 not TNBC (Her2, Luminal A, Luminal B) samples. 
The data link and descriptions are https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76275. 
The platforms are GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. 
The expression values are log2(RMA signal). The second dataset is a European cohort with 55 TNBC 
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samples and 11 normal breast tissue samples, Maire et al. (2013), Maire et al. (2013),  Maubant et 
al. (2015). The data link and description are 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65194. The platforms are GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The number of genes is 54673. 
The expression values are log2(GCRMA signal from Affy cdf). The third dataset is gene expression 
profiling of 104 breast cancer and 17 normal breast biopsies by Clark et al. (2013). It is from a 
European cohort. The data link and descriptions are 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568. The platforms are GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The expression values are 
log2(GC-RMA signal intensity). The fourth dataset is GDC TCGA Breast Cancer cohort by 
Genomic Data Commons. The dataset contains 60,484 identifiers (genes) and 1217 (1104 tumors 
and 113 tumor free) samples. Data from the same sample but from different 
vials/portions/analytes/aliquotes is averaged; data from different samples are combined into 
genomicMatrix; all data is then log2(fpkm+1) transformed. The platform is Illumina. The type of 
data is gene expression RNAseq. The data link and descriptions are 
https://xenabrowser.net/datapages/?dataset=TCGA-
BRCA.htseq_fpkm.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%
2Fxena.treehouse.gi.ucsc.edu%3A443. 
 
Results and Interpretations 
Using a probability higher than 50% as the threshold, we identify three critical DEGs:   RBM22 
(RNA binding motif protein 22), RNF213 (ring finger protein 213), and CACNG4 (Calcium 
Voltage-Gated Channel Auxiliary Subunit Gamma 4), which lead to 100% sensitivity and 100% 
specificity of classifying all 265 samples in their respective groups in the first TNBC dataset; four 
critical DEGs: MYCT1 (MYC Target 1), NUAK2 (NUAK Family Kinase 2), NAT8L (N-
Acetyltransferase 8 Like), and CACNG4, which lead to 100% sensitivity and 100% specificity of 
classifying all 66 samples in their respective groups in the second TNBC dataset; four critical DEGs: 
MYCT1, UNC5B (Unc-5 Netrin Receptor B), NUAK2, and NAT8L, which also lead to 100% 
sensitivity and 100% specificity of classifying all 121 samples in their respective groups in the third 
breast cancer dataset; and the same four critical DEGs as in the third dataset, which leads to 100% 
sensitivity and 96.5% specificity of classifying all 1217 samples in their respective groups in the 
fourth breast cancer dataset.  
 
Our final classifiers are combined classifiers of three competing factor (CFi, i=1,2,3) classifiers 
expressed as:  
 
For the first TNBC (North American cohort) dataset: 
Data-1-CF1:  19.0107    +3.1105*RNF213                                                             - 3.6692*CACNG4 
Data-1-CF2:  -0.4312    +8.0992*RNF213               - 9.5921*RBM22 
Data-1-CFmax: max(Data-1-CF1, Data-1-CF2) 
 
For the second TNBC (European cohort) dataset: 
Data-2-CF1:  39.8651                                 -1.6945*NAT8L                                    -3.5933*CACNG4  
Data-2-CF2:  9.8676   -5.1333*MYCT1                                   +0.4595*NUAK2 
Data-2-CFmax: max(Data-2-CF1, Data-2-CF2) 
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For the third (European cohort) dataset: 
Data-3-CF1:  25.1089 - 10.1863*MYCT1                              +3.1654*NUAK2   -2.0708*NAT8L 
Data-3-CF2:  2.4425                                  +2.0119*UNC5B   -4.1677*NUAK2   -0.8255*NAT8L 
Data-3-CFmax: max(Data-3-CF1, Data-3-CF2) 
For the fourth (Genomic Data Commons) dataset: 
Data-4-CF1:  5.7644 - 2.5133*MYCT1                                  +2.3383*NUAK2-1.2537*NAT8L 
Data-4-CF2:  -9.5458                               + 3.1219*UNC5B  +0.7849*NUAK2  
Data-4-CF3:  7.0281 -2.9389*MYCT1                                   +4.3574*NUAK2 -2.8591*NAT8L 
Data-4-CFmax: max(Data-4-CF1, Data-4-CF2, Data-4-CF3) 
 
The risk probabilities are calculated using the logistic function of exp(Data-i-CFmax)/(1+ exp(Data-
i-CFmax)) for the combined classifiers in each dataset, or exp(Data-i-CFj)/(1+ exp(Data-i-CFj)) for 
each individual classifier i=1,2,3, 4, j=1,2,3. 
 
