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Abstract 

Communication across anatomical areas of the brain is key to both sensory and 
motor processes. Dimensionality reduction approaches have shown that the 
covariation of activity across cortical areas follows well-delimited patterns. Some of 
these patterns fall within the "potent space" of neural interactions and generate 
downstream responses; other patterns fall within the "null space" and prevent the 
feedforward propagation of synaptic inputs. Despite growing evidence for the role 
of null space activity in visual processing as well as preparatory motor control, a 
mechanistic understanding of its neural origins is lacking. Here, we developed a 
mean-rate model that allowed for the systematic control of feedforward 
propagation by potent and null modes of interaction. In this model, altering the 
number of null modes led to no systematic changes in firing rates, correlations, or 
mean synaptic strengths across areas, making it difficult to characterize 
feedforward communication with common measures of functional connectivity. A 
novel measure termed the null ratio captured the proportion of null modes relayed 
from one area to another. Applied to simultaneous recordings of primate cortical 
areas V1 and V2 during image viewing, the null ratio revealed that feedforward 
interactions have a broad null space that may reflect properties of visual stimuli. 
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1  Introduction 

Understanding how distinct areas of the brain communicate with each other is at 
the heart of neuroscience. Neurons in a given area receive synaptic afferents from 
thousands of upstream cells, and it remains unclear how this vast information is 
integrated to generate sensory, cognitive, and behavioral outcomes. 

A number of measures aim to capture the interactions between neurons across 
brain areas, including functional connectivity [1, 2], Granger causality [3, 4], and 
information-theoretic measures such as transfer entropy [5-7]. With some notable 
exceptions including population coding [8], these measures typically produce 
estimates over all pairs of elements, resulting in prohibitively large matrices of 
interactions. With recent developments allowing for simultaneous recordings on the 
order of 10,000 neurons [9], these interactions would involve ~1,000,000 paired 
comparisons.  

Several approaches have been proposed to reduce the sheer volume of neural data 
and summarize neuronal population activity using a handful of dimensions that 
reflect broad interactions within local circuits [10-15]. These analyses suggest that 
reliable patterns of covariation amongst cells, termed "neural modes", emerge from 
the collective behavior of large neuronal groups. These neural modes are reported 
in early visual cortex (V1), where the activity of large groups of cells is captured by 
linear models with only a few dimensions [15, 16].  

Furthermore, feedforward communication between V1 neurons and downstream 
extrastriate area V2 [17] is described by a limited "neural space" whereby several of 
the activity patterns in V1 do not activate V2 targets. The presence of such neural 
space is not restricted to visual cortex, but is also reported in areas responsible for 
motor control [18-23] and is linked to movement preparation [18], learning [22], and 
working memory [24]. In the context of hand reaching tasks, the challenge is that 
cortical regions involved in the preparation of a movement are also involved in 
controlling the muscles responsible for initiating motor commands. A solution is that 
cortical activity related to the preparation of a movement occupies a null space 
where it does not generate a motor command. Upon movement initiation, neural 
activity switches to a potent space that communicates to the muscles involved in 
hand reaching [18]. In both visual and motor domains, neural activity can be 
described by "potent modes" that propagate their activity to downstream sites and 
"null modes" that yield no marked response. 

Despite the ubiquity of null and potent modes across cortical areas, few 
computational models exist to capture how neuronal circuits control modes of 
neural activity in order to gate feedforward communication. Some models work by  
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Figure 1. A model of feedforward communication between two neuronal circuits. 
(a) Simplified model where a recurrently-connected sender area receives an input 
signal and projects to a receiver area via a set of connection weights (W0) where 
potent neural modes are transmitted forward while null modes are not. (b) 
Percentage of variance explained by neural modes (N=10). (c) Across different 
simulations that altered the number and origin of transmitted neural modes, potent 
modes yielded a higher correlation between sender and receiver areas than null 
modes (N=10). Results shown were obtained from a receiver area with (solid lines) 
and without (vertical bars) lateral connectivity. 

 

generating random vectors that are rotated along different axes to create null and 
potent modes [16, 18]. Unfortunately, these models offer no description of the 
underlying neural activity required to generate these modes. Other models are 
hard-wired to perform feedforward gating of neural activity [25] but offer no 
systematic way to control the transmission of null and potent modes. Finally, some 
models learn to generate low-dimensional representations of a signal [26, 27] but 
focus on activity within a single brain area. 
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Here, we developed a simplified mean-rate model that allowed us to systematically 
control the feedforward transmission of neural modes. The model revealed that 
different subsets of modes can be activated without notable changes in firing rates, 
correlations, or the mean strength of synapses, raising concerns for studies that aim 
to infer information transfer between brain areas via functional connectivity.  

Going further, we created an unbiased measure, termed the null ratio, that captured 
the proportion of null modes relayed from one area to another. This measure 
improves upon previous estimates of null and potent modes [18] that yield an 
underestimation of effect sizes. We applied this measure to simultaneous 
multielectrode recordings in areas V1 and V2 of primate visual cortex. During a 
passive image viewing task, interareal communication was dominated by a high 
proportion of null modes and a comparatively smaller number of potent modes, 
potentially capturing the statistics of sensory input presented during the task. 

