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ABSTRACT

The acute glucocorticoid response is a key mediator of the coordinated vertebrate response to
unpredictable challenges. Rapid increases in glucocorticoids initiate a series of changes that
can allow animals to effectively cope with or avoid stressors. It has become clear that the
scope of the GC response—defined here as the absolute increase in GCs—is often associated
with among-individual differences in performance and fitness and varies across species based
on environment and life history. In addition to varying in scope, GC responses can differ
enormously in speed; however, relatively little is known about whether speed and scope covary
or how selection shapes variation in speed. We used a database of corticosterone samples
collected at 5 time points from 1,750 individuals of 58 species of birds to ask i) how the speed
and scope of the GC response covary among individuals and species and ii) whether variation
among species in the speed of the response is predicted by environmental context or key
life history traits. As predicted by a recent optimality model, faster absolute GC responses
were strongly associated with a larger scope both among-individuals and among-species.
Despite this covariation, the relative speed of the GC response (as a percentage of scope)
varied independently of scope, suggesting that selection could operate on both features of
the response independently. Species with faster relative GC responses lived in locations with
more intra-season variation in temperature and had shorter lifespans. Our results suggest
that rapid changes associated with the speed of the GC response, such as those occurring
through non-genomic receptors, might be an important determinant of coping ability and we
emphasize the need for studies explicitly designed to measure speed independently of scope.
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INTRODUCTION

Wild animals often encounter unpredictable and rapidly changing environmental conditions.
For vertebrates, the glucocorticoid (GC) mediated stress response plays a primary role in
coordinating phenotypic changes that allow animals to persist in challenging conditions
(Sapolsky et al., 2000; Wingfield et al., 1998). Decades of evidence now demonstrate that
rapid changes in GC hormones can alter a variety of downstream traits including metabolism,
behavior, gene expression, and physiology in ways that promote the avoidance or tolerance of
stressors (Dallman, 2005; Datson et al., 2008; Sapolsky et al., 2000; Wingfield et al., 1998).

While the basic structure of the GC response system is highly conserved (Romero and Gormally,
2019), individuals and species differ enormously in their absolute levels of circulating GCs
under baseline and stress-induced conditions and in their regulation of GC levels (Romero and
Gormally, 2019; Vitousek et al., 2019). Growing evidence suggests that observed differences
in absolute GC levels between species reflect adaptation resulting from selection based on
environmental context and life history (Bonier et al., 2009; Breuner et al., 2008; Cockrem,
2013; Schoenle et al., 2018; Vitousek et al., 2019; Williams, 2008). However, in addition to
varying in the scope of the GC response, individuals and species may vary in the speed of
response (see definition in Box 1). In contrast to absolute levels, relatively little is known
about how selection shapes the speed of GC responses.

The speed of the GC response might be an important target of selection if it determines how
quickly individuals can match their phenotype to changing conditions (Luttbeg et al., 2021;
Taff and Vitousek, 2016). Because the acute stress response is a multi-component system
that includes a variety of downstream changes (Sapolsky et al., 2000), there will necessarily
be a lag between the perception of any stressor and the production of the full stress-induced
phenotype. Thus, a faster GC response should allow animals to more quickly match their
phenotype with the prevailing environmental conditions (Taff and Vitousek, 2016). At the
same time, responding faster might incur costs that could be avoided with a slower response,
because prolonged or chronic elevation of GC levels can result in a variety of well known
costs (Korte et al., 2005). Responding more slowly might allow animals to calibrate their
response as additional information about a stressor is accumulated.

Disentangling the speed and scope of GC responses is challenging for several reasons. First,
because the same physiological systems are involved in the speed and scope of the GC
response, there are likely to be mechanistic links that create covariation between different
attributes even when selection acts on only a single feature. For example, variation in FKBP5
expression could simultaneously alter the speed and magnitude of response (Zimmer et al.,
2020a). Second, selection may favor the coupling of particular speed and scope combinations
even when there is no intrinsic mechanistic link. For example, Luttbeg et al (2021) recently
used optimality modeling of the speed of acute stress responses to show that altering GC
regulation rate changes the optimal baseline and stress-induced GC levels under a variety of
conditions. Finally, from a purely logistical perspective, separately measuring the speed and
scope of stress responses is technically challenging (Taff, 2021). The most frequently used
study designs are better able to detect variation in scope even when substantial variation
in speed exists, and variation in speed may often be interpreted as variation in scope when
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samples are collected at standardized times (Taff, 2021).