In the first three cohorts, multiple ID-ref subtype genes correspond to a gene symbol. The following 
ID-ref subtype genes are used in the classifiers: 236872_at (RBM22), 241480_at (RNF213), 
62987_r_at (CACNG4), 220471_s_at (MYCT1), 220987_s_at (NUAK2), 228880_at (NAT8L), 
226899_at (UNC5B).   

 

Table 1. Gene information, expression values, competing factors, risk probabilities 

The first (TNBC) dataset 

ID TNBC 

/No 

236872_at 241480_at 62987_r_at  CF1 CF2  CFmax Pmax 

GSM1974566 1 6.09 7.42 10.55  3.37 1.19  3.37 0.97 

GSM1974567 1 5.80 7.35 10.23  4.32 3.47  4.32 0.99 

……           

GSM1974763 1 5.82 7.25 10.20  4.15 2.52  4.15 0.98 

GSM1978883 0 6.15 6.81 11.50  -2.01 -4.26  -2.01 0.12 

……           

GSM1978948 0 6.17 6.69 11.92  -3.93 -5.47  -3.93 0.02 

GSM1978949 0 6.21 6.73 11.73  -3.11 -5.45  -3.11 0.04 

           

The second (TNBC) dataset 

ID TNBC 

/No 

220471_s_a
t  

220987_s_a
t 

228880_at 62987_r_a
t 

CF1 CF2  CFmax Pmax 

GSM1588970 1 2.37 5.26 5.47 8.08 1.58 0.13  1.58 0.83 

GSM1588971 1 2.36 5.40 4.86 8.25 1.97 0.25  1.97 0.88 

……           

GSM1589150 0 2.42 4.98 8.83 8.64 -6.16 -0.26  -0.26 0.44 

GSM1589151 0 2.46 5.02 8.95 8.57 -6.09 -0.47  -0.47 0.38 

           

The third breast cancer dataset 
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ID BC 

/NoB
C 

220471_s_a
t  

226899_at 220987_s_at 228880_at CF1 CF2  CFmax Pmax 

GSM1045191 0 3.21 6.95 2.94 5.65 -10.01 -0.49  -0.49 0.38 

GSM1045192 0 2.90 7.88 3.57 4.27 -2.00 -0.11  -0.11 0.47 

GSM1045193 0 3.16 6.57 3.19 4.67 -6.67 -1.49  -1.49 0.18 

……           

GSM1045207 0 2.31 6.68 3.41 7.61 -3.40 -4.63  -3.40 0.03 

GSM1045208 1 2.31 8.56 4.02 4.43 5.08 -0.73  5.08 0.99 

……           

GSM1045310 1 2.31 7.84 5.54 4.67 9.40 -8.70  9.40 1.00 

GSM1045311 1 2.31 9.91 4.09 4.85 4.43 1.35  4.43 0.99 

           

