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Abstract 
Motivation: Anticancer combination therapy has been developed to increase efficacy by enhancing 
synergy. Patient-derived xenografts (PDXs) have emerged as reliable preclinical models to develop 
effective treatments in translational cancer research. However, in most PDX combination experiments, 
PDXs are tested on single dose levels and dose-response surface methods are not applicable for test-
ing synergism. 
Results: We propose a comprehensive statistical framework to assess joint action of drug combina-
tions from PDX tumor growth curve data. We provide various metrics and robust statistical inference 
procedures that locally (at a fixed time) and globally (across time) access combination effects under 
classical drug interaction models. Integrating genomic and pharmacological profiles in non-small-cell 
lung cancer (NSCLC), we have shown the utilities of combPDX in discovering effective therapeutic 
combinations and relevant biological mechanisms. 
Availability: We provide an interactive web server, combPDX (https://licaih.shinyapps.io/CombPDX/), 
to analyze PDX tumor growth curve data and perform power analyses. 
Contact: MJHa@mdanderson.org 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 Introduction  
Combinations of anticancer drugs have been developed to circumvent 

mechanisms of resistance to yield clinical benefit and lower toxicity 

(Dawson and Carragher, 2014; Wright, 2016). Recently, in vitro high-

throughput combinatorial screening data have been enabling the assess-

ment of large number of drug combinations at various dose levels 

(Mathews Griner, et al., 2014; Narayan, et al., 2020; Zagidullin, et al., 

2019). In these experiments, a pair of drugs are plated in a dose-response 

matrix block and the data at various combinations of dose levels are ana-

lyzed to quantify the degree of combination effects. The joint effects are 

categorized into synergistic, additive, and antagonistic, which imply en-

hanced, independent, and reduced effect, respectively, when two drugs are 

present together. The responses obtained from multiple combinations of 

dose levels are compared against the expected response under null models 

where no combination effect is present. The classical reference null mod-

els include Highest single agent (HSA) (Berenbaum, 1989; Geary, 2013; 

Lehár, et al., 2007), Loewe additivity (Frei, 1913; Loewe, 1928; Loewe, 
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1953; Loewe and Muischnek, 1926) and Bliss independence (BI) 

(Berenbaum, 1989; Bliss, 1939; Geary, 2013; Greco, et al., 1995). Recent 

application developments, such as DrugComb (Zagidullin, et al., 2019), 

SynergyFinder (Ianevski, et al., 2017), and Combenefit (Di Veroli, et al., 

2016) provide computational tools to analyze drug combination screening 

data based on these reference models. 

Patient-derived xenografts (PDXs) have emerged as reliable preclin-

ical models to develop new treatments and biomarkers in translational can-

cer research (Jung, et al., 2018). The PDX models are developed by im-

planting tumors from patients into mice; this method has been suggested  

to more accurately reflect clinical outcomes (Gao, et al., 2015; 

Izumchenko, et al., 2017). These successes have led to a rapid accumula-

tion and availability of large-scale PDX collections for drug discovery in 

cancer (Conte, et al., 2019; Doroshow, 2016; Gao, et al., 2015). In the 

PDX experiments to evaluate drug efficacy, tumor volumes of each indi-

vidual mouse are measured at the initiation of the study and periodically 

throughout the study. This usually continues until the tumor volume 

reaches a certain value, resulting in incomplete longitudinal tumor volume 

data. Due to the high cost of in vivo studies in animals, a common combi-

nation experiment for a PDX model includes four treatment groups, con-

trol (C), two monotherapies (A and B), and combination therapy (AB) 

with fixed doses to minimize the number of animals required per group. 

In the fixed dose experiment, the dose-response surface methods are not 

applicable, and the joint action of drugs should be evaluated at a fixed dose 

combination.  

The statistical framework that assesses the joint action of drug com-

binations with fixed doses is not well developed. Wu, et al. (2013; 2012) 

proposed interaction indices and the statistical inferential procedure based 

on surviving fraction of cells and survival endpoints. Demidenko and Mil-

ler (2019) proposed a log-linear model on the tumor volumes by assuming 

that they follow exponential growth. However, these are limited to the 

Bliss independence model. A distinctive set of mathematical definitions 

might lead to different quantifications of the degree of joint action. 