 

2  Results 

2.1  Mean-rate model of null and potent neuronal interactions 

We began with simulations where a mean-rate "sender" network received a frozen 
Gaussian signal and selectively propagated its activity in a feedforward fashion to a 
"receiver" area (Fig. 1a). Synaptic weights 𝐖଴ between the two areas were adjusted 
such that a specific set of neural modes were set to null. This was achieved by 
solving a linear equation that projects the activity from the sender network to the 
receiver network (see Materials and Methods, equations (6-16)). Unless otherwise 
stated, 10 seconds of simulated activity was generated for each run of the model. 

The presence of mode-specific interactions between the sender and receiver areas 
was readily observed by extracting neural modes of each area, respectively (see 
Materials and Methods, equations (7-8)). Modes were sorted by rank such that the 
first mode explained the highest proportion of variance (Fig. 1b). Three examples 
with different sets of null modes are shown in Fig. 1c. Given a full-rank singular 
value decomposition, the total number of modes is equal to N (the number of 
neurons in each area of the model). Similar results were obtained regardless of the 
inclusion of lateral connections between the receiver neurons (equation (16)). Even 
though correlations between modes of the two areas were low, stronger positive 
correlations emerged between potent modes, and weaker correlations between null 
modes. In fact, in a noiseless scenario, correlations between null modes would 
reach zero. The ability of the model to turn off particular null modes was possible 
for modes that explained a low proportion of variance (Fig. 1c, left panel) as well as 
modes that explained a higher proportion (Fig. 1c, middle and left panels). 
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Figure 2. Toy example of a network with three sender and receiver neurons. (a) 
Activating a null mode led to no response in the receiver area. Conversely, activating 
a potent mode generated a response in both the sender and receiver areas. (b) 
Distribution of activity from the sender area when activating either a null or potent 
mode. 

 

To illustrate the impact of null and potent modes on the receiver area, a simulation 
was performed where either a single null or potent mode was activated. A simple 
example with three neurons in each of the sender and receiver areas is shown in 
Fig. 2a. The mode capturing the largest proportion of variance was set to null, while 
the remaining modes were potent. Activating only the null mode resulted in activity 
in the sender but not the receiver area. Conversely, activating a potent mode 
resulted in a response across both areas. Importantly, the overall distribution of 
activity in the sender area remained similar for both null and potent modes (Fig. 2b), 
showing that results were not due to a trivial attenuation of activity when 
generating null activity in the sender area. 

In a larger simulation, the outgoing connectivity of N=100 sender units was 
configured to propagate N/2 potent modes in a feedforward fashion. Mean pairwise 
correlations between modes of the sender and receiver areas reflected null and 
potent modes (Fig. 3a, left panel). A similar result was obtained when increasing the 
size of the population (N=500 with 400 potent modes and N=800 with 700 potent 
modes) (Fig. 3a, middle and right panels). In turn, synaptic weights between the 
sender and receiver areas yielded a Gaussian-like distribution centered near zero, 
with no clear structure (Fig. 3b).  
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Figure 3. Null modes were not straightforwardly reflected in synaptic weight 
distribution, firing rates, pairwise correlations, or mean synaptic weights. (a) 
Correlation between modes of the sender and receiver areas with N=100, 500, or 
800 units and 50, 400, and 700 potent modes, respectively. (b) Connection weights 
between sender and receiver areas. (c) Absolute mean pairwise correlation in 
different runs of the model where the percentage of null modes was altered. (d) 
Absolute mean synaptic weight in relation to the percentage of null modes. (e) Mean 
activity of the sender area versus null modes. (f) Gini index of the feedforward 
connectivity matrix. A threshold was applied to convert real-valued weights to a 
binary adjancency matrix where a given percentage of strongest connections were 
preserved. 

 

Thus, the propagation of potent and null modes was not apparent from basic 
features of synaptic connectivity. Further, configuring a network with a combination 
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of null and potent modes did not yield a trivially sparse matrix where null modes 
were readily identifiable.  

A number of independent runs of the model examined a broad range of null modes. 
In these simulations, the proportion of null modes showed no relation to either 
mean absolute pairwise correlations across the two areas (Fig. 3c), mean absolute 
synaptic weights (Fig. 3d), or combined mean firing rates of the sender and receiver 
areas (Fig. 3e). 

A measure termed the Gini index [28] was employed to assess the impact of null 
modes on network sparsity. First, synaptic weights were converted to a binary 
adjacency matrix by a threshold that retained the highest 30%, 50%, or 70% of 
weights. Then, the Gini index was calculated across a range of null modes (Fig. 3f). 
While the Gini index diminished between 0-50% of null modes, the change in Gini 
index between 50-100% of null modes was small. 

