1 An intranasally administrated SARS-CoV-2 beta variant subunit booster

2 vaccine prevents beta variant viral replication in rhesus macaques

- 3 Yongjun Sui¹*, Jianping Li¹, Hanne Andersen², Roushu Zhang³, Sunaina Kiran Prabhu³, Tanya
- 4 Hoang¹, David Venzon⁴, Anthony Cook², Renita Brown², Elyse Teow², Jason Velasco², Laurent
- 5 Pessaint², Ian N. Moore⁵, Laurel Lagenaur¹, Jim Talton⁶, Matthew W. Breed⁷, Josh Kramer⁷,
- 6 Kevin W. Bock⁵, Mahnaz Minai⁵, Bianca M. Nagata⁵, Hyoyoung Choo-Wosoba⁴, Mark G.
- 7 Lewis², Lai-Xi Wang³, Jay A. Berzofsky^{1*}
- 8 ¹Vaccine Branch, ⁴Biostatistics and Data Management Section, Center of for Cancer Research,
- 9 National Cancer Institute, NIH, Bethesda, MD 20892.
- 10 ²BIOQUAL Inc., Rockville, MD 20850.
- ³Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- ⁵Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases,
- 13 Rockville, MD 20852
- ⁶Alchem Laboratories, Alachua, FL 32615
- ¹⁵ ⁷Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research,
- 16 Bethesda, MD 20892
- 17 18
- 19 *Correspondence to:
- 20 Yongjun Sui
- 21 Vaccine Branch, National Cancer Institute
- 22 National Institutes of Health
- 23 41 Medlars Drive, Bethesda, MD 20892 USA
- 24 Ph: 240-760-6726
- 25 Email: <u>suiy@mail.nih.gov</u>
- 26 Jay A. Berzofsky,
- 27 Vaccine Branch, National Cancer Institute
- 28 National Institutes of Health
- 29 41 Medlars Drive, Bethesda, MD 20892 USA
- 30 Ph: 240-760-6148
- 31 Email: <u>berzofsj@mail.nih.gov</u>
- 3233 Competing interests
- 34 Authors declare no competing interests.

35 ABSTRACT

36	Emerging of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity
37	poses threats to curbing the COVID-19 pandemic. An effective, safe, and convenient booster
38	vaccine will be needed. We hypothesized that a variant-modified mucosal booster vaccine might
39	induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is
40	hardest to cross-neutralize. Herein we assessed the protective efficacy of an intranasal booster
41	composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously
42	immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same
43	adjuvant. One year later, negligibly detectable SARS-CoV-2-specific antibody remained.
44	Nevertheless, the booster induced vigorous humoral immunity including serum- and
45	bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody
46	against the original strain and/or beta variant. Beta-variant S1-specifc CD4 ⁺ and CD8 ⁺ T cell
47	responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant
48	challenge, the vaccinated group demonstrated significant protection against viral replication in
49	the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact
50	that one intranasal beta-variant booster administrated one year after the first vaccination
51	provoked protective immunity against beta variant infections may inform future SARS-CoV-2
52	booster design and administration timing.
53	Key words: SARS-CoV-2, Beta variant, booster vaccine, adjuvanted subunit vaccine, intranasal
54	mucosal vaccine, vaccine development, mucosal immunity

56 **INTRODUCTION**

57	Emergence of novel SARS-CoV-2 variants of concern (VOC) threatens the efforts to
58	curb the COVID-19 pandemic. Some variants demonstrated significantly reduced neutralization
59	sensitivity to sera from convalescent and vaccinated individuals. A recent study assessed the
60	cross-reactive neutralizing responses to different variants including B.1.1.7 (Alpha), B.1.351
61	(Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) in mRNA-1273
62	vaccinated individuals, and found that the beta variant had the lowest antibody recognition ¹ . To
63	date, the beta variant seems to be one of the most resistant variants to convalescent and
64	vaccinated sera ^{1,2} . This variant was first detected in South Africa in October 2020 from samples
65	collected at Eastern Cape Province in early August ^{3,4} . Since then, it quickly spread within South
66	Africa and to the other parts of the world. By December 2020, it spread all over the world,
67	accounted for 87% of viruses sequenced in South Africa, and became the dominant strain in
68	Zambia ^{4,5} . Multiple mutations were found in this variant with K417N, E484K, N501Y as key
69	substitutions ⁶ . It had 5-fold enhanced affinity to ACE2 compared to the original virus ⁷ , and a
70	3.5-fold ⁸ , and a 10-fold ² reduction in neutralization ability in convalescent and vaccinated
71	individuals. Two studies have showed that the beta variant can partially or completely escaped
72	three classes of therapeutically relevant antibodies and the convalescent sera ^{9,10} .
73	Meanwhile, waning immunity after vaccination has led to a gradual decline of vaccine
74	efficacy against SARS-CoV-2 infections ¹¹⁻¹³ ^{14,15} . Recently, more SARS-CoV-2 breakthrough
75	infections in vaccinated individuals, and resurgence of SARS-CoV-2 cases in some countries
76	have been observed. Based on the previous experience with other coronaviruses and the current

situation, an extra booster with the original Pfizer-BioNTech mRNA vaccine after 6-months of
the first vaccination has been authorized in some countries among individuals with older age,

79	high risk for severe COVID-19, or high risk for SARS-CoV-2 infections due to occupational or
80	institutional exposure ¹⁶ . For the general population, it is anticipated that a booster, ideally
81	targeting circulating viral variants, will be needed, when the immunity induced by the original
82	vaccine cannot provide adequate protection against the circulating viral variants ¹⁷ . Since a large
83	number of individuals have been vaccinated with the vaccines comprised of antigens from the
84	SARS-CoV-2 original Wuhan strain, data on immunogenicity and protective efficacy of a variant
85	booster to vaccinees, who have previously received the original vaccines, would be urgently
86	needed ^{18,19} . Recent studies have shown that intranasal administration of different platforms of
87	SARS-CoV-2 vaccines induce protective immunity in preclinical animal models ²⁰⁻²⁴ .
88	Herein we performed a proof-of-concept study to test the immunogenicity and efficacy of
89	an adjuvanted SARS-CoV-2 beta variant subunit booster in rhesus macaques that were
90	vaccinated with the same vaccine platform except that the spike protein S1 was from the original
91	Wuhan strain. We found that one year after the first vaccination, almost no detectable immunity
92	was present in these macaques. However, an intranasal booster with the adjuvanted beta variant
93	S1 subunit vaccine induced vigorous humoral and cellular immunity against both original and
94	beta variant antigens. Most importantly, secretory IgA responses against S1 from both the
95	original Wuhan strain and the beta variant were detected in the nasal cavity, which was
96	consistent with the almost full protection we observed against the beta variant in the nasal cavity
97	after viral challenge. Whether this mucosal vaccine can protect against viral transmission, and
98	whether the mucosal IgA response is responsible for the protection in the nasal cavity merits
99	further investigation. Iimportantly, our data showed that the one-year intranasal booster with
100	beta variant S1 protein reinvigorated SARS-CoV-2-specific immune responses and led to
101	significant protection against beta variant challenge. This study may provide important

- 102 information regarding the timing of booster immunizations and the type of antigens included in
- 103 the booster.