In this article, we propose a comprehensive statistical framework to 

calculate combination indices and the inferential procedures that are ro-

bust to potential outliers and errors in PDX experiments. We considered 

three most well-established reference models: HSA, response additivity 

(RA), and BI in a unified statistical quantification method. We present a 

user-friendly web server, combPDX, to compile the joint actions over time 

from PDX tumor growth data and to provide a power analysis tool to fa-

cilitate designs of PDX combination studies. Applying our methods to 

non-small-cell lung cancer (NSCLC), we show the utilities of our frame-

work in finding underlying mechanisms of combination drug action using 

gene expression profiles for PDX models. 

 Methods 

2.1 Overview 
The pipeline of combPDX includes three steps to assess combination ef-

fects as well as the power analysis procedure (Figure 1). Longitudinal raw 

tumor volume measurements are collected from four treatment groups (C, 

A, B and AB) and the tumor growth curves are displayed (Figure 1a). For 

each individual mouse, the response at each time point is determined by 

computing the relative tumor volume to adjust for heterogeneous initial 

tumor measurements across animals, and the missing relative tumor vol-

umes at time t are interpolated using the neighboring measurements (Fig-

ure 1b). At each time point, we determine the treatment effects of A, B, 

and AB compared to the control group C (Figure 1c). Based on the treat-

ment effects, we provide the combination indices under HSA, RA, and BI, 

and the corresponding 95% confidence intervals (Figure 1d). We finally 

implement a power analyses tool under the three reference models (Figure 

1e).  

2.2 Tumor Volume Data Processing 
The combPDX requires a long data matrix as an input where each of the 

tumor volume measures are stacked by rows with four columns: mice ID, 

treatment, day, and tumor volume. Table S1 presents the description of 

these metrics and Table S2 shows an example of input data. Due to the 

variation of initial tumor volumes across mice, the response for an indi-

vidual animal at each time point is defined by the relative tumor volume, 

which is the raw tumor volume divided by the initial tumor volume of the 

mouse. We denote 𝑣! as the relative tumor volume for a mouse at time	𝑡 

(Section S1.1).  For subjects with no tumor volume measurement at time 

𝑡, but with flanking volume measurements at time 𝑡" and 𝑡#, we use linear 

interpolation to impute the relative tumor volume at time t:  

𝑣! 		= 	 𝑣!! 	+
$"#%$"!
!#%!!

	(𝑡	 − 	 𝑡"). 

Denote the relative tumor volume for an individual mouse in group 𝑔 =

𝐶, 𝐴, 𝐵, 𝐴𝐵	as	𝑣&, which follows an independent identical distribution 

Figure 1. Overview of the analysis pipeline of combPDX. (a) Tumor volume 
measurements from four treatment arms (C, A, B, and AB) are collected from PDX 
experiments. (b) For an individual mouse, the response at each time point is determined 
by computing relative tumor volume to adjust for heterogeneous initial tumor 
measurements. (c) The drug effect for each treatment group (A, B, and AB) relative to the 
control group is quantified by tumor growth inhibition (TGI). (d) The combination effect 
under each reference model (HSA, RA, and BI) is assessed using a combination index. In 
addition, (e) sample size calculation and power analysis are provided.   
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with mean 𝜇& and variance 𝜎&'. The mean and variance parameters 

𝜇&	and	𝜎&' can be estimated by the sample mean 𝑣̅& and sample variance 

𝜎5&'. Our analytic inference procedure in this paper is based on the central 

limit theorem, 𝑣̅&	follows normal distribution with mean 𝜇& and variance 

)$%

*$
, where 𝑛& is the sample size in treatment group 𝑔 (Section S1.1). 

Combined with Boostrap procedures, we re-calibrate the null distribution 

of test statistics to propose a robust statistical framework to any devia-

tions from the theoretical distribution.  

2.3 Determination of Treatment Effect 
To access the combination effect of two drugs, we take effect-based ap-

proaches that directly compare the effect of the combination to the effects 

of its individual components. The effect of a treatment group (A, B or AB) 

is defined by the antitumor activity compared with the control group (C). 