 

Figure 4. Propagating null and potent modes of neural activity in a spiking 
network. (a) Top: spike raster from a sender network (N=500 units) where a subset 
of modes (250 to 350 in rank) were set to null. Bottom: sum of population activity 
over time. (b) Correlation between modes of the sender and receiver areas.  

 

Hence, it was difficult to directly observe null modes from basic features of neural 
activity or functional connectivity in the model, including correlations, weights, 
firing rates, and network sparsity. While the correlation between individual modes 
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of the sender and receiver areas was modulated by setting particular modes to null, 
the overall correlation between the activity of the two areas remained largely 
unaffected. 

Results of the rate-based model were extended to a scenario where the sender 
network was comprised of N=500 spiking neurons (see Materials and Methods, 
equations (17-19)) (Fig. 4a). Ten seconds of activity were generated with a set 
proportion of null modes. The receiver network followed a bistable regime with 
sharp transitions between a low and higher state of activity. The correlation 
between modes of the sender and receiver areas was low for null modes, and 
higher for potent modes (Fig. 4b). Thus, the proposed model allowed for a 
systematic control of null and potent modes propagated from one area to another.  

 

2.2  Measuring null space communication 

To measure the null space of communication between two neural areas, we began 
by describing the propagation of activity from a sender area 𝐗 to a receiver area 𝐘 
as a weighted sum, 𝐘 = 𝐖଴𝐗 + 𝒄, where 𝒄 is a constant term and 𝐖଴𝐗 is a projection 
of activity 𝐗 onto a set of weights 𝐖଴ that reflect the influence of the sender region 
on the receiver network (see Materials and Methods). Potent and null modes of 
propagation were obtained by the row-space (𝐖௣௢௧௘௡௧

୘ ) and null space (𝐖௡௨௟௟
୘ ) of 𝐖଴, 

respectively [18]. The transmission of potent and null modes from the sender to the 
receiver network was described by projecting the eigenvectors of 𝐗 (denoted 𝐕) 
onto the row-space and null space of 𝐖଴,  

𝜑௣௢௧௘௡௧ = ฮ𝐖௣௢௧௘௡௧
୘ 𝐕୘ฮ

ி

ଶ
, (1) 

𝜑௡௨௟௟ = ฮ𝐖௡௨௟௟
୘ 𝐕୘ฮ

ி

ଶ
,  (2) 

where ‖ ∙ ‖ி
ଶ  is the Frobenius norm. This norm was employed for ease of 

interpretation, as it is closely related to the variance of the expression inside the 
brackets. That is, subtracting the mean of each row before taking the norm yields 
the variance. The resulting expressions 𝜑௣௢௧௘௡  and 𝜑௡௨௟௟ reflect the influence of the 
sender area along the potent and null space, respectively. Crucially, these measures 
require that the sender and receiver networks have the same number of neurons  
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Figure 5. Estimating the null and potent space of neural communication. (a) The 
Frobenius norm of the null and potent space of connections W0 intersected at a 
location where approximately half of all modes are null (N=100). (b) The ratio of null 
and potent neural modes (equation (3)) provided an estimation of the proportion of 
null modes in the model, but also generated unwanted nonlinearity. (c) Correcting 
nonlinearity by adding a term to the ratio (equation (4)) led to an overshoot in 
prediction. (d) The overshoot in prediction was corrected by scaling the estimation 
with a factor inversely proportional to the square root of N (equation (5)). (e) Root 
mean square difference (RMSD) between actual and estimated null ratios across 
different durations of simulation. Vertical dashed line: one second of activity. 

 

(N) in order to be meaningful. Otherwise, “funnelling” or “expanding” activity from 
the sender to the receiver areas would cause a spurious number of null or potent 
modes to emerge. 

Equations (1-2) were computed across 10 simulations where the proportion of null 
modes was varied between 0-100%. In these simulations, the potent and null space 
of 𝐖଴ crossed at a point where half of the neural modes (N/2) were null (Fig. 5a). A 
ratio of null and potent spaces was computed to obtain the proportion of null 
modes, 
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𝑛𝑢𝑙𝑙 𝑟𝑎𝑡𝑖𝑜 =
ఝ೙ೠ೗೗

ఝ೛೚೟೐೙೟
 . (3) 

This measure, however, featured a non-linearity that overestimated the null modes 
(Fig. 5b) [18]. This non-linearity can be corrected by adding a term to equation (3), 

𝑛𝑢𝑙𝑙 𝑟𝑎𝑡𝑖𝑜 =
𝜑௡௨௟௟

𝜑௣௢௧௘௡௧
∙  ฮ𝐖௡௨௟௟𝐖௣௢௧௘௡௧

୘ ฮ
ி

ଶ
. (4) 

This new estimator was linearly related to the null modes, but was still prone to a 
large overestimation bias (Fig. 5c). This bias was corrected by scaling equation (4) 
by ଵ