104 **RESULTS**

Robust systemic and mucosal humoral responses against S1 from the original Wuhan strain and beta variant were elicited after intranasal variant booster

107 In this study, we took advantage of five Indian rhesus macaques that had been vaccinated 108 one year earlier with S1 protein from the original Wuhan strain (Supplementary Table 1). The 109 vaccine included 100 µg of S1 and CP15 adjuvant, which was composed of IL-15 and TLR 110 agonists (CpG and Poly I:C) incorporated in PLGA nanoparticles as used in our previous study 111 ²⁰. The macaques were first primed with the vaccine intramuscularly (IM) at week 0, and then 112 boosted with the same vaccine intranasally (IN) at week 3 and week 6 (Figure 1). 100 µg of S1 113 per dose was used based on our previous HIV and SARS-CoV-2 vaccine studies ^{20,25}. S1 with 114 sequence of the original Wuhan strain was used in the first three vaccinations. When evaluating 115 the S1-specific IgG antibody responses, we found that this vaccine regimen induced a moderate 116 level of humoral immune responses in serum and BAL fluid (Figure 2a). Compared to the ID50 117 of 25, 209 induced by IM-primed and -boosted alum-adjuvanted subunit vaccine²⁰, the peak 118 median serum ID50 was only 945 (Figure 2a). Moreover, the vaccine-induced immunity also 119 waned with time. After one year, the IgG responses in the vaccinated animals were comparable 120 to those of the naïve controls (Figure 2a).

We then gave the animals one intranasal booster with S1 from beta variant adjuvanted with CP15 in DOTAP nanoparticles. After the booster, significant anamnestic responses were elicited. The Log ID50 of serum IgG titer reached 5.83 for the original Wuhan strain, and 5.08 for the beta variant, compared to the highest IgG titer of 2.77 logs at 2 weeks post the 3rd vaccination one year earlier (Figure 2a). The booster also led to the induction of a substantial

126 increase of mucosal IgG against both the original Wuhan strain and the beta variant S1 in BAL (Figure 2a). 127

128	High titers of live virus neutralization antibody (Nab) responses against both WA1/2020
129	D614G SARS-CoV-2 (WA) strain and the beta variant were detected in the serum. The
130	geometric mean titers (GMT) of Nab were 434 and 540 for ID50, and 60 and 145 for ID90 for
131	the WA strain and the beta variant, respectively (Figure 2b). Given the fact that the beta variant
132	has been the most difficult strain to neutralize so far ¹ , boosting with beta variant S1 might
133	account for this improvement and suggest the potential benefit of switching antigens from the
134	original WA strain to a variant. It is noteworthy that boosting with the variant S1 still induced a
135	strong anamnestic response against the original priming Wuhan S1.
136	IgA and dimeric IgA responses in bronchoalveolar lavage (BAL) and nasal swabs were
137	also examined, as IgA, especially dimeric IgA, displays high binding affinity to pathogens, and
138	thus is more potent at preventing mucosal pathogen infections ^{26,27} . Right before the one-year
139	booster, no S1 (original or beta variant)-specific IgA, or dimeric IgA responses were detected,
140	and the antibody titers were comparable to the basal levels of naïve animals (Figure 2c).
141	Consistent with IgG and neutralization responses, the one-year booster enhanced IgA responses
142	in nasal swab and BAL samples with similar antibody titers against S1 from the original strain
143	and the beta variant (Figure 2c). However, dimeric IgA responses against beta variant were not
144	induced in BAL samples, whereas dimeric IgA responses were observed in BAL against the
145	Wuhan strain and in nasal swabs against both strains (Figure 2c).
146	Overall, our results showed that the one-year booster induced robust S1-specific antibody
147	responses in serum and BAL, including potent neutralizing antibody responses in peripheral
148	blood. Most importantly, mucosal IgA responses were induced in nasal swabs and BAL that

- 149 were comparable against both the original priming Wuhan strain and the beta variant, except
- 150 dimeric IgA responses against beta variant in BAL.

151 Correlations among different types of antibody responses

152 We next assessed the spearman correlations among different types of antibody responses. 153 First, PRNT titers against the WA strain and beta variant did not correlate with each other 154 (Supplementary Table 2), consistent with the fact that these two viruses have different 155 neutralization profiling. Neutralization against one strain does not guarantee the neutralization 156 of the other. Interestingly, the serum IgG responses against S1 from the original Wuhan strain 157 did not correlate with any of the other antibody measurements, including serum IgG titer against 158 the beta variant (Supplementary Table 2). In contrast, mucosal antibody responses, including 159 S1-specific BAL IgG, IgA and dimeric IgA responses in nasal swabs, IgA responses in BAL, 160 showed correlations or trends of correlations between the original Wuhan strain and beta variant 161 (Supplementary Table 2 and Supplementary Figure 2). Moreover, the serum IgG titers against 162 the beta variant were positively correlated (or showed trends of correlations) with BAL IgG and 163 IgA, serum PRNT, and nasal dimeric IgA responses (Supplementary Table 2 and Supplementary 164 Figure 2). These correlations suggested that the repertoire of systemic and mucosal humoral 165 response against the original Wuhan strain and the beta variant were different after 166 administration of the beta variant S1 one-year booster, even though the geometric mean titers 167 against the Wuhan strain and beta variant were generally similar. 168 Variant S1-specific cellular responses were induced after the one-year booster 169 The vaccine-induced S1-specific T cell responses in PBMC and BAL samples of the 170 vaccinated animals were evaluated by intracellular cytokine staining. S1-specific type 1 helper T 171 cell responses (Th1) and CD8⁺ T cell that secrete tumor necrosis factor (TNF)- α , and/or