At a given time point, treatment effect for a group 𝑔 is quantified by the 

mean reduction in the relative tumor volumes between treatment and con-

trol groups divided by the control mean 

𝛿& =
+&%	+$
+&

	for	𝑔 ∈ 𝐴, 𝐵, 𝐴𝐵.  (1) 

A large 𝛿& value indicates a strong treatment effect. For combination ex-

periments, we expect that the mean relative tumor volumes of the treat-

ment groups 𝜇,, 𝜇- and 𝜇,- are less than the control tumor volume 𝜇., 

which results in 𝛿,, 𝛿- and 𝛿,- located between 0 and 1. While this has 

been widely used as the tumor growth inhibition (TGI) with predeter-

mined cutoffs of declaring an antitumor activity (Houghton, et al., 2007; 

Mer, et al., 2019; Ortmann, et al., 2020), we incorporate statistical infer-

ential procedures by constructing 95% confidence intervals. The lower 

bound of a one-sided 100(1-𝛼)% confidence interval for a combination 

index can be calculated using the Delta method, 

𝛿>& − 𝑧#%/𝑠𝑒BC𝛿>&D 

where	𝛿>& = 	
$0&%	$0$
$0&

,  𝑠𝑒BC𝛿>&D 	= 	E
	$0$%

$̄&
'
)2&
%

*&
	+ 	 #

$̄&
%
)2$%

*$
F
#/'

, and 𝑧#%/ is the (1 −

𝛼)th quantile of standard normal distribution (Section S1.2).  

2.4 Combination Index (CI) 
Based on the treatment effects 𝛿& evaluated for all three treatment groups 

A, B and AB, we aim to access the superiority of using drug combination 

AB to individual drugs A and B. Although there is no consensus on defin-

ing the synergistic action of two drugs (Roell, et al., 2017), we derive com-

bination indices under the three popular reference models: (1) HSA 

(𝐶𝐼45,), (2) RA (𝐶𝐼6,), and (3) BI (𝐶𝐼-7). All the CIs under the three mod-

els are calibrated to have the same implication:  𝐶𝐼 < 0,= 0, > 0 repre-

sent antagonistic, independent, and synergistic effects, respectively.  

Highest Single Agent (HSA) (Berenbaum, 1989; Foucquier and 

Guedj, 2015; Geary, 2013; Lehár, et al., 2007) shows that the synergistic 

combination effect occurs when the combined effect is greater than the 

more effective individual component: 89:(<!,<")
<!"

< 1	. Under the HSA, we 

derive 𝐶𝐼 with respect to group means: 

𝐶𝐼45, 	= 	𝑙𝑜𝑔(𝜇&) 	− 	𝑙𝑜𝑔(𝜇,-), 

where 𝑔 is chosen from  𝐴	or	𝐵 that has larger effect 𝛿. If the two single 

agent effects are equal, 𝛿, = 𝛿-, we choose the one that has the narrower 

confidence interval evaluated in Section 2.3. The 𝐶𝐼45, is independent of 

the control experiment. 

Response Additive (RA) (Foucquier and Guedj, 2015; Slinker, 

1998) assumes that the fixed-dose two-drug combination has a linear ad-

ditive effect under independence. A combination drug is considered syn-

ergistic if it shows a more enhanced effect than the sum of the two mono-

therapies' effects: 	<!?	<"
<!"

< 1. The corresponding 𝐶𝐼 can be derived with 

respect to group means as:  

𝐶𝐼6, = 𝑙𝑜𝑔(𝜇, + 𝜇-) − 𝑙𝑜𝑔(𝜇,- + 𝜇.). 

The Bliss Independence (BI) approach (Berenbaum, 1989; Bliss, 

1939; Foucquier and Guedj, 2015; Geary, 2013; Greco, et al., 1995) is 

based the definition of independence on its probabilistic interpretation. 

Two drugs are independent if one drug's presence does not affect the prob-

ability of another drug's effect on tumor growth decay. Wu et al (2012) 

proposed an interaction index under such a definition using relative tumor 

volume. Assume that the treatment effects 𝛿& are the outcomes of a prob-

abilistic process such that 0 ≤ 𝛿& ≤ 1. Note that	𝛿& in equation (1) takes 

a value between 0 and 1 if 𝜇. > 𝜇&  for 𝑔 = 𝐴, 𝐵, 𝐴𝐵. Under BI, if the 

combination therapy is considered synergistic, we have 	<!	?	<"	%	<!<"
<!"