√ே
, canceling out the squared norm of equations (1-2), 

𝑛𝑢𝑙𝑙 𝑟𝑎𝑡𝑖𝑜 =
1

√𝑁
∙

𝜑௡௨௟௟

𝜑௣௢௧௘௡௧
∙  ฮ𝐖௡௨௟௟𝐖௣௢௧௘௡௧

୘ ฮ
ி

ଶ
. (5) 

This final estimator correctly reported the proportion of null modes independently 
of N (Fig. 5d). To determine how many data points were required to perform an 
adequate estimate of the null ratio, different runs of the model were performed 
where the number of simulated time-steps was altered. With 10 seconds of activity 
and N=100 neurons, the root mean squared difference (RMSD) between the actual 
and estimated null ratios was low. However, this difference increased when the 
time segment of activity was shortened (Fig. 5e). Thus, the estimated null ratio 
improved with longer segments of data. A low number of neurons (N=10) yielded a 
high error regardless of the time segment. With N=100, at least one second of 
activity (Fig. 5e, dashed vertical line) was required to provide a reliable estimate of 
null ratio. 

In practice, the estimation of null modes may be applied to experimental data where 
the activity of a sender and receiver area is recorded simultaneously. An example is 
shown in the next section, based on cortical activity from visual areas V1 and V2. 

2.3  Null and potent dimensions in cortical activity 

Single-trial activity was analyzed where anesthetized primates viewed sinusoidal 
gratings and activity was recorded simultaneously in V1 and V2 areas (see Materials 
and Methods). These data focused on neurons from the superficial layers of V1 that 
project to middle layers in V2 [16]. These local projections constitute ~95% of 
afferents to V2 [29], ruling out a strong influence of surrounding areas. V1 activity 
was split into two groups of an equal number of neurons matching the number in 
V2. More precisely, a total of 111 neurons were recorded from V1 and 37 from V2. 
Two random samples of 37 neurons each were extracted from V1. The first sample 
was compared to V2, yielding “V1-V2” comparisons, while “V1-V1” comparisons were  
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Figure 6. Analysis of feedforward interactions in cortical areas V1 and V2. (a) 
Simultaneously recorded V1 neurons were split into two even groups whose size 
matched the number of units recorded in V2. This arrangement of the data allowed 
for analyses of both V1-V1 and V1-V2 interactions. (b) Example of single-trial activity 
in simultaneous recordings of V1 and V2 neurons in response to oriented stimuli. Top: 
spike raster across all neurons. Bottom: summed population activity (smoothed using 
a 100 ms rolling window). (c) Distribution of pairwise correlations within cells of V1 
and V2, respectively. (d) Variance explained by neural modes of V1 and V2 activity. 

 

obtained by comparing the two V1 samples (Fig. 6a). The same approach was 
employed in related work [16]. The peri-stimulus time histogram of single-trial 
activity was regressed using the Matlab function regress, which performs multiple 
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linear regression using the least-squares method [30] and returns the residuals. The 
activity of individual neurons was smoothed by averaging their firing rate over time 
using a sliding window of 100 ms. 

Single-trial activity was characterized by the activation of a large subset of V1 
neurons with a rapid rise time (~50 ms) and slower decay (~150 ms) (Fig. 6b). A 
similar, albeit sparser, response profile was observed in V2. Intra-areal pairwise 
correlations were comparable between V1 and V2 [16] (p=0.28658, one-sided 
Wilcoxon rank sum test, n=28,800) (Fig. 6c).  

Singular value decomposition was employed to examine the dimensionality of V1 
and V2 activity (Materials and Methods, equations (7-8)). The variance explained by 
this analysis increased rapidly with the number of modes considered (Fig. 6d). The 
cumulative distribution of both V1 and V2 modes reached 100% of explained 
variance as the singular value decomposition approached full rank. A Wilcoxon rank 
sum test compared the cumulative distributions of V1 and V2 modes. This analysis 
revealed that the variance explained by V2 modes was lower than V1 (p=4.0535x10-

9, one-sided Wilcoxon rank sum test, n=148). Hence, V2 activity was characterized 
by higher dimensionality than V1, in line with previous work [16].  

Next, a linear mapping of activity from the sender area (V1) to the receiver area (V1 
or V2) was obtained by ridge regression (see Materials and Methods). An example of 
V2 approximation based on smoothed V1 activity from a single trial is shown in Fig. 
7a. The fit between observed and approximated activity was high (Fig. 7b): over all 
trials, the mean variance explained by ridge regression was 87.56% for V1-V1 
interactions and 96.21% for V1-V2. Thus, while cortical neurons likely perform non-
linear operations on their inputs [31], a majority of the variance in the receiver area 
was explained by a linearly weighted fit of V1 activity.  

Regression weights from V1-V1 and V1-V2 interactions were decomposed into null 
and potent modes by applying equations (1-2) across single trials. While the potent 
space was similar between V1-V1 and V1-V2 (p=0.999, one-sided Wilcoxon rank sum 
test, n=1,600), the null space of V1-V2 was markedly larger (p=4.4655e-06, one-
sided Wilcoxon rank sum test, n=1600) (Fig. 7c). These results are in line with recent 
work showing that V1-V2 communication requires far fewer modes than the total 
available neural space [16].  