Given the challenge of measuring the speed of GC responses, it is not surprising that there is
much more empirical evidence suggesting the importance of variation in scope (Schoenle et
al., 2018; e.g., Vitousek et al., 2019). However, there are also suggestions in the literature that
variation in speed might differ in important ways between individuals in some situations. For
example, wild great tits (Parus major) that were more cautious in a behavioral assay also had
a faster increase in corticosterone during the three minutes after capture (Baugh et al., 2013).
A handful of other papers also report differences in aspects of the speed of GC responses
between isogenic lines (Sadoul et al., 2015) or in relation to individual characteristics such as
age and dominance (Sapolsky, 1993; Sapolsky and Altmann, 1991), food availability (Heath
and Dufty, 1998), prior experience (Cockrem, 2013), or maternal condition (Weber et al.,
2018). In addition to variation between individuals, there is ample evidence that the time
required to reach maximum GC levels differs with life history stage (Wingfield et al., 1992),
between populations (Addis et al., 2011; Zimmer et al., 2020b), and between species (Romero
and Reed, 2005; Vitousek et al., 2018), although these studies typically interpret variation
primarily or exclusively in terms of scope.

Despite this evidence that the speed of the GC response varies and suggestions that this
variation might be an important target of selection, there has been little effort to assemble a
complete conceptual framework for predicting when faster or slower GC responses would be
favored at either an individual or population level. In contrast, a wide range of conceptual
and mathematical models have explored the conditions under which the scope of the GC
response is expected to be larger or smaller (Romero et al., 2009; Taborsky et al., 2020;
e.g., Wingfield et al., 1998). These models have been applied to empirical data at both the
between-individual and between species levels (Bokony et al., 2009; Hau et al., 2010; Jessop
et al., 2016, 2013; Schoenle et al., 2018; Vitousek et al., 2019).

In this paper, our goal was to first develop a set of hypotheses and predictions describing
the conditions under which faster or slower GC responses should be favored. For this goal
we borrowed heavily from existing frameworks for understanding variation in scope and
translated these predictions to a set of hypotheses that might explain variation in speed of
the GC response between individuals or populations (see below). We also evaluated support
for predictions about how the speed and scope of GC responses covary among individuals
and among species.

To evaluate evidence for these hypotheses, we used a database of corticosterone measurements
in birds. The data available were more appropriate for testing differences in speed of GC
regulation between species and we focus on those comparisons, but we emphasize that each of
our hypotheses could also apply at the between-individual level and that different patterns of
covariation might occur at each level (Agrawal, 2020). Finally, we lay out recommendations
and directions for future study in this area. Throughout the paper, we focus on the acute
GC response because most empirical data includes measurements of this aspect of the stress
response, but many of the hypotheses and ideas developed here will apply equally well to
other components of the integrated stress response that change rapidly after encountering a
stressor. Measuring multiple aspects of the acute stress response to evaluate whether a faster
GC response always results in faster downstream changes in phenotype will be a fruitful area
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for future study.
Covariation in speed and scope

The speed and scope of endocrine responses could covary due to shared regulatory mechanisms,
or as a result of selection operating simultaneously on both traits. Although phenotypic
correlation does not necessarily equate to genetic correlation, no or weak phenotypic correlation
between these traits would suggest that they could be independently shaped by selection.
Covariation between speed and scope is also important to understand because the particular
patterns of covariation and relative amount of variation in each trait will have a strong effect
on how well particular experimental designs can separately measure speed and scope (Taff,
2021). A recent optimality model by Luttbeg et al. (2021) revealed that slower GC responses
lead to more similar baseline and stress-induced GC levels (i.e., a lower scope of response)
when the increased lag time between encountering a stressor and responding appropriately
elevates the likelihood of a mismatch between context and hormonal state. Here, we tested
whether these predictions are supported at the among-individual and among-species levels.
Specifically, we tested whether individuals and species that mount a faster GC stress response
have lower baseline GCs, higher stress-induced GCs, and a larger GC scope (maximum -
baseline).

The environmental and life history predictors of rapid GC responses

We predict that selection will favor faster GC stress responses in environments in which
significant challenges are common - and in which the effects of those challenges could be
ameliorated by rapid hormone-mediated plasticity. This overarching hypothesis is similar
to the “supportive” hypothesis previously proposed to explain variation in baseline GCs
and the scope of the acute stress response (Vitousek et al., 2019); however, we anticipate
that the specific environmental and life history contexts that most strongly favor a rapid
response versus a high scope response will differ. Because of the role of GCs in mediating
thermoregulation through metabolic effects and the response to environmental challenges
(Debonne et al., 2008; e.g., Jessop et al., 2016; Ruuskanen et al., 2021) we predict that:
(1) faster GC responses will be favored in environments with greater thermal variability
and/or unpredictability, and possibly also (2) in environments with greater variability or
unpredictability in rainfall. We also predict that because smaller organisms generally have
fewer energetic reserves, selection will favor (3) a more rapid GC stress response in smaller
species. Similarly, when controlling for body size, we predict that (4) species with a higher
metabolic rate (and thus higher total energetic demand) will mount faster GC stress responses.
Note however that a positive covariation between metabolic rate and the speed of GC responses
could also be a byproduct of the generally faster rate of biochemical processes that accompany
high metabolic rates, rather than selection specifically favoring fast GC stress responses in
these species.