The fourth breast cancer dataset

ID BC 

/NoB
C 

MYCT1 UNC5B NUAK2 NAT8L CF1 CF2 CF3 CFmax Pmax 

TCGA-E9-
A1NI-01A 

1 1.82 3.40 2.24 1.08 5.09 2.82 8.38 8.38 1.00 

TCGA-A1-
A0SP-01A 

1 1.48 2.74 1.27 3.16 1.05 -0.01 -0.82 1.05 0.74 

TCGA-BH-
A1EU-11A 

0 3.34 2.01 1.12 2.21 -2.79 -2.39 -4.23 -2.39 0.08 

……           

TCGA-BH-
A0BW-11A 

0 2.86 2.85 2.12 1.98 1.05 1.03 2.20 2.20 0.90 

……           

TCGA-BH-
A0DK-11A 

0 2.08 1.77 0.56 0.94 0.68 -3.57 0.69 0.69 0.67 

……           

TCGA-E2-
A1LH-11A 

0 2.27 1.92 1.46 2.16 0.76 -2.39 0.53 0.76 0.68 

……           

TCGA-AC-
A2FF-11A 

0 2.91 3.18 1.18 1.33 -0.46 1.31 -0.19 1.31 0.79 

……           

TCGA-A7-
A5ZW-01A 

1 2.42 3.96 1.52 0.42 2.69 4.01 5.31 5.31 1.00 

TCGA-BH-
A203-01A 

1 1.74 2.87 1.44 0.79 3.77 0.54 5.94 5.94 1.00 

 
Table 1 lists gene expression values, individual classifiers' computed values, the combined 
classifier's computed values, and the risk probabilities. Figure 1 plots all patients' risk probabilities 
with circles for breast cancer samples and asters for non-breast cancer samples. Figure 2 is a Venn 
diagram that plots individual classifiers' performance.  This study is the first time TNBC and other 
breast cancer types can be further classified into subtypes based on critical genes' functions. This 
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new classification opens a new research direction, new drug developments, and new refined 
personalized therapies. 
 
For the first TNBC (North American cohort) dataset, three genes (RNF213, RBM22, CACNG4) 
completely classify all 198 TNBC tumor samples into three subtypes (Figure 2) with the sensitivity 
of 100% and the specificity of 100%. From the individual classifiers, we can see that a decrease of 
RNF213 level will reduce the risk of developing TNBC, while increases in the expression levels of 
RBN22 and CACNG4 will reduce the risk of developing TNBC.  

 

 
Figure 1. Risk probabilities of four cohorts. The circles are for patients with breast cancers. The asters are for tissues 
without breast cancers. 
 
For the second TNBC (European cohort) dataset, four genes (MYCT1, NAT8L, NUAK2, CACNG4) 
completely classify all 66 TNBC tumor samples into three subtypes (Figure 2) with the sensitivity 
of 100% and the specificity of 100%. From the individual classifiers, we can see that a decrease in 
NUAK2 level will benefit the patients, while increases in the expression levels of MYCT1, NAT8L, 
and CACNG4 will benefit the patients. We note that there are also Her2, Luminal A and Luminal B 
samples in this second dataset. After adding classifier CF3: 21.8170 - 8.8170*RBM22 - 
0.3047*NAT8L, all breast cancer (TNBC, Her2, Luminal A, Luminal B) patients will again be 100% 
accurately classified into their respective groups.  
 
Comparing the first and second TNBC cohorts, we see that the TNBC patients from North American 
and the TNBC patients from European cohorts share a common gene CACNG4 and similar 
coefficients (-3.6692 vs. -3.5933). Otherwise, other critical genes from these two cohorts are 
different. This observation tells that the causes, the formations, and the therapies of TNBC can be 
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different from region to region and race to race. We want to note that based on our knowledge in the 
field, there does not exist any other method that can 100% accurately classify breast cancer patients 
and cancer-free patients into their respective groups. With 100% accuracy, regardless of how big 
and how small the sample is, these genes should contain basic cancer information of TNBC disease, 
they should be thoroughly analyzed and explored.  
 
On the other hand, cautions should be called with any other classifiers with lower accuracy. Using 
genes derived/obtained from low accuracy classifiers may lead to suboptimal results and even wrong 
conclusions. The formulas of these two cohorts disclose the puzzle of TNBC as gene-gene 
interactions and functional effects are different. Such differences can be the most important part of 
studying TNBC and point out new research directions for better understanding TNBC and designing 
better treatments.     
 
 

 
Figure 2. Venn diagrams of breast cancer subtypes. The first three cohorts have more than three subtypes. The fourth 
cohort has more than seven subtypes. 

 
 
For the third (European cohort) dataset, four genes (MYCT1, NAT8L, NUAK2, UNC5B) 
completely classify all 104 tumor samples into three subtypes (Figure 2) with a sensitivity of 100% 
and a specificity of 100%. A decrease of UNC5B level will benefit the patients in this cohort, while 
increases of expression levels of MYCT1 and NAT8L will benefit the patients. In addition, it can be 
seen that NUAK2 can benefit the patients and can also harm the patients depending on the patients' 
breast cancer subtypes in Figure 2. These gene-gene relationships and genes-subtypes relationships 
tell efficient therapies to breast cancer patients depending on their subtypes' determinations.  
 