To further compare null and potent modes, a bootstrap procedure was applied as 
follows. For each of 100 bootstrap steps, a random subset of neurons was extracted 
from V1 (matching the number of neurons in V2). Across 100% of these steps, the 
mean Frobenius norm (equations (1-2)) of the null space exceeded the potent space. 
Hence, V1-V2 modes were robustly characterized by a large null space. 
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Figure 7. Null and potent modes estimated from simultaneous recordings of V1 
and V2 activity. (a) Example of a single trial where V2 population activity was 
predicted by ridge regression of smoothed V1 activity recorded during the same trial. 
(b) Relation between V2 activity from panel (a) and its approximation by ridge 
regression. Individual circles are mean firing rates taken over 100 ms windows. 
Dashed line: unity. (c) Null and potent modes of V1-V1 and V1-V2 interactions. 
Individual circles are single trials. Each dot represents a value obtained from 
equations (1-2). (d) Distribution of null ratios. Dashed line indicates a null ratio of 0.5, 
corresponding to an equivalent number of null and potent modes.  

 

Applying the null ratio (equation (5)) revealed that greater than half of V1-V2 modes 
fell within the null space (null ratio > 0.5) (Fig. 7d). By comparison, V1-V1 
interactions yielded a bimodal distribution where a large proportion of modes fell in 
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the potent space (null ratio < 0.5). The larger null space of V1-V2 interactions is 
consistent with findings of "private" V1 modes that have little predictive value on V2 
activity [16]. This result cannot be accounted for by the number of neurons analysed 
(which was kept constant between V1 and V2) or pairwise correlations (Fig. 6c). 
Further, V2 dimensionality was greater than V1 (Fig. 6d), running counter to an 
explanation whereby a large number of null modes may be due to a lower number 
of V2 dimensions. Finally, 100 independent simulations of the mean-rate model 
were performed where the proportion of null modes was altered. These simulations 
showed that the null space can be manipulated without altering correlations (Fig. 
3c), mean synaptic weights (Fig. 3d), or firing rates (Fig. 3e), suggesting that these 
factors may not have a substantial impact on estimating null and potent modes. 
Below, we discuss alternative explanations to the vast null space of V1-V2 
interactions. 

 

3  Discussion 

This work described a mean-rate model of neuronal activity that enabled the control 
of null and potent feedforward modes of interaction between two brain areas. 
Based on this model, a novel, unbiased measure was developed to estimate the 
proportion of null modes. This measure was applied to simultaneous recordings of 
V1-V2 activity during stimulus viewing and revealed that most dimensions fell within 
the null space of feedforward communication between the two areas. The proposed 
measure of null ratio is model-independent and may be broadly applicable to other 
brain areas including motor cortex [18], hippocampal-entorhinal cortex [32], cortico-
basal-ganglia circuits [33], and thalamocortical connections [34] under the condition 
that a sufficient number of neurons and time-steps are available to generate a 
reliable estimate (Fig. 5e). 

3.1  Functional roles of null and potent modes 

The ability of neural circuits to route feedforward activity through null and potent 
modes has implications that extend to sensory, motor, and cognitive domains. In 
sensory regions, dynamically activating particular modes may allow information to 
be flexibly routed from primary areas to higher cortical centers that perform 
multimodal integration [35]. In this way, neural circuits that control the propagation 
of null and potent modes may shape the integration and segregation of activity 
across regions [36]. Integration across regions may be achieved by the activation of 
potent modes, while segregation would arise through null modes. Speculatively, 
potent modes may also provide a neural basis for selective attention [37], whereas 
unattended sensory input may remain in the null space.  
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In brain regions responsible for motor control, null and potent modes mediate the 
preparation and execution of task-related movements [18]. During the preparation 
stages of a motor command, motor cortex activity resides in the null space, thus 
preventing movement execution. At the offset of the preparation stage, activity 
switches to potent modes that drive movement in accord with an appropriate motor 
plan. Thus, the rapid coordination of null and potent modes allows motor actions to 
be adequately planned and carried out in cortex. 

3.2  Origins of the large null ratio in V1-V2 communication 

What may explain the large null space of V1-V2 interactions (Fig. 7d)? One 
contributing factor may be the brain state of animals during experimental 
recordings. The use of anesthesia induces global, low-dimensional fluctuations 
across cortical regions [38]. These fluctuations may contribute to the scope of null 
space interactions across visual areas. However, a limitation of this explanation is 
that anesthesia-induced fluctuations are typically one-dimensional [15]. By 
comparison, our results suggest the presence of several modes in the null space of 
V1-V2 communication (Fig. 7d). Hence, the low-dimensional null space induced by 
anesthesia would not be adequate to explain the large null space found between V1 
and V2. 