Because mounting a GC stress response imposes a variety of costs, selection may also favor
a muted GC stress response in contexts in which these costs are likely to be particularly
damaging (the “protective” hypothesis: Vitousek et al. 2019). If a slower GC stress response
reduces the likelihood that a response will be triggered inappropriately by challenges that
cease before the onset of GC-mediated plasticity, or provides individuals with more time to
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evaluate the nature of a challenge before responding, then slower responses may be especially
beneficial in some contexts (Luttbeg et al., 2021; Taff and Vitousek, 2016). We predict that
because the acute GC stress response often impairs reproduction (e.g., Bokony et al., 2009;
Sapolsky et al., 2000; Wingfield and Sapolsky, 2003), (5) organisms engaging in high value
reproductive attempts (those with fewer lifetime opportunities to reproduce) will mount
slower stress responses during breeding.

The nature of the challenges that organisms face are likely to affect the optimal speed of GC
responses, in addition to their scope (e.g., Schoenle et al., 2018). When predation and other
extrinsic threats are relatively common but variable in frequency, and when the risk of these
threats can be mitigated by GC-induced plasticity, then we predict more rapid responses will
be favored. Because data on the frequency or nature of threats faced by individuals in the
populations measured here are not available we were not able to test this prediction directly.
However, we tested the related prediction that (6) shorter-lived species (which generally
face more extrinsic threats) will mount faster GC responses. Note however that this same
relationship could reflect selection favoring slower responses in longer-lived species, which
may be more susceptible to accumulated phenotypic damage resulting from high GC levels
(Schoenle et al., 2021; Vitousek et al., 2019).

METHODS

Database of corticosterone measurements

We used a database of corticosterone measurements taken from species studied by the
Wingfield Lab between 1988 and 2005 (Wingfield et al., 2018, 1995, 1992). Most of these
data have been published previously as parts of individual studies spanning the last several
decades. Baseline and stress-induced corticosterone values for most species are also included
in HormoneBase (Vitousek et al., 2018), but that database does not include data from each
time point used here. The field and laboratory methods for these studies are similar across
species and are described in detail in a number of previous papers (Wingfield et al., 1995,
1992).

For all species, individuals were captured and a blood sample was taken in under three
minutes followed by a standard stress restraint protocol with samples taken at multiple time
points after capture. Samples were stored on ice in the field until plasma and red blood cells
were separated by centrifugation in the lab and corticosterone concentration was assayed
by radioimmunoassay (Wingfield et al., 1995, 1992). No new data were collected in the
present study. All sampling was approved by the appropriate agencies spanning a variety of
institutions and locations.

Because we were interested in assessing variation in the speed of the corticosterone response,
we restricted our analyses to species that had at least 5 individuals sampled for at least
three different time points under 35 minutes after capture. For most species, samples were
collected at <3 minutes, 5 minutes, 10 minutes, and 30 minutes. A few species had samples
taken at 15 or 20 minutes in place of one of the other sampling times; because we focused on
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the change from baseline to 10 minutes after capture, these species are excluded from most
analyses. After filtering, our dataset included 58 species. Of these, 56 species also had at
least 5 individuals sampled at a later time point (usually 60 minutes). Thus, most species in
the dataset were sampled at five different time points during the hour after capture.

The database we used included information on mass, sampling date, and location of each
individual. We matched these records with life history variables previously assembled in
HormoneBase (as described in Johnson et al., 2018) to include average lifespan, number of
clutches per year, age at maturity, and metabolic rate (Vitousek et al., 2018). Following
Vitousek et al. (2019), we calculated the number of reproduction attempts as (average lifespan -
age at maturity) x number of clutches per year. Previous analyses in the HormoneBase project
used imputed metabolic rate and average lifespan from a phylogenetic reconstruction for
species with missing data (Vitousek et al., 2019) using the R package phylopars (Bruggeman
et al., 2009). We ran analyses both with and without imputed values and in most cases
results were qualitatively similar. We report the analyses with imputed values but note any
cases where results differed.

Finally, we also used data from a previous HormoneBase analysis (Vitousek et al., 2019)
at a population level to match corticosterone records with the amount of variation in
precipitation and temperature at each location. Briefly, intra-season variation in temperature
and precipitation was calculated as the standard deviation of daily temperature from a 51-year
time series of global climate in 0.5° grids from the Climatic Research Unit (Harris et al.,
2014) as described in Johnson et al. 2018. For these calculations, climate data were grouped
into four three month intervals as follows: December-February, March-May, June-August,
September-November (full details in Vitousek et al., 2019). Individual capture records were
matched to the climate data for the location and time period that they occurred in. Species
level data were calculated by averaging climate data across each individual record included.