170	
172	interferon (IFN)- γ were induced after the first vaccination (Figure 3). Though the responses
173	were persistent in most of the vaccinated animals, no further enhancement of the responses was
174	observed after the second and third vaccinations. For CD8 ⁺ T cell responses, especially the
175	responses in PBMC, we observed a declining trend with each vaccination (less so in BAL). This
176	raises the concern that extensive boosters in a short period of time might burn out the SARS-
177	CoV-2 -specific T cell responses. Nevertheless, the responses waned to under the detection limit
178	in most of the animals after one year. After the administration of the one-year beta-variant
179	booster, the S1-specific CD8 ⁺ T cell responses were successfully recalled in all 5 PBMC samples
180	and $CD4^+$ responses in 4/5 (Figure 3). Even though the route of the one-year booster was
181	intranasal, S1-specific CD4 $^+$ T cells were induced only in 3 BAL samples, and CD8 $^+$ T cells in
182	only two. One possibility could be the migration of antigen-specific T cell to the nasal cavity,
183	while the other could be antigen-specific T cell exhaustion caused by multiple doses of vaccine.
184	Both possibilities warrant further investigation.
185	As the frequencies of antigen-specific T cell responses were low, we further assessed the
186	kinetics of total Th1 and Th2 subsets after stimulation with Phorbol 12-myristic 13-acetate
187	(PMA) and ionomycin. There were no significant alterations after the first three vaccinations in
188	the prior year (Supplementary Figure 1). However, the one-year boost resulted in sharp increase
189	of Th1 responses in PBMC while the Th2 responses did not change (Supplementary Figure1).
190	Vaccinated animals demonstrated significant protection in BAL, and almost full protection
191	in nasal swabs against SARS-CoV-2 beta variant replication
192	To test the protective efficacy against SARS-CoV-2 beta variant, 5 vaccinated and 5
	To test the protective efficacy against SARS-CoV-2 beta variant, 5 vaccinated and 5 naïve meanques were shallonged with 1 0×10 (colors CoV-2 beta variant (isolate beta
192 193	To test the protective efficacy against SARS-CoV-2 beta variant, 5 vaccinated and 5 naïve macaques were challenged with 1.0x10^5 TCID50 SARS-CoV-2 beta variant (isolate beta

195 (1mL) and intratracheal (1mL) routes 4 weeks after the last vaccination. Viral tissue culture 196 infectious dose 50 titers (TCID50) were measured in the collected nasal swab and lung BAL 197 samples. Replicating viruses were detected in both nasal swabs and BAL samples of all five 198 naïve animals, indicating that the viral inoculation was successfully delivered and propagated in 199 the upper and lower airways (Figure 4a). It is worth mentioning that the inoculation of SARS-200 CoV-2 beta variant led to prolonged detection of replicating virus in the nasal turbinate of the 201 naïve animals. High levels of viral replication were present in all five naïve animals at day 7 202 post virus challenge. In contrast, the vaccinated animals demonstrated almost full protection in 203 nasal swabs: only one animal showed a small blip at day 2 post viral challenge, while four other 204 vaccinated animals were free of replicating virus during the 7-days post-challenge period (Figure 205 4a). The vaccinated group showed significant reduction of viral replication in both nasal 206 turbinate and lungs compared to naïve controls, based on the area under the curves over all time 207 points (Figure 4b). A future transmission study is needed to test whether this mucosal booster 208 can prevent transmission.

209

Histopathology in the lungs after viral infection confirmed the protection in lungs

210 As reported in the previous study ²⁰, the mucosal vaccine is safe. Throughout the whole 211 course of this study, we did not observe any adverse effects in the vaccinated animals. When the 212 animals were necropsied on day 7, sections of lung were evaluated immunohistochemically for 213 SARS-CoV-2 virus antigen and histologically for the presence of SARS-CoV-2 -associated 214 inflammation. None of the 5 vaccinated animals demonstrated immunoreactivity to viral 215 antigens, while virus antigens were detected in the lung sections of the 4 out of 5 animals in the 216 control group (Figure 5a-b). Predominantly perivascular to interstitial inflammation was 217 observed in the control group. An inflammation score was given to each animal blindly by a

- 218 certified pathologist based on the evaluation of lung infiltration collected at the time of necropsy
- at day 7 post SARS-CoV-2 challenges (Supplementary Table 3). The inflammation score was
- slightly more severe in the control group compared to the vaccinated group (Figure 5c),
- suggesting the vaccination prevented inflammation in the lungs.

222 DISCUSSION

223	An additional booster vaccine is likely needed to curb the resurgence of SARS-CoV-2
224	cases. We demonstrated here that the one-year beta variant mucosal booster given intranasally
225	elicited high quality immune responses and mediated protections against subsequent SARS-
226	CoV-2 beta variant viral challenge in rhesus macaques. Notably, the protection in the upper
227	respiratory tract was better than in the lower respiratory tract, which is different from most of the
228	systemic vaccines ²⁸⁻³¹ . The nearly full protection against viral replication in the nasal cavity is
229	especially encouraging, indicating its potential to prevent viral spread and transmission. The
230	nasal mucosa is the first site of infection, so the local immunity might be able to abort viral
231	replication here before it disseminates systemically and may also prevent spread to other
232	individuals. Indeed, we found that high titers of mucosal IgA responses against both original and
233	variant spike proteins were induced in the nasal mucosa, which might account for the efficient
234	clearing of the virus in situ. These findings show the promise of a nasal mucosal vaccine as a
235	booster rather than another systemic (IM) vaccine dose.

236 Waning immunity over time after vaccination/infection is contributing significantly to the resurgence of SARS-CoV-2 cases ^{14,15,32}. Though the immune correlates of protection have not 237 238 been fully established, neutralizing antibody (Nab) responses are believed to be one of the major protective mechanisms ³³⁻³⁵. To evaluate the durability, one study found that the half-life of Nab 239 240 was biphasic, with a rapid initial decline over 61 days, and then a more gradual tapering after the first 2 months out to 104 days ³⁶, while the other study found that Nab exhibited a bi-phasic 241 242 decay with an extended half-life of >200 days ³⁷. Though prolonged humoral and cellular 243 immunity up to 10 months or one year has been reported in SARS-CoV-2-convalescent

individuals ³⁸⁻⁴⁰, the durability of the protective immunity against SARS-CoV-2 infection
 remains unknown.