<

1. The combination index is given by 

𝐶𝐼-7 = 𝑙𝑜𝑔(𝜇,) 	+ 𝑙𝑜𝑔(𝜇-) − 𝑙𝑜𝑔(𝜇.) − 𝑙𝑜𝑔(𝜇,-). 

2.5 Calibration of confidence intervals for CIs  
We develop statistical inferential procedures by deriving confidence in-

tervals for the 𝐶𝐼𝑠 under the asymptotic normality in addition to the 

bootstrap method. Using the Delta method, the standard errors of the in-

dices are approximated by: 

𝑠𝑒BC𝐶𝐼P6,D ≃ E #
$̄#$

)2#$

*#
	+ 	 #

$̄!"
$

)2!"
$

*!"
F
#/'		

,	

𝑠𝑒BC𝐶𝐼P6,D ≃ R #
($̄!?$̄")$

)2!
$

*!
+ #

($̄!?$̄")$
)2"
$

*"
	+ #

($̄%?$0!")$
)2%
$

*%
+ #

($̄%?$0!")$
)2!"
$

*!"
S
#/'
,	

𝑠𝑒B(𝐶𝐼P-7) 	≃ R #
$̄!
$
)2!
$

*!
+ #

$̄"
$
)2"
$

*"
	+ #

$̄%
$
)2%
$

*%
+ #

$̄!"
$

)2!"
$

*!"
S
#/'
	,	

A two-sided 100(1 − 𝛼)% confidence interval is constructed as 

R𝐶𝐼P − 𝑧#%//'𝑠𝑒BC𝐶𝐼PD, 𝐶𝐼P + 𝑧#%//'𝑠𝑒BC𝐶𝐼PDS (see Derivations in Section 

S1.3-1.5). 

The standard intervals based on asymptotic approximation to normal 

distributions can be inaccurate in practice due to skewness and heavier 

tails of tumor volume data. A robust bootstrap procedure is provided to 

construct confidence intervals (Efron and Tibshirani, 1994). Bootstrap is 
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a resampling method that samples the original data with replacements it-

eratively to estimate test statistics or null distributions. To calculate boot-

strap-t interval at a given time point, we repeat the following steps B times. 

For a given reference model, HSA, RA or BI, at the iteration b, we 

1. Sample a size of 𝑛& animals with replacement within each treat-

ment arm 𝑔, and the corresponding tumor volume measurement 

for an animal is denoted by 𝑣&∗A. 

2. Calculate combination index 𝐶𝐼P∗A based on the bootstrap samples 

from the step 1, 𝑣&∗A	for	𝑔 = 𝐶, 𝐴, 𝐵, 𝐴𝐵. 

3. Compute 𝑍∗A = .7B∗'%.7B

CDE∗F.7B∗'G
 where 𝑠𝑒B∗C𝐶𝐼P∗AD  is calculated by the 

theoretical standard error calibrated in Section 2.5.  

The 𝛼!H  percentile of Z*b is estimated by the value 𝑡̂(/)  such that 

#JK∗'L	!M())N
-

= 𝛼. Finally, the bootstrap-t confidence interval is constructed 

by R𝐶𝐼P − 𝑡̂(#%//')𝑠𝑒BC𝐶𝐼PD,			𝐶𝐼P − 𝑡̂(//')𝑠𝑒BC𝐶𝐼PDS. This bootstrap procedure 

adjusts for derivations from the asymptotic distribution of CI by recali-

brating the percentiles. 

2.6 Global Assessment of Combination Effect  
The CI values assess combination effects at a given time point. We ex-

tend the procedure to a global assessment for any given study intervals of 

interest. Given reference model, the global CI is defined as the average 

of the CIs within the study interval of interest for time points 1, … , 𝑇: 

𝑔𝐶𝐼 = 	 #
O
	∑ 𝐶𝐼!O

!P# , 

where 𝐶𝐼! is the combination index at time 𝑡.	Due to correlations of tumor 

volume measurements within individual mouse, we conduct nested boot-

strap procedure to construct a confidence interval for 𝑔𝐶𝐼 without analyt-

ically specifying the variance 𝑣𝑎𝑟(𝑔𝐶𝐼)	(Efron	and	Tibshirani, 1994). 