Alternatively, the large null space of V1-V2 communication may be explained by the 
few dimensions required to encode the artificial stimuli employed experimentally. 
Indeed, only a few PCA dimensions would be required to encode oriented gratings 
compared to natural images, which typically require a dozen or more dimensions to 
capture most of their variance [39]. Because subjects were presented with gratings 
that required only a few modes to encode, the neural space of V1-V2 
communication may encompass a broad null space without affecting sensory 
processing. Consistent with this explanation, Semedo et al. [16] found that when 
subjects were presented with natural movies of increasing duration, a greater 
number of neural dimensions was required to account for V1-V2 interactions, thus 
reflecting increased coding requirements. Further experiments that directly 
compare simpler and more complex stimuli will be required to further validate this 
proposal. 

3.3  Implications of the proposed model 

Our results challenge two fundamental assumptions about neuronal communication 
between brain areas. Firstly, a widespread assumption concerns the neural origin of 
sensory gating. Broadly speaking, gating is defined as the selective modulation of 
cortical inputs. Gating is generally assumed to be performed at the target site, for 
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instance at the output of the cortical motor system [40]. However, our model 
suggests that gating may be controlled by the pattern of synaptic connections 
between sender and receiver areas of cortex. This opens the possibility that gating 
may be dynamically controlled and subject to short- and long-term synaptic 
plasticity [14]. 

A second assumption regarding neural communication that is called into question 
by our results is that the propagation of null and potent modes emerges from a 
balance of excitation and inhibition [25, 41]. According to this explanation, null 
modes correspond to states of detailed balance where excitatory and inhibitory 
inputs cancel out at the target site. Conversely, balance-breaking activity would 
form potent modes of transmission. In contrast with this explanation, the mean-rate 
model showed that null modes can emerge without requiring presynaptic activity to 
cancel out (Fig. 2a). In the model, null modes were not caused by anti-correlated 
activity in the sender area. Rather, null modes were controlled by the precise 
configuration of synaptic weights between sender and receiver areas. 

A key contribution of the mean-rate model is that it highlights limitations of 
functional and structural connectivity in probing the interactions between brain 
areas. Specifically, simulations showed that pairwise correlations are a poor 
predictor of null space. Drastically altering the size of the null space had no 
systematic impact on mean pairwise correlations between the two neural areas (Fig. 
3c). The implication of this finding is that it may be possible for neural activity to 
yield large correlations despite most modes falling within the null space. 
Conversely, low correlations could be obtained from activity where a majority of 
modes are potent. Hence, functional connectivity may offer misleading indications 
of the communication bandwidth between brain areas. 

Furthermore, synaptic connectivity (Fig. 3d) and mean firing rates (Fig. 3e) were 
poor indicators of the breath of null space interactions. Thus, the need for adequate 
measures of null modes (equation (5)) may not be circumvented by common 
network statistics [1].  

3.4  Future work and conclusions 

One factor not examined here in the mean-rate model is the dimensionality of 
neural modes within the recurrent network formed by sender neurons. While this 
consideration has been the subject of extensive theoretical work [26, 41-44], the 
focus of the current work was the feedforward propagation of neural modes, and 
not their origin within recurrent circuits. Further work that examines both aspects of 
communication in a unified framework would provide an increased understanding 
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of how interactions both within and across brain areas give rise to sensory 
perception and motor planning. 

In conclusion, this work combined computational modeling and experimental 
analyses in order to describe avenues by which neural circuits may control 
feedforward communication across brain areas. A novel measure termed the null 
ratio was provided to account for null features of neural activity that do not 
propagate across areas. Applied to neural interactions in early visual cortex, this 
measure revealed that a large portion of V1-V2 activity fell within the null space. 
These results open the door to further applications of the null ratio across sensory 
and motor systems, linking inter-areal interactions to both cognitive and behavioral 
processes. 

 

4  Materials and Methods 

4.1  Mean-rate model 

The model considered two brain areas of 𝑁=100 neurons each (unless otherwise 
stated), communicating via feedforward synaptic connections (Fig. 1a). Focusing on 
linear dynamics, activity 𝐗 ∈ ℜே×் for time-steps 𝑡, … , 𝑇 in the sender area was 
modeled by a neural integrator [34-36],  

𝜏
𝑑𝐗

𝑑𝑡
= −𝐗 + 𝐖ூே 𝐗 + 𝐚 + 𝛏, (6) 

where internal connection weights 𝐖ூே were drawn from a Gaussian distribution 
𝒩(0,1/𝑁) without self-connections, 𝛏 is a frozen Gaussian input signal drawn from 
𝒩(0,0.1), 𝑡 is a time-step, 𝐚 is a tonic input set to 10 Hz, and 𝜏=10 ms is an 
integration time constant. The activity of each unit was smoothed using a rolling 
window of 100 ms to mimic the processing of experimental data as detailed below.  