246	The emergence of SARS-CoV-2 variants of concern might partially account for the
247	reported decreased vaccine effectiveness after 6 months ^{12,41} . These variants either have high
248	infectious potency or evade the immunity induced by SARS-CoV-2 infection or vaccination.
249	The beta variant has the greatest immune evasive capacity among the widespread variants
250	detected to date ¹ . In this study, we have switched the S1 from original Wuhan strain to that of
251	the beta variant, which led to successful elicitation of systemic and mucosal immune responses
252	against both the original strain and the beta variant, and most importantly mediated protection
253	against subsequent SARS-CoV-2 beta variant challenge. Incorporating S1 from the beta variant
254	into the booster vaccine might account for the observed robust protection.

255 A dramatic increase in antibody titers after the one-year booster was observed (more than 256 3 log of increase compared to the highest titers one year before for serum IgG titers). This is 257 consistent with what we have found in a previous study, where the booster at 4 months induced 258 much higher quality SARS-CoV-2 specific immune responses than the booster at 3 weeks did ²⁰. 259 It appears that the longer interval between the booster and the previous vaccinations enhances the 260 immune responses. Similar phenomena were reported in AstraZeneca (AZ) and inactivated 261 vaccine trials, as well as in the standard hepatitis B viral vaccine regimen. In the AZ trial, a 262 longer prime-boost interval (>12 weeks) led to higher vaccine efficacy compared to shorter 263 interval (<6 weeks)⁴². In an inactivated vaccine trial, 6 or more months between the second and 264 third vaccinations also induced a remarkable increase in antibody levels compared to a 4-week 265 interval ⁴³. Thus, these studies should be taken into consideration when deciding the timing of an 266 additional booster.

267	The CP15 adjuvanted vaccine described here was not very effective as a prime vaccine. It
268	did not induce robust immune responses compared to an alum adjuvanted vaccine ²⁰ . One year
269	after the first vaccination, no virus-specific humoral or cellular immunity was detected.
270	Nevertheless, the one-year booster elicited high quality immune responses, and mediated
271	protection against subsequent beta variant challenge, which suggested that the vaccinations in the
272	prior year generated persistent SARS-CoV-2 specific immune memory. Though the humoral and
273	cellular immune responses waned to undetectable levels after one year, the immune memory
274	persisted, which facilitated the later recall responses, when boosted. Moreover, our data suggest
275	that a weaker variant-modified booster vaccine might be sufficient to induce protective immunity
276	in previously vaccinated hosts. These findings may help guide future prime-boosting regimens
277	for COVID-19.

278 **METHODS**

Animals. 10 Indian-origin adult male rhesus macaques (*Macaca mulatta*), 3-8 years old, were
enrolled in the study. The animals tested seronegative for cercopithecine herpesvirus 1, SIV,
simian type-D retrovirus, simian T lymphotropic virus type 1, and SARS-CoV-2 prior to study
assignment.

283	Vaccine design and inoculation. Five macaques were included in the vaccine group, while five
284	were in the SARS-CoV-2-naive control group. The five naïve control animals had been exposed
285	to HIV envelope protein/glycopeptide vaccination more than one year before. The five macaques
286	in the vaccine group were primed at Week 0 (administrated IM) and boosted at Week 3
287	(administered IN) and Week 6 (administered IN) with SARS-CoV-2 S1 protein (WA strain) with
288	alum or CP15 adjuvant in PLGA nanoparticles. The CP15 adjuvant was composed of 200 μ g per
289	dose of D-type CpG oligodeoxynucleotide, 1 mg per dose of Poly I:C (InvivoGen), and 200 μ g
290	per dose of recombinant human IL-15 (Sino Biological). One year later, a boost was given to
291	the remaining five animals with S1 protein from the beta variant adjuvanted with CP15. 100 μ g
292	of recombinant SARS-CoV-2 (2019-nCoV) spike S1 protein (Cat: 40591-V08H and 40591-
293	V08H10, Sino Biological, endotoxin level: $<0.001U/\mu g$) was used per dose. S1 protein and
294	CP15 were formulated in nanoparticles in PLGA (Alchem Laboratories) for the first 2 doses and
295	the last (one-year) boost was in DOTAP (100 μ l per dose; Roche). For immunization, the CP15
296	adjuvanted vaccine was given either intramuscularly in 1ml of volume, or intranasally in a

Nasal swab and BAL sample collection. Nasal secretions were collected and stored at -80° C

297	volume of 50 μ l per nostril, while the animals were anesthetized. After vaccination, blood, nasal
298	swab and BAL fluid samples were collected at the times noted and analyzed.

300 after either using cotton-tipped swabs and then in 1 ml of PBS buffer containing 0.1% BSA,

- 301 0.01% thimerosal, and 750 Kallikrein inhibitor units of aprotinin ²⁵ for pre-challenge stage, or
- 302 using Copan flocked swabs and in virus transport medium for post-challenge stage. BAL
- 303 samples were collected as described before ²⁰. Briefly, while the animals were under anesthesia,
- 304 up to 10 mL/kg of sterile saline were instilled into and sucked out of the lungs. Large pieces
- 305 were removed by passing through a 100 µm cell strainer (pre-challenge). The BAL fluid was

306 collected after centrifugation and stored at -20°C for analysis. The BAL cells were washed with

- 307 R10 medium (RPMI-1640 with 10% fetal bovine serum) before subsequent treatment or
- 308 cryopreservation.

299

ELISA assay to detect S1-specific antibody responses. The BAL samples were concentrated using Amicon Ultra centrifugal filter units (10kDa cutoff, *Millipore Sigma*), and the total IgG and IgA were determined using the Rhesus Monkey IgG-UNLB (*Southern Biotech*), and the Monkey IgA ELISA development kit (HRP) (MabTech) respectively, following the manufacturer's protocol as described before ²⁰. Nasal swab samples were put into 1 ml of 1XPBS buffer containing 0.1% BSA, 0.01% thimerosal, and 750 Kallikrein inhibitor units of aprotinin (Sigma) and stored at -80°C. Nasal swabs were thawed, and the recovered solution was passed through a

- 5 μm PVDF microcentrifugal filter unit (Millipore, Billerica, MA). The buffer flow-through was
- 317 collected and stored at -20° until analysis.
- 318 ELISA assays were run as described before ²⁰. The S1-specific binding assays were coated
 319 with 100 ng/well of the SARS-CoV-2 spike S1-His Recombinant Protein (Sino Biological) using