The algorithm to construct confidence interval for 𝑔𝐶𝐼 is similar to that in 

Section 2.5, with an additional nested layer to estimate  𝑠𝑒B∗C𝑔𝐶𝐼P ∗AD. At 

the iteration b, we 

1. Sample a size of 𝑛& animals with replacement within each treat-

ment arm 𝑔, the corresponding growth curve data for an animal 

are denoted by	𝑣&∗A = C	𝑣⃗&,#∗A , 	𝑣⃗&,'∗A , … , 	𝑣⃗&,O∗A D. 

2. Calculate combination index 𝑔𝐶𝐼P ∗A  based on the 	𝑣⃗&∗A, 𝑔 =

𝐶, 𝐴, 𝐵, 𝐴𝐵. We repeat the following nested bootstrap procedure 

𝐿 = 25 times to estimate 𝑠𝑒B∗C𝑔𝐶𝐼P ∗AD,  

2.a. Sample a size of 𝑛&  growth curves with replacement 

from	𝑣⃗&∗A within each group and denote the corresponding 

growth curve data as 	𝑣&
∗A,Q 	= C𝑣&,#

∗A,Q , 𝑣&,'
∗A,Q	, … , 𝑣&,O

∗A,QD  for 

each animal.  

2.b. Calculate combination index 𝑔𝐶𝐼P ∗A,Q based on 	𝑣⃗&
∗A,Q , 𝑔 =

𝐶, 𝐴, 𝐵, 𝐴𝐵 

The standard error of each resampled data set can be estimated by 

𝑠𝑒B∗C𝑔𝐶𝐼P ∗AD = f∑ C𝑔𝐶𝐼P ∗A,Q −	𝑔𝐶𝐼P ∗A,(⋅)D'/(𝐿 − 1)Q , 

where 𝑔𝐶𝐼P ∗A,(⋅) = 	∑ 𝑔𝐶𝐼P ∗A,Q
Q /𝐿. 

3. Compute 𝑍∗A = &.7B ∗'%&.7B

CDE∗F&.7B ∗'G
.  

The α th percentile of Z*b is estimated by the value 𝑡̂(/)  such that 
#JK∗'L	!M())N

-
= 𝛼. Finally, the bootstrap-t confidence interval is R𝑔𝐶𝐼P −

𝑡̂(#%//')𝑠𝑒BC𝑔𝐶𝐼P D,			𝑔𝐶𝐼P − 𝑡̂(//')𝑠𝑒BC𝑔𝐶𝐼P DS. 

2.7 Power Analysis  
Based on the CIs under the HSA, BI and RA reference models, we provide 

power analysis tool to design PDX combination experiments. Under the 

null hypothesis of independent action of a drug combination, 𝐻": 𝐶𝐼 = 0, 

where the 𝐶𝐼 follows asymptotic normal distribution 𝑁(0, 𝑣𝑎𝑟(𝐶𝐼)). As-

sume that under the alternative hypothesis 𝐻,: 𝐶𝐼 = 𝛾, where 𝐶𝐼 follows 

normal distribution 𝑁(𝛾, 𝑣𝑎𝑟(𝐶𝐼)). Therefore, with prespecified values 

𝜇&, 𝜎&, 𝑛& for each group 𝑔, the power is calculated as 

1 − 𝛽 = 𝑃𝑟 o		p
𝛾

q𝑣𝑎𝑟(𝐶𝐼)
p ≥ 𝑧//'		p 	𝐻#s 

= 𝑃𝑟 R	𝑍 ≥ 𝑧//' −
S

T$9U(.7)
		t 	𝐻#S 	+ 	𝑃 𝑟 R		𝑍 ≥ −𝑧//' −

S
T$9U(.7)

		t 	𝐻#S, 

where 𝛼, 𝛽 are the desired Type I and Type II error rates.  

Given mean tumor volumes, Figure 2a illustrates the minimum 𝛿,- 

having synergistic effect under each reference model given 𝛿,	and	𝛿-, and 

we also mathematically compared 𝐶𝐼45,, 𝐶𝐼6,  and 𝐶𝐼-7 in Section S1.6. 