For the fourth (Genomic Data Commons) dataset, the same four genes (MYCT1, NAT8L, NUAK2, 
UNC5B) as for the third (European cohort) dataset completely classify 1104 tumor samples into 
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seven subtypes (Figure 2) with the sensitivity of 100% and the specificity of 96.5%. There are 4 
samples among 103 normal samples being classified as tumor samples. Note that this dataset does 
not offer multiple ID-ref subtypes. If genes' expression values are taken the same as those ID-ref 
subtypes, the specificity may be improved to 100%. In this cohort, increases of MYCT1 and NAT8L 
levels can benefit the patients, while decreases of UNC5B and NUAK2 levels will benefit the 
patients.  
 
Comparing the third and fourth breast cancer cohorts, the individual classifiers Data-3-CF1, Data-4-
CF1, and Data-4-CF3 have the same component genes and coefficient signs. Data-3-CF2 has one 
more gene, NAT8L, then Data-4-CF2. However, the signs of NUAK2 coefficients in these two 
individual classifiers are different. We further note that to have two similar individual classifiers 
Data-4-CF1 and Data-4-CF3 in the final classifier is completely new in machine learning literature. 
These observations further reveal that breast cancer formations are more complicated than simply 
looking at some high/low expression values of individual genes as in the literature. The most 
important relations in finding critical genes linked to breast cancers are gene-gene interactions, 
genes-individual classifiers interactions, and their functional effects. 
 
Comparing the second TNBC cohort, the third breast cancer cohort, and the fourth cohort, we see 
that increasing the levels of MYCT1 and NAT8L can benefit all patients.  
 
In Figure 2, Venn diagrams for four different cohorts are different, with two TNBC cohorts having 
similar patterns, while BC European cohort and Genomic Data Commons are different. It is because 
the numbers of component classifiers in the final classifiers for different cohorts are different. Such 
phenomena tell that there are commonalities among breast cancer patients and specificities from 
patient to patient, i.e., the critical cancer informatics are expressed. Note that in Venn diagrams, the 
more intersections the groups, the more complex the disease, and the more difficult the treatment. 
Taking Genomic Data Commons as an example, patients in Group VII will be the most difficult to 
treat. 
 
Figure 3 presents the gene-gene interactions, gene-subtype interactions, and functional effects of our 
identified competing classifiers. We can see clear signature patterns in each plot. This visualization 
tool provides a new way for breast cancer diagnosis.  

 
Figure 3. Four-dimensional plots for visualizing risk signature patterns from three competing component classifiers 
and the combined functional effects of gene-gene interactions and gene-subtype interactions of four genes. 
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Characteristics of studying samples 
 
All four datasets are accompanied by some characteristics of patients. Here we report their inter-
relationship with the competing classifiers. Table 2 displays Sex, Age, BMI, and Grade from the first 
dataset (TNBC, a North American cohort). Table 3 displays Age and BMI from the second dataset 
(TNBC samples only, A European cohort). Table 4 is for the third dataset (breast cancer samples, A 
European cohort). Finally, Table 5 includes disease Stage besides Age and Sex for the fourth breast 
sample data set (A Genomic Data Commons – TCGA). 
 

Table 2. Characteristics of the first dataset samples (TNBC, A North American Cohort) 
 Sex Age BMI Grade 
 Male Female <=50 (50,60] (60,70] >70 Normal Overweight Obese Poorly Moderately Well 

CF-1 0 63 34 12 10 5 13 19 61 33 25 1 

CF-2 0 2 1 0 1 0 0 1 2 1 0 0 

CF-(1,2) 0 133 51 33 28 18 36 41 129 74 28 3 

 
Table 3. Characteristics of the second dataset samples (TNBC, A European Cohort) 

 Age BMI 
 <=50 (50,60] (60,70] >70 Normal Overweight Obese 
CF-1 3 4 2 2 5 3 3 
CF-2 2 2 0 1 2 2 1 
CF-(1,2) 9 10 5 1 12 6 6 

 
Table 4. Characteristics of the third dataset samples (BC, A European Cohort) 