320 high-binding 96-well plates (Santa Cruz Biotechnology). After incubation at 4°C overnight, and 321 1hr. blocking with 300 µL of 2% sodium casein in 1X PBS, the concentrated BAL samples (with 322 a series of 2-fold dilutions starting from an IgA or IgG concentration of 2 µg/mL) or nasal swab 323 samples, or serially diluted serum samples (4-fold starting from a 1:150 dilution) were applied in 324 duplicate. After incubation at room temperature for 1 hr., the plates were washed four times. 325 Subsequent steps of incubation with HRP-labeled secondary antibody and TMB substrate were 326 followed as described before. For IgG and IgA binding assay, Goat Anti-Monkey IgG (alpha-327 chain specific)-HRP conjugate (1:5,000 dilutions, *Alpha Diagnostic*) and were used, respectively, 328 as a secondary antibody. Area under the curve, endpoint titer, and ID50 values were calculated by 329 GraphPad Prism 8 software with sigmoidal nonlinear regression. Dimeric IgA in BAL and nasal 330 swabs was measured using DuoSet ELISA Ancillary Reagent Kit 2 (R&D Systems) as described 331 before²⁰. 100 ng/well of the SARS-CoV-2 spike S1 protein was coated and blocked. Original BAL 332 samples or nasal swab flow-through from vaccinated and naïve animals were added in duplicate 333 to the plates, followed by adding mouse anti-rhesus J chain [CA1L 33e1 A1a3] antibody (1:1000 334 dilutions, NIH nonhuman primate reagent resource), and Goat anti-mouse IgG-HRP conjugate 335 (1:10,000 dilutions, R&D Systems). Each step was followed by 1 hr. incubation at room 336 temperature and five washes.

Plaque reduction neutralization test (PRNT). The PRNT was performed in duplicate as
described before ²⁰. Vero E6 cells (ATCC, cat. no. CRL-1586), and 30 pfu challenge titers of
SARS-CoV-2 virus USA-WA1/2020 strain or Vero TMPRSS2 cells (obtained from Dr. Adrian
Creanga and Barney Graham, VRC, NIAID, Bethesda, MD) and same titer of the beta variant
(B.1.351, SRA strain) was used to test the PRNT titers against the WA or beta variant of SARSCoV-2 ⁴⁴. Serum samples of 3-fold serial dilution starting from 1:20, and up to final dilution of

343	1: 4860 were incubated with 30 pfu of SARS-CoV-2 virus for 1 hr. at 37 °C. The serial
344	dilutions of virus-serum mixtures were then added onto Vero E6 cell monolayers in cell culture
345	medium with 1% agarose for 1 hr. at 37 °C with 5% CO ₂ . The plates were fixed and stained
346	after three days of culture. ID50 and ID90 were calculated as the highest serum dilution resulting
347	in 50 and 90% reduction of plaques, respectively.
348	Intracellular cytokine staining assay. SARS-CoV-2-specific T cells were measured from BAL
349	and PBMC samples by flow cytometric intracellular cytokine analysis, as previously described
350	^{20,45,46} . Briefly, 2 µg/ml of SARS-CoV-2 S1 protein (<i>Sino Biological</i>) for PBMC, and 5 µg/ml for
351	BAL samples was incubated with cell samples at 37°C 5%CO ₂ overnight in the presence of 0.15
352	μ g/ml of brefeldin A. Negative and positive controls were stimulated with medium-only (no S1
353	protein) or with cell activation cocktail with PMA (20.25 pM) and ionomycin (335 pM) and 0.15
354	μ g/ml of brefeldin A (Biolegend). Cells were stained with viability dye (Invitrogen) and the
355	following antibody mixtures: PE-Cy7-CD3, BV605-CD4, APC-Cy7-CD8, Alexa Fluor® 700-
356	CD45 were from BD Biosciences, FITC-CD28, Pe-Cy5-CD95, BV711- TNFα, IFNγ-PE or -
357	PerCP, Alexa Fluor® 647-IL4, BV785-IL2, BV421-IL-17A, BV785-CD14, BV421-CD16 were
358	from Biolegend; PE-IL13 was from Miltenyi Biotech. Detailed antibody information is listed in
359	the previous publication ²⁰ . Data acquisition and analyses were performed using an LSRII flow
360	cytometer with 4 lasers (BD Bioscience) and FlowJo software (Becton Dickinson). The antigen-
361	specific T cell responses were reported as the frequencies of cytokine-positive cells in the
362	samples stimulated with S1 protein minus those in the medium-only control.
363	SARS-CoV-2 beta variant viral challenge. Four weeks after the one-year boost, 5 vaccinated

363 SARS-CoV-2 beta variant viral challenge. Four weeks after the one-year boost, 5 vaccinated 364 and 5 control animals were challenged with $1x10^5$ pfu SARS-CoV-2 virus beta variant (seed

365	stock obtained from BEI Resources; NR-54974, B.1.351, SRA strain). The challenge stock was
366	grown in Calu-3 cells and was deep sequenced, which confirmed the expected sequence identity
367	with no mutations in the Spike protein greater than >2.5% frequency and no mutations elsewhere
368	in the virus at $>13\%$ frequency. The same beta variant stock was used in the earlier macaque
369	challenge study at the same facility ²⁸ . To make sure that the virus was delivered to both upper
370	and lower airway simultaneously, the diluted virus was given intranasally and intratracheally,
371	each route with 1ml (0.5ml for each nostril). Nasal swab and BAL fluid samples were collected
372	after challenge to measure the viral load.
373	TCID50 assays to measure viral loads. Vero TMPRSS2 cells (obtained from the Vaccine
374	Research Center-NIAID) were plated at 25,000 cells/well in DMEM + 10% FBS + Gentamicin
375	and the cultures were incubated at 37°C, 5.0% CO2. Cells should be 80 -100% confluent the
376	following day. Medium was aspirated and replaced with 180 μ L of DMEM + 2% FBS +
377	gentamicin. Twenty (20) μ L of sample was added to top row in quadruplicate and mixed using a
378	P200 pipettor 5 times. Using the pipettor, 20 μ L was transferred to the next row, and repeated
379	down the plate (columns A-H) representing 10-fold dilutions. The tips were disposed for each
380	row and repeated until the last row. Positive (virus stock of known infectious titer in the assay)
381	and negative (medium only) control wells were included in each assay set-up. The plates were
382	incubated at 37°C, 5.0% CO2 for 4 days. The cell monolayers were visually inspected for
383	CPE. Non-infected wells will have a clear confluent cell layer while infected cells will have cell
384	rounding. The presence of CPE was marked on the lab form as a + and absence of CPE as The

385	TCID50 value was calculated using the Read-Muench formula. For optimal assay performance,
386	the TCID50 value of the positive control should test within 2-fold of the expected value.