Given mean tumor volumes, we have 0 ≤ 𝐶𝐼6, ≤ 𝐶𝐼-7 ≤ 𝐶𝐼45,, which 

implies that HSA model provides the most relaxed procedure while RA is 

the most conservative. Combined with the statistical inference procedure 

using the asymptotic normality, the power curves, Figure 2b and 2c for 

sample sizes of 5 and 10, respectively indicate that RA (HSA) require the 

Figure 2: Comparison of HSA, BI and RA models under the hypothetical scenario 
where 𝜇+ = 2.8, 𝜇, = 2.4	𝑎𝑛𝑑	𝜇- = 2. (a) Given 𝛿,	𝑎𝑛𝑑	𝛿- , the arrows indicate the mini-
mum 𝛿,- values that have synergistic effects (𝐶𝐼 > 0). (b)-(c) Statistical power varies by 
the mean tumor volume for the combination AB when the sample size is 5 and 10 at the 
0.05 significance level. The standard errors of relative tumor volumes are set to 0.7 for the 
control group C and 0.3 for the treatment groups A, B and AB 
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largest (smallest) effect sizes of the combination to achieve the same sta-

tistical power when the effect sizes of monotherapies and standard devia-

tions are fixed. 

 Results 

3.1 Simulation Studies 
We conducted a series of simulations to examine the performance of the 

proposed approaches. The expected tumor volumes under singe-agent 

treatment or control group were generated by the Gompertz tumor growth 

model over time (Ribba, et al., 2014; Winsor, 1932). Then the expected 

tumor volumes for combination drug were generated under each of the 

reference model (HSA, RA, and BI). The expected tumor growth curves 

for these simulation settings are shown in Figure S2. For each setting, we 

generated 1000 replicate datasets with sample sizes of 5 or 10 per group. 

The detailed data generating process is described in Section S1.7. We eval-

uated the CIs with the confidence intervals at day 21 obtained from all the 

three reference models under each of the simulation scenarios. We com-

pared the inferential methods with/without the bootstrap procedures based 

on 1000 replications. The coverage probabilities are summarized in Table 

S3. When sample size is 5 in each group, the confidence intervals without 

the bootstrap procedure were slightly narrower than nominal level, result-

ing in inflated type I error under the null hypothesis. When we have more 

sample size (n=10) in each group, confidence intervals without bootstrap 

become close to the nominal coverage probability, and the confidence in-

tervals with and without bootstrap tend to agree on each other. Overall, 

the bootstrap procedure helps in constructing more accurate confidence 

intervals when small sample size while both procedures provide valid sta-

tistical inferential performance when sample size becomes larger.   

3.2 Evaluation of drug combinations of KRT232, navito-

clax, and trametinib in NSCLC 

We performed the analysis of a real study of the antitumor activity of the 

combination of KRT232, navitoclax, and trametinib using the PDX mod-

els for NSCLC, where a total of 28 PDX models were tested (Chen, et al., 

2019; Hao, et al., 2015 ; Zhang, et al., 2020). For each PDX tumor model, 

mice were randomized to the four treatment arms, and the tumor volume 

for each mouse was recorded every 2-3 days. 20 combination therapy ex-

periments having sufficient samples sizes were selected (Section S2). The 

treatment information for the selected experiments is summarized in Table 

S4. Table S5 summarizes the resulting CIs at day 10 and 𝑔𝐶𝐼s under the 

three reference models for each PDX model. trametinib and navitoclax 

combination shows the synergism and figure 3 displays the output from 

our combPDX analysis. Raw tumor volumes for all mice across the four 

groups are displayed in panel (a). After the preprocessing step in Section 

2.2, the average relative tumor volumes with 1-sd bars are displayed in 

panel (b). Then the effect sizes of each treatment groups A, B, AB relative 

to the control group are determined with 95% confidence intervals in panel 

(c) from section 2.3, implying that all treatments trametinib, navitoclax, 

and the combination treatments have the significant antitumor activity 

compared to the control in the PDX experiment. Trametinib and navito-

clax combination has the synergistic effect under HSA and BI from day 6 

to day 18 and from day 8 to day 11, respectively (Figure 3d-f and Table 

S5). This combination is currently under clinical investigation for the 

treatment of NSCLC (Kim and Giaccone, 2018).  