 Age Grade 
 <=50 (50,60] (60,70] >70 Poorly Moderately Well 
CF-1 9 15 11 9 25 14 5 
CF-2 3 4 2 0 4 5 0 
CF-(1,2) 15 13 10 13 24 21 6 

 
Table 5. Characteristics of the fourth dataset samples (TCGA, Genomic Data Commons) 

 Age Sex Stage 
 <=50 (50,60] (60,70] (70,80] >80 Male Female I II III IV X 

CF-1 8 1 3 0 1 0 13 4 6 3 0 0 

CF-2 10 9 7 2 1 1 30 6 16 9 0 0 

CF-3 1 0 0 0 0 0 1 0 0 1 0 0 

CF-(1,2) 5 1 4 1 1 0 12 2 7 2 0 1 

CF-(1,3) 44 36 35 27 7 2 148 25 97 24 2 0 

CF-(2,3) 2 5 5 1 0 0 13 3 3 5 1 1 

CF-(1,2,3) 257 216 225 119 43 9 862 143 490 202 17 10 
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Overall, these four tables show that more patients fall in groups related to more than one competing 
classifier. Obese patients can make TNBC more complex. The more the competing classifiers, the 
worse the grade. In Table 5, Stages (IV, X) are mainly related to CF-(1,2,3), which shows the 
classifiers are positively correlated.    

Discussions 

This study is the first time in the medical literature that breast cancer diseases can be classified almost 
100% correctly using only a few (three or four) genes. The results clearly disclose the puzzle of 
breast cancers, including TNBC, due to the selected genes and their predicting powers through gene-
gene interaction, gene-subtype interaction, and functional effects. The results also point to new 
treatment directions.  

We note that this study does not use the primary endpoint information. It is a pure classification 
study. The main purpose is to identify the essential breast cancer informatics. The study has achieved 
100% accuracy, which is the first in the literature. Given patients have different endpoints, the new 
classifier still reaches 100% accuracy, which means the classifier is robust to patients’ disease states, 
i.e., we can conclude that the classifier is robust regardless of primary endpoints and other individual 
attributes.  

The discovery of critical genes can motivate many new research directions and laboratory 
experiments. These critical genes and their derived signature patterns (individual classifiers) can be 
a starting point as new biomarkers for conducting gene network analysis, testing other reported 
genes, and finding the causal directions of gene expression in various projects. As a result, many 
other existing pieces of research can be enriched. It can also be hoped that new types of diseases can 
be discovered. Eventually, new testing procedures and therapies for breast cancer can be designed. 

These critical genes enrich the biological literature of their new functions related to breast cancer 
from indirect relationship to direct relationship. In many scenarios, indirect effects are more 
significant than direct effects as direct effects can be seen and controlled, while indirect effects are 
hard to see and even not to say how to control.  

The risk probability of a patient developing a specific type of breast cancer in her/his life is low. 
Among all discovered breast cancer types, growing more than one type of breast cancer is rare. These 
breast cancer types compete, and one type will first be diagnosed.  As a result, the competing risk 
factor models can efficiently model multiple breast cancer types.      

This study's inference/analysis approach can shed new light on all gene-related research, i.e., not just 
the breast cancer study. Researchers can apply max-linear type models in their studies. Ultimately, 
our new findings may make researchers' cancer research efforts more effective and meaningful, 
reduce substantial research costs, and save lives and protect people. 

Finally, we address an important medical practice issue. In this paper, all classifier formulas are 
explicitly expressed. Thus, the results in Table 1 are reproducible. Furthermore, Figures 1 and 3 
show the risks of all patients. Using this paper's results, medical doctors have a powerful tool (testing 
kit) in their daily work, i.e., in the diagnostic stage, diagnosing and analyzing patients' breast cancer 
risks based on the four or fewer critical genes' expression values and the computed risks; in the 
treatment stage, those signature patterns can be used to study the effectiveness of drugs and 
treatments, i.e., conduct clinical trials, e.g., survival analysis, based on classified groups; in the drug 
development stage, pharmaceutical companies can use the findings of critical genes to study new 
drugs; finally, it can be hoped that mRNA-based therapies can be introduced using the critical genes’ 
information in the therapy stage.  
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