387	Histopathology and immunohistochemistry of lung sections. Seven days after SARS-CoV-2
388	viral challenge all the animals were necropsied and the lung tissue specimens were collected,
389	fixed, processed, and embedded in paraffin blocks and sectioned at a thickness of 5 μ m as
390	described in the previous study ²⁰ . Briefly, hematoxylin and eosin (H&E) sections were
391	examined under light microscopy and scored by a board-certified veterinary pathologist, who
392	was blind to the groups. A rabbit polyclonal SARS-CoV-2 antibody (GeneTex) was used
393	immunohistochemically to stain for the presence of SARS-CoV-2 virus antigen. An Olympus
394	BX51 brightfield microscope was used, and representative photomicrographs were captured
395	using an Olympus DP73 camera.
396	Statistical analysis. Prism version 8 (Graph Pad) was used for statistical analyses. Area under
397	curve (AUC) values were calculated for viral load, and Mann-Whitney tests were used for group
398	comparisons as shown in the figures. A P value less than 0.05 was considered significant, and all
399	statistical tests were 2-tailed.
400	Study approval. Vaccination was performed at the National Institutes of Health NCI Animal
H 00	Study approval. Vaccination was performed at the National Institutes of Health Net Annual
401	Facility, Bethesda, MD, an American Association for the Accreditation of Laboratory Animal

402 Care (AAALAC)-accredited facility with PHS Approved Animal Welfare Assurance (Assurance

- 403 ID A4149-01). Animal Protocol No. VB-037 was approved by the NCI Animal Care and Use
- 404 Committee (ACUC) to conduct the study. Two weeks before viral challenge, all 10 animals were
- 405 moved to a qualified BSL3 facility at BIOQUAL, Inc.. The SARS-CoV-2 viral challenge study
- 406 was approved and performed under BIOQUAL's IACUC approved Protocol No. 20-107.

407 Acknowledgments

408	This work was supported by funding from the Intramural Research Program, National Institutes
409	of Health, National Cancer Institute, Center for Cancer Research funding Z01 BC-011941 to Jay
410	A. Berzofsky. The NIH nonhuman primate reagent resource provided mouse anti-rhesus J chain
411	antibody. The staff of the Laboratory Animal Sciences Program, Frederick National Laboratory
412	for Cancer Research, provided technical support and animal care. The following reagent was
413	deposited by the Centers for Disease Control and Prevention and obtained through BEI
414	Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-WA1/2020, NR-53780 and
415	Isolate beta variant B.1.351, NR-54974. We thank Shelby O'Connor for sequencing of the beta
416	variant challenge stock.
417	The content of this publication does not necessarily reflect the views or policies of the
418	Department of Health and Human Services, nor does mention of trade names, commercial
419	products, or organizations imply endorsement by the U.S. Government.
420	Author contributions
421	YS, JAB designed and interpreted the project. YS, JL processed samples, ran cellular assays.
422	JL, TH, RZ, SP, YS performed antibody assays. LP performed PRNT assays. JT, YS prepared
423	the PLGA nanoparticle, and other vaccines. IM, KB, MM, BMN performed pathology. HA,
424	AC, RB, ET, JV, MB, JK led the animal studies. YS, JAB, HA, LL, ML, LW participated in
425	study design and interpreted the experiments. DV, HC and YS performed statistical analyses.
426	YS and JAB wrote the manuscript with input from all the coauthors.

427 **References**

428	1.	Pegu, A., et al. Durability of mRNA-1273 vaccine-induced antibodies against SARS-
429		CoV-2 variants. Science (2021).
430	2.	Wang, P., et al. Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to
431		Antibody Neutralization. <i>bioRxiv</i> (2021).
432	3.	Tegally, H., et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature
433		592 , 438-443 (2021).
434	4.	Abdool Karim, S.S. & de Oliveira, T. New SARS-CoV-2 Variants - Clinical, Public
435		Health, and Vaccine Implications. N Engl J Med 384, 1866-1868 (2021).
436	5.	Mwenda, M., et al. Detection of B.1.351 SARS-CoV-2 Variant Strain - Zambia,
437		December 2020. MMWR Morb Mortal Wkly Rep 70, 280-282 (2021).
438	6.	Singh, J., et al. Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7,
439		B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications.
440		<i>Viruses</i> 13 (2021).
441	7.	Ramanathan, M., Ferguson, I.D., Miao, W. & Khavari, P.A. SARS-CoV-2 B.1.1.7 and
442		B.1.351 Spike variants bind human ACE2 with increased affinity. <i>bioRxiv</i> (2021).
443	8.	Edara, V.V., et al. Reduced binding and neutralization of infection- and vaccine-induced
444		antibodies to the B.1.351 (South African) SARS-CoV-2 variant. bioRxiv (2021).
445	9.	Wibmer, C.K., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African
446		COVID-19 donor plasma. <i>bioRxiv</i> (2021).
447	10.	Weisblum, Y., et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein
448		variants. <i>Elife</i> 9 (2020).
449	11.	Yair, et al. Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel.
450		doi:
451	<u>https:/</u>	<u>//doi.org/10.1101/2021.08.24.21262423</u> (2021).
452	12.	Thomas, S.J., et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
453		through 6 Months. N Engl J Med (2021).
454	13.	Canaday, D.H., et al. Significant reduction in humoral immunity among healthcare
455		workers and nursing home residents 6 months after COVID-19 BNT162b2 mRNA
456		vaccination. <i>medRxiv</i> , 2021.2008.2015.21262067 (2021).
457	14.	Levin, E.G., et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine
458		over 6 Months. N Engl J Med (2021).
459	15.	Tartof, S.Y., et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6
460		months in a large integrated health system in the USA: a retrospective cohort study.
461		<i>Lancet</i> (2021).
462	16.	Lavine, J.S., Bjornstad, O.N. & Antia, R. Immunological characteristics govern the
463		transition of COVID-19 to endemicity. Science 371, 741-745 (2021).
464	17.	Krause, P.R., et al. Considerations in boosting COVID-19 vaccine immune responses.
465		<i>Lancet</i> (2021).
466	18.	Wu, K., et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as
467		primary or booster series in mice. bioRxiv (2021).
468	19.	Choi, A., et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine
469		boosters in healthy adults: an interim analysis. Nature Medicine (2021).
470	20.	Sui, Y., et al. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus
471		macaques. JCI Insight 6(2021).