Next, we obtained the singular value decomposition of 𝐗, 

𝐗 = 𝐔𝚺𝐕୘, (7) 

and computed neural modes by projecting the neural activity onto eigenvectors 𝐕, 

𝐌 = 𝐗𝐕𝐕୘. (8) 

These modes reflect time-dependent signals along individual dimensions of 𝐗 [48]. 
Activity from the sender area was assumed to propagate to the receiver area (𝐘) via 
a set of weighted feedforward connections 𝐙 ∈ ℜே×ே, defined as a random matrix 
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with independent Gaussian elements 𝒩(0,1). The resulting activity in the receiver 
area was thus 

𝐘 = 𝐙𝐗 + 𝒄, (9) 

where 𝒄=10 Hz  is a constant bias. However, instead of 𝐘 being impacted by 𝐗 
directly, we sought for 𝐘 to be influenced by neural modes 𝐌 (equation (8)), hence 

𝐘 = 𝐙𝐌 + 𝒄. (10) 

By expanding 𝐌, 

𝐘 = 𝐙𝐗𝐕𝐕୘ + 𝒄. (11) 

Going further, we would like 𝐘 to be influenced by some, but not all, of the neural 
modes. For this purpose, equation (11) was rewritten as 

𝐘଴ = 𝐙𝐗𝐕଴𝐕଴
୘ + 𝒄, (12) 

where 𝐘଴ describes the activity of the receiver area in response to null and potent 
modes transmitted by the sender area. The matrix 𝐕଴ is the same as 𝐕 (equation (7)), 
but with certain columns, corresponding to null modes, set to zero. We assumed a 
set of weights 𝐖଴ that project activity from the sender to the receiver area. These 
weights should be distinguished from 𝐕଴, the matrix containing eigenvectors of the 
sender area. Activity from the sender area 𝐘଴ can be substituted for 𝐖଴𝐗 + 𝒄 in 
equation (12). Then, 𝐖଴ is sought such that 

𝐖଴𝐗 + 𝒄 = 𝐙𝐗𝐕଴𝐕଴
୘ + 𝒄. (13) 

This is found by 

𝐖଴ = 𝐙𝐗𝐕଴𝐕଴
୘𝐗∗, (14) 

where "*" is the Moore-Penrose matrix inverse, employed here because 𝐗 is not a 
square matrix given that there are typically more time points than neurons. Finally, 
the activity of the receiver area when receiving null and potent modes from 𝐖଴ is 
obtained by 

𝐘଴ = 𝐖଴𝐗 + 𝒄. (15) 

In a scenario that included lateral connectivity amongst receiver neurons, the above 
equation became 

𝐘௟௔௧ = 𝐖଴𝐗 + 𝐖௟௔௧𝐘଴ + 𝒄, (16) 
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where 𝐘௟௔௧ is the activity of the receiver units and 𝐖௟௔௧ are lateral connections 
between these units. These connections were i.i.d. elements drawn from a Gaussian 
distribution and matched the range of values in 𝐖଴ (Fig. 3b). 

Importantly, equation (14) should not be interpreted as a biological learning rule, but 
rather as a way of computationally generating feedforward connection weights 
whose structure allows for the systematic control of null and potent modes.  

4.2  Spiking network model 

Simulations were performed where the sender network was composed of 𝑁 = 500 
recurrently-connected spiking neurons [39, 49]. The membrane potential of 
individual neurons evolved according to  

𝑐
𝑑𝐕

𝑑𝑡
= −𝑔(𝐕 − 𝐸) + 𝑅(𝐈ூே + 𝐈ௌ்ூெ + 𝐼்ைேூ஼) + 𝝃, (17) 

where 𝑔=0.01 pS is a leak conductance, 𝐸=-65 mV is a reversal potential, 𝑅 =10 Ω ∙ cm 
is the membrane resistance, 𝐼்ைேூ஼=0.5 nA is a constant current, 𝐈ௌ்ூெ is a current 
induced by the stimulus (modeled by frozen Gaussian noise with 𝒩(0,0.1)), and 𝑐 =

0.01 ఓி

ୡ୫మ
  is the membrane capacitance. The intrinsic current 𝐼௜

ூே(𝑡) ∈ 𝐈ூே, 

𝐼௜
ூே(𝑡) = ෍ ൫𝐾௝

ா(𝑡) ∙ 𝑤௜,௝
ா ൯ +

௝∈ேಶ

෍ ൫𝐾௝
ூ(𝑡) ∙ 𝑤௜,௝

ூ ൯,

௝∈ே಺

 (18) 

describes the contribution of the surrounding network activity to an individual unit i 
at time t, where 𝑤௜,௝

ா  is the outgoing connection strength from one excitatory (E) 
neuron i to a neuron j, 𝑤௜,௝

ூ  is the outgoing strength from an inhibitory (I) neuron, 𝑁ா 
and 𝑁ூ are the total numbers of excitatory and inhibitory neurons, and  

𝐾௝
௑(𝑡) = 𝑈௑ ∙ ෍ exp ൭

𝑡௝,௦
௦௣௜௞௘

− 𝑡

𝜏௑
௙௔௟௟

൱ − exp ൭
𝑡௝,௦

௦௣௜௞௘
− 𝑡

𝜏௑
௥௜௦௘

൱

௦∈ௌ೉

 
(19) 

is the postsynaptic potential of a neuron j, where 𝑋 represents either excitatory or 
inhibitory neurons (E or I), 𝑡௝,௦