3.3 Molecular Biomarkers Associated with CIs  
Although KRT232 showed no synergistic signal in combination with navi-

toclax and trametinib (Table S5), we systematically investigated pathway-

level signatures of the combination action in a framework of phar-

macogenomic analysis utilizing multiple PDX experiments performed for 

the combinations. We conducted gene set variation analysis (GSVA) 

(Hänzelmann, et al., 2013) based on C2 collection of curated biological 

pathways as provided by the Broad Institute’s collection (Liberzon, et al., 

2015). The pathway enrichment score (ES) by GSVA provides single-

number summaries of pathway activity for each sample and each pathway. 

The PDX models were profiled for their expression of 15,732 genes using 

RNA-seq after filtering out genes whose 75% percentile was less than 20. 

Pathways with less than 10 genes were excluded, which resulted in 5164 

pathways in total. We selected PDX models that had RNA-seq data avail-

able and fulfilled the Bliss assumption (0<𝛿&<1) across all time points. 

We came up with seven and nine PDXs in KRT232 plus navitoclax and 

KRT232 plus trametinib (Section S2).  

Figure 3: Effect and Combination Indices for trametinib plus navitoclax. (a) Profile 
plot of tumor volume. (b) Profile plot of relative tumor volume. Y-axis shows the mean ± 
standard error of relative tumor volume within each treatment group. (c) The drug effect 
for each treatment group relative to control group is quantified by tumor growth inhibition 
(TGI). The vertical line indicates the one-sided 95% confidence interval. (d)-(f) The joint 
action of combination drug under each reference model (HSA, RA, and BI) is assessed 
using a combination index. The vertical line indicates the two-sided 95% confidence in-
terval. 
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We performed distance correlation tests (Székely and Rizzo, 2013) for de-

tecting linear/nonlinear associations between pathways and the combina-

tion indices (Section S2). In combination treatment KRT232 plus navito-

clax in NSCLC, controlling FDR at 0.1, resulting in 136, 150, and 145 

pathways were significantly associated with HSA, RA, and BI, respec-

tively, with 118 intersecting pathways across the three reference models 

(Figure 4a). Heatmap of those pathways associated with at least one of the 

𝐶𝐼𝑠 shows clear pattern of two clusters of PDX models (Figure 4b). The 

top significant pathways include those related to the therapeutic target or 

the prognosis in NSCLC (Figure 4c and Data S1). For example, the p53 

pathway interplays with MDM2 inhibitor KRT-232 to suppress tumor cell 

growth (Rew and Sun, 2014; Sun, et al., 2014; Zhang, et al., 2020). More-

over, IRAK and HIF-1 pathways are associated with the development of 

tumor in NSCLC (Kurtipek, et al., 2016; Shimoda and Semenza, 2011; 

Zhang, et al., 2014).  

Similar analysis was performed in combination treatment KRT232 

plus trametinib. Controlling FDR at 0.1, resulting in 27, 12, and 13 path-

ways were significantly associated with HSA, RA, and BI, respectively, 

with seven intersecting pathways across the three reference models (Fig-

ure S3a and Data S1). Heatmap of those 32 pathways also shows clear 

pattern of two clusters of PDXs (Figure S3b). The seven intersecting 

pathways include those related to the therapeutic target in NSCLC. For 

example, several members in NFAT gene family differentially expressed 

in tumor vs. normal cells (Chen, et al., 2011), and FGFR3 is a potential 

therapeutic target in NSCLC (Chandrani, et al., 2017; Shinmura, et al., 

2014) . 

 Discussion 

In this article, we have proposed a comprehensive statistical frame-

work to quantify the joint action of two drugs in standard in vivo combi-

nation experiments with fixed doses, where the dose-response models 

such as the Chou-Talalay method (Chou and Talalay, 1983; Chou and Tal-

alay, 1984) and Isobologram (Greco, et al., 1995) are not applicable. Our 

framework is generally applicable to tumor xenograft designs, including 

PDX experiments that is a newly designed novel model system for drug 

development and individualized treatment. The usual practice to decide 

combination effect in in vivo designs is based on p-values obtained from 

two-group comparisons of the combination group versus the control and 

monotherapy groups. However, the p-value subthresholding approach 

does not directly quantify the magnitude of the combination effect that is 

useful for further statistical modeling in pharmacogenomic setting where 

the driving molecular mechanisms of variable drug responses are system-

atically studied.   