472	21.	Hassan, A.O., et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower
473		Respiratory Tracts against SARS-CoV-2. <i>Cell</i> 183 , 169-184 e113 (2020).
474	22.	Wu, S., <i>et al.</i> A single dose of an adenovirus-vectored vaccine provides protection
475		against SARS-CoV-2 challenge. <i>Nat Commun</i> 11, 4081 (2020).
476	23.	Ku, M.W., <i>et al.</i> Intranasal vaccination with a lentiviral vector protects against SARS-
477		CoV-2 in preclinical animal models. <i>Cell Host Microbe</i> 29 , 236-249 e236 (2021).
478	24.	Feng, L., <i>et al.</i> An adenovirus-vectored COVID-19 vaccine confers protection from
479		SARS-COV-2 challenge in rhesus macaques. <i>Nat Commun</i> 11 , 4207 (2020).
480	25.	Sui, Y., <i>et al.</i> Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-
481		Env antibody response. J Clin Invest 129, 1314-1328 (2019).
482	26.	Johansen, F.E. & Kaetzel, C.S. Regulation of the polymeric immunoglobulin receptor
483	20.	and IgA transport: new advances in environmental factors that stimulate pIgR expression
484		and its role in mucosal immunity. <i>Mucosal Immunol</i> 4 , 598-602 (2011).
485	27.	Cerutti, A., Chen, K. & Chorny, A. Immunoglobulin responses at the mucosal interface.
486	27:	Annu Rev Immunol 29, 273-293 (2011).
487	28.	Yu, J., <i>et al.</i> Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in
488	20.	macaques. <i>Nature</i> (2021).
489	29.	Corbett, K.S., <i>et al.</i> Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in
490	27.	Nonhuman Primates. <i>N Engl J Med</i> 383 , 1544-1555 (2020).
491	30.	Mercado, N.B., <i>et al.</i> Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus
492	50.	macaques. <i>Nature</i> 586 , 583-588 (2020).
493	31.	van Doremalen, N., <i>et al.</i> ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia
494	51.	in rhesus macaques. <i>Nature</i> 586 , 578-582 (2020).
495	32.	Keehner, J., <i>et al.</i> Resurgence of SARS-CoV-2 Infection in a Highly Vaccinated Health
496	52.	System Workforce. <i>N Engl J Med</i> (2021).
497	33.	Yu, J., <i>et al.</i> DNA vaccine protection against SARS-CoV-2 in rhesus macaques. <i>Science</i>
498	551	369 , 806-811 (2020).
499	34.	Sui, Y., Bekele, Y. & Berzofsky, J.A. Potential SARS-CoV-2 Immune Correlates of
500	•	Protection in Infection and Vaccine Immunization. <i>Pathogens</i> 10 (2021).
501	35.	Corbett, K.S., <i>et al.</i> Immune Correlates of Protection by mRNA-1273 Immunization
502		against SARS-CoV-2 Infection in Nonhuman Primates. <i>bioRxiv</i> (2021).
503	36.	Xu, X., <i>et al.</i> Dynamics of neutralizing antibody responses to SARS-CoV-2 in patients
504		with COVID-19: an observational study. <i>Signal Transduct Target Ther</i> 6 , 197 (2021).
505	37.	Cohen, K.W., <i>et al.</i> Longitudinal analysis shows durable and broad immune memory
506		after SARS-CoV-2 infection with persisting antibody responses and memory B and T
507		cells. Cell Rep Med 2, 100354 (2021).
508	38.	Alsayb, M.A., <i>et al.</i> Prolonged humoral and cellular immunity in COVID-19-recovered
509		patients. Saudi J Biol Sci (2021).
510	39.	Dan, J.M., <i>et al.</i> Immunological memory to SARS-CoV-2 assessed for up to 8 months
511	0,7,1	after infection. <i>Science</i> 371 (2021).
512	40.	Feng, C., <i>et al.</i> Protective humoral and cellular immune responses to SARS-CoV-2
513		persist up to 1 year after recovery. <i>Nat Commun</i> 12 , 4984 (2021).
514	41.	Matan Levine-Tiefenbrun, I.Y., Hillel Alapi, Rachel Katz, Esma Herzel, Jacob Kuint,
515		Gabriel Chodick, Sivan Gazit, Tal Patalon, Roy Kishony. Viral loads of Delta-variant
516		SARS-CoV2 breakthrough infections following vaccination and booster with the
517		BNT162b2 vaccine. <i>medRxiv: doi: <u>https://doi.org/10.1101/2021.08.29.21262798</u> (2021).</i>
~ 1 /		(2021).

- 518 42. Voysey, M., *et al.* Single-dose administration and the influence of the timing of the
 519 booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222)
 520 vaccine: a pooled analysis of four randomised trials. *Lancet* **397**, 881-891 (2021).
- 52143.Pan, H., *et al.* Immunogenicity and safety of a third dose, and immune persistence of522CoronaVac vaccine in healthy adults aged 18-59 years: interim results from a double-523blind, randomized, placebo-controlled phase 2 clinical trial. *medRxiv*,5242021.2007.2023.21261026 (2021).
- 52544.Perera, R.A., *et al.* Serological assays for severe acute respiratory syndrome coronavirus5262 (SARS-CoV-2), March 2020. *Euro Surveill* **25**(2020).
- 45. Lamoreaux, L., Roederer, M. & Koup, R. Intracellular cytokine optimization and standard operating procedure. *Nat Protoc* 1, 1507-1516 (2006).
- 52946.Sui, Y., et al. Innate and adaptive immune correlates of vaccine and adjuvant-induced530control of mucosal transmission of SIV in macaques. Proc Natl Acad Sci U S A 107,5319843-9848 (2010).