௦௣௜௞௘ is the time of a spike 𝑠 ∈ 𝑆௑ where 𝑆௑ denotes all 
spikes emitted up to time 𝑡, 𝜏௑

௥௜௦௘ and 𝜏௑
௙௔௟௟ are the time constants of the rise and fall 

of postsynaptic potential, with amplitude factors 𝑈ா=0.4 nA and 𝑈ூ=0.6 nA. We set 
𝜏ா

௥௜௦௘=3 ms, 𝜏ா
௙௔௟௟=40 ms, 𝜏ூ

௥௜௦௘=1 ms, and 𝜏ூ
௙௔௟௟=5 ms. 

Spikes were triggered when the membrane potential (equation (17)) of a neuron 
reached -15 mV from a value below the threshold. At that time, the potential was set 
to 100 mV for 1 ms, then reset to -65 mV for a 3 ms absolute refractory period. 
Connection weights (𝑤௜,௝

ா  and 𝑤௜,௝
ூ ) were set such that 30% of neurons were inhibitory. 
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The out-degree connectivity was set to ே

ହ
 for individual E cells and ே

ଶ
 for I cells. 

Connection weights were structured at random following a uniform distribution with 
𝒩൫100/√𝑁, 1൯ while ensuring that all outgoing connections of E cells were positive 
and all outgoing connections of I cells were negative, in line with Dale's law. 
Simulations employed a forward Euler method with a time resolution of 0.1 ms. Null 
and potent modes of 𝐖଴ were set according to equation (14) after replacing the 
activity of the mean-rate model (𝐗) with temporally smoothed spikes (100 ms rolling 
window). 

4.3 Experimental data 

Data analysed in this study were obtained from a public repository (crcns.org) and 
described in detail in related work [16]. These data were composed of simultaneous 
extracellular recordings from neuronal populations in output layers (2/3-4B) of V1 as 
well as their primary target in middle layers of V2. Recordings were performed in 3 
macaca fascicularis under sufentanil anesthesia using a Utah array (V1) and tetrodes 
(V2). During these recordings, subjects were shown oriented gratings for a brief 
duration (1.28 sec) followed by a blank screen (1.5 sec). A range of 88-159 V1 
neurons (mean: 112.8) and 24-37 V2 neurons (mean: 29.4), including both well-
isolated single units and multi-unit clusters, were analysed. A total of 400 trials 
were examined for each of 8 stimulus orientations. The receptive fields of V1 and V2 
neurons were aligned retinotopically, thus promoting feedforward interactions.  

All data analyses were performed using custom scripts in the Matlab language 
(MathWorks, Natick MA). Statistical analyses were performed with a one-sided non-
parametric Wilcoxon rank sum test for non-normal data. 

4.4  Ridge regression 

Ridge regression aimed to minimize a loss function [50], 

෍‖𝐖𝐗௜ − 𝐘௜‖ி
ଶ + 𝜆‖𝐖‖ி

ଶ = ෍ traceቀ(𝐖𝐗௜ − 𝐘௜)
୘(𝐖𝐗௜ − 𝐘௜)ቁ + 𝜆 trace(𝐖୘𝐖)

ே

௜ୀଵ

ே

௜ୀଵ

, 
(20) 

where 𝐗௜ is the activity of 𝑖 ∈ 𝑁 sender neurons, 𝐘௜ is the activity of receiver 
neurons, 𝐖 are regression weights, and 𝜆 is a regularization term. By expansion, 

trace ൭𝐖 ൭෍ 𝐗௜ − 𝐗௜
୘

ே

௜ୀଵ

൱ 𝐖୘ − 2𝐖 ൭෍ 𝐗௜ − 𝐘௜
୘

ே

௜ୀଵ

൱ + ෍ 𝐘௜ − 𝐘௜
୘

ே

௜ୀଵ

൱ + 𝜆 𝑡𝑟𝑎𝑐𝑒(𝐖୘𝐖). 
(21) 

Taking the derivative with respect to 𝐖, 
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2𝐖 ൭෍ 𝐗௜𝐗௜
୘

ே

௜ୀଵ

൱ − 2 ൭෍ 𝐗௜𝐘௜
୘

ே

௜ୀଵ

൱

୘

+ 2𝜆𝐖. 
(22) 

Setting the derivative to zero and solving yielded 

𝐖 = ൭෍ 𝐘௜𝐗௜
୘

ே

௜ୀଵ

൱ ൭𝜆 + ෍ 𝐗௜𝐗௜
୘

ே

௜ୀଵ

൱

ିଵ

. 
(23) 

The least-squares approximation of receiver activity was obtained by 𝐘෡ = 𝐗𝐖. The 
regularization term 𝜆 was chosen such that the loss function (equation (20)) was no 
more than 5% lower than the corresponding unregularized (𝜆 =0) value on a given 
trial. 
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