The combPDX web-application provides the visualization and anal-

ysis pipeline of the longitudinal tumor volume data at fixed dose levels, as 

well as power analysis tool to design in vivo combination experiments. 

Our framework is inspired by effect-based approaches that compare the 

effect from the combination of two drugs AB to the effects from its indi-

vidual mono-drugs A and B, following the determination of efficacy of 

each treatment compared to the control. Various metrics have been sug-

gested to summarize each individual growth curve to a value, e.g., the ad-

justed area under the tumor growth curve (aAUC) (Evrard, et al., 2020), 

which can be employed in our CI calibrations based on the fact that the 

aAUC is interpreted as the mean tumor volume across time.  

There is no global consensus on defining drug synergism/antago-

nism in the field. Different reference models may lead to inconsistent sta-

tistical significance of combination effects based on different underlying 

assumptions. We have extensively studied the differences of these three 

models in the mathematical formulations. With fixed group means of C, 

A, B, and AB, the HSA model always provides the highest CI value, while 

RA has the lowest CI in that it provides the most conservative procedure 

to declare a synergistic effect (see Section S1.6). The CI derived under 

HSA is formulated similarly to t-tests that compare tumor volume data of 

combination therapy group vs. the better monotherapy group although the 

bootstrap procedure of HSA is more robust than the t-test. Both methods 

have the limitation of not utilizing tumor volume measurements from con-

trol group. Thus, the synergism declared from these methods should be 

considered as the minimal evidence and used for drugs which mono-ther-

apeutic effects have been proved sufficiently in the field. In a counter ex-

ample of drug antagonism (Figure S4) where the two drugs present a clear 

antagonistic pattern, HSA shows additivity because the tumor volume of 

the combination drug is close to that of trametinib, however, RA and BI, 

declared antagonism by adjusting the tumor volumes in control group (Ta-

ble S5).  

Using tumor volume data from NSCLC PDX experiments that eval-

uate two-drug combinations of KRT232, navitoclax, and trametinib, we 

Figure 4: Differentially activated pathways at FDR of 0.1 for KRT232 plus 
navitoclax. (a) Venn diagram showing distribution of significantly expressed pathways. 
The figure illustrates the number of statistically significantly expressed pathways 
associated with each 𝑔𝐶𝐼 (b) Heatmap of baseline pathway enrichment score from GSVA 
with the row annotation to be 𝑔𝐶𝐼. Each column represents a PDX model, and each row 
represents a gene whose enrichment score was significantly correlated with one or more 
𝑔𝐶𝐼 using the distance correlation test. (c) Volcano plot showing that p-value versus 
distance correlation for BI (the direction of the correlation is obtained by Spearman 
correlation). Blue dots represent significant differential pathways and black dots represent 
insignificant pathways. 
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have shown the utilities of calibrating 𝐶𝐼s in finding underlying mecha-

nisms of combination drug response based on gene expression data. We 

found that trametinib plus navitoclax had the synergistic effects in HSA 

and BI models, which is along with the currently undergoing clinical trials 

for the treatment of NSCLC (Kim and Giaccone, 2018). Moreover, the 

integrative analysis of KRT-232 plus navitoclax pharmacological data 

with gene expression data provided highly concordant pathway signatures 

across the three reference interaction models. These pathways included 

major driving mechanisms of the combination therapy in NSCLC.   

In summary, combPDX represents an important step towards com-

bination effect calibration for PDX models. It provides comprehensive 

data analysis and result visualization for in vivo combination drug testing. 

Coupled with molecular profile, combPDX facilitates the discovery of 

new biomarkers for combination therapy. Going forward, the knowledge 

of the biological mechanisms will add promise to the identification of the 

optimal personalized treatment.  

Data Availability Statements 

Data analyzed in this article can be found online at doi:10.1016/j.can-
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