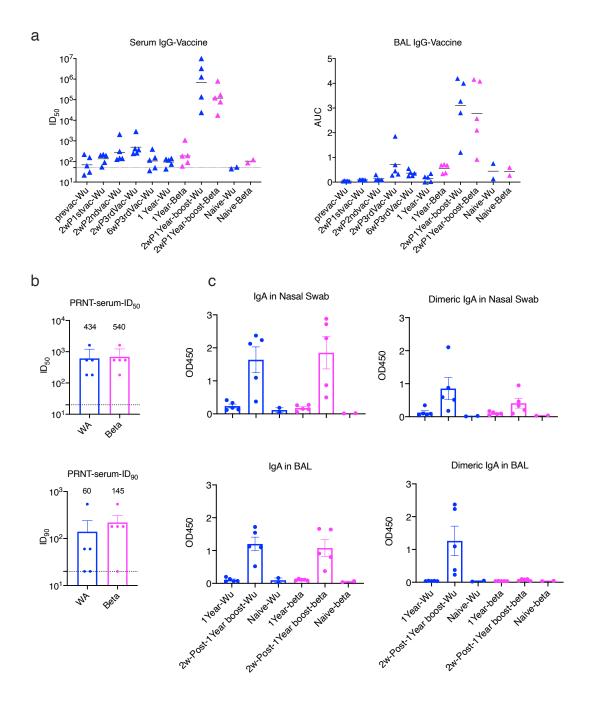

532

Figure 1. Schematic diagram of vaccination and viral challenge

IM : intramuscular; IN : intranasal; wk: week

*CP15: combination of CpG+poly I:C+ IL-15 in DOTAP or PLGA

Figure 2. Humoral immune responses against SARS-CoV-2 spike protein 1 (S1) in vaccinated macaques. (a). the kinetics of S1-specific binding IgG titers in serum and BAL. Bars indicate geometric means of ID50 and means of AUC. (b). PRNT titers in the serum samples of the vaccinated animals at 2-week after one-year boost. Geometric mean + geometric SD are shown. (c) S1-specific IgA and dimeric IgA responses in nasal swabs (NS) and BAL samples. WA: WA1/2020 D614G SARS-CoV-2 strain; Wu: Wuhan original strain; Beta: B.1.351 variant. The dashed lines indicate the detection limits. Data are shown as mean + SEM. Blue color indicates the S1 protein or the virus from Wuhan or WA strain, and magenta color indicates from beta variant.

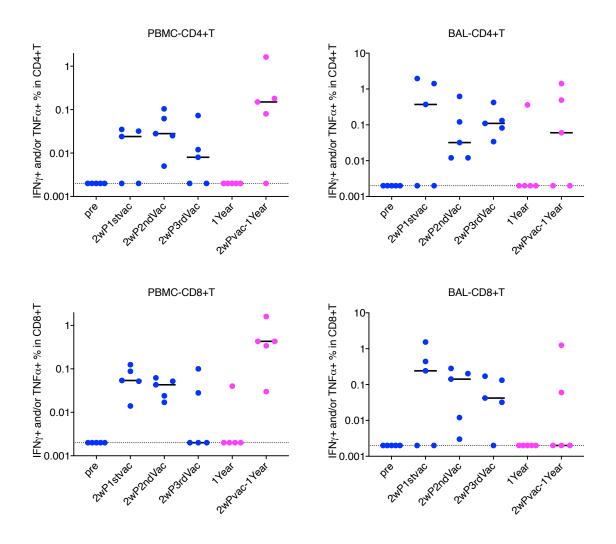
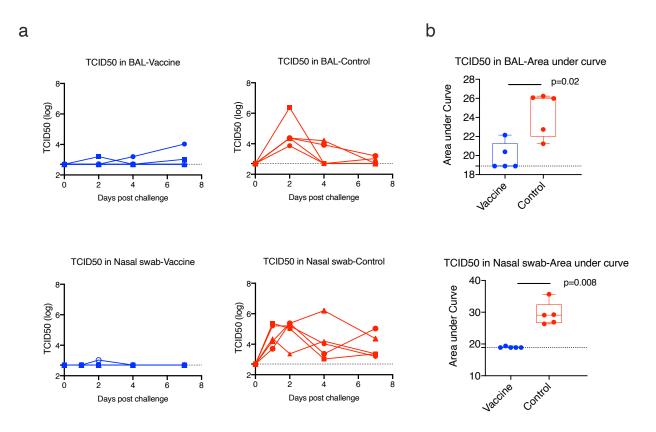
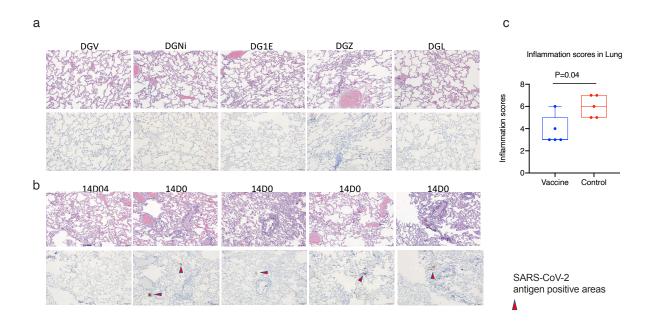




Figure 3. T cell responses against SARS-COV-2 spike protein 1 (S1) in PBMC and BAL samples of the vaccinated macaques. (a-b) The frequencies of IFN γ and/or TFN α -producing CD4⁺ and CD8⁺ T cells were stained and measured after stimulation with S1 for 18 hrs in PBMC and BAL samples. Dashed lines indicate the detection limits. Bars indicate medians. Blue color indicates the S1 protein or the virus from Wuhan or WA strain, and magenta color indicates from beta variant.

Figure 4. Viral burden in the nasal swabs (NS) and BAL samples after SARS-CoV-2 beta variant intranasal and intratracheal challenges. (a). TCID50 titer of the viral burdens in nasal swabs (NS) and BAL samples of individual animals (n=5 in the vaccine group and n=5 in the control group). (b). Area under curve (AUC) over time after challenge was calculated for each animal, representing total viral burdens. The total viral burdens were compared between vaccine and control groups in NS and BAL. Dashed lines indicate the detection limits. Box and whiskers with min to max were shown in the graph.

Figure 5. Histopathology in the lungs at day 7 post SARS-CoV-2 challenge. H&E and immunohistochemistry to detect SARS-COV-2 antigens were performed in the vaccinated(a) and naïve (b) animals. The upper rows of a-b were H&E staining, while the lower rows of a-b were immunohistochemistry of SARS-CoV-2 detection. All images 10x (scale bar= 100um). c). inflammation scores in the lung were compared between the vaccinated and naïve groups. Mann-Whitney test was used for comparison. Box and whiskers with min to max were shown in the graph.