Assessing variation in speed

These samples were intentionally collected as close as possible to standardized times, making
it difficult to estimate the entire functional shape of an acute stress response (Taff, 2021).
Given this limitation, we instead focused on comparing species differences at the specific
time points included in the database. We calculated the speed of corticosterone responses
in several ways (see Box 1). First, we calculated the absolute rate of increase in circulating
corticosterone between baseline (< 3 minutes) and 10 minute sampling points.

Unsurprisingly, species often differed enormously in the absolute levels of corticosterone at
baseline and in maximum corticosterone values (Vitousek et al., 2019). Thus, responses that
increase faster in absolute terms might not result in reaching their maximum values faster. To
compare speed separately from the scope of the response, we also calculated the percentage
of their maximum or percentage of the scope (maximum - baseline) at each sampling point.
These calculations were made for each individual included in the dataset. For species level
models we averaged all individuals sampled for each species. Given the timing of samples, we
could not directly calculate the time elapsed between capture and maximum corticosterone
for either individuals or species in this study.

Data analysis


https://doi.org/10.1101/2021.10.18.464833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464833; this version posted October 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

We first asked whether the speed of the acute corticosterone response covaried with baseline or
maximum corticosterone or the scope of the response (maximum - baseline) at both a within
species and between species level. For within species models, we centered and standardized all
variables within each species. This allowed us to ask whether higher concentrations, relative
to the species mean, were associated with an increase in speed, relative to the species mean.
Mean centering within groups is the appropriate approach to ask whether deviations from
the species mean (i.e. within-species) in predictors are associated with deviations in speed
(Westneat et al., 2020).

Using this standardized dataset, we fit two linear mixed models for each of our three response
variables. The response variables were either the absolute increase in corticosterone from
baseline to 10 minutes, the percent of maximum corticosterone at 10 minutes, or the percent
of the scope (maximum - baseline) reached after 10 minutes. For each response variable we
fit one model with baseline and maximum corticosterone as predictors and a second model
with scope as a predictor. We fit an identical set of models for the between species analysis,
except that our dataset was collapsed into averages across all individuals for each species.

Next, we asked whether variation in the speed of the stress response was associated with life
history variables at the species level. We did not have measurements for relevant covariates
to fit similar models at the within species levels. We fit a set of models for each of the
three response variables (absolute increase, percent of maximum, and percent of scope at 10
minutes). Based on the covariation patterns between speed and concentrations found in the
models above, we decided to include baseline and maximum corticosterone as covariates in
each of these models.

For each response variable, we fit models that included either (1) intra-season temperature
variability, (2) intra-season precipitation variability, (3) log transformed mass, (4) metabolic
rate plus log transformed mass, (5) average lifespan, or (6) average lifetime reproductive
attempts. For metabolic rate, lifespan, and reproductive attempts, we fit models with and
without imputed values. All predictors were scaled to a mean of 0 and standard deviation of
1 so that effect sizes are directly comparable. The number of species included in our dataset
was insufficient to fit large omnibus models including multiple predictors (as in Vitousek et
al., 2019). Given the modest sample size and the fact that many of the life history measures
we considered are likely correlated, we did not attempt to rank models and instead focus on
cautious interpretation of each model separately while recognizing that we cannot separate
the influence of each life history trait from the others.

For most models we used the full dataset, but the reproductive value hypothesis applies
specifically to samples collected during the breeding season. Thus, for that model we restricted
the dataset to individual samples collected during March to August for north temperate
species and September to February for south temperate species. When samples were collected
from populations located within 20 degrees of the equator, and from individuals whose
breeding status was unknown, we considered them to be from the breeding season if the
months of collection overlapped with the breeding season of that species.

In addition to the fixed effects listed above, all models also included the resolved phylogeny
for these species as a random effect to account for the non-independence of species level
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observations. The phylogeny that we included was downloaded from www.birdtree.org and
pruned to include only the species included in this study (Jetz et al., 2014, 2012). All models
were fit with the R package MCMCglmm with a Gaussian distribution (Hadfield, 2010) using
relatively uninformative inverse gamma priors (V = 1, v = 0.002). Each model was run
for 1,000,000 iterations with a burnin of 50,000 and thinning interval of 200. We visually
inspected trace and density plots for each model and confirmed that autocorrelation values
for samples were all < 0.05 (Hadfield, 2010). We report marginal and conditional R? values
for each model following the approach described in Nakagawa et al (2013).

Not all covariates or corticosterone measurements were available for every population or
species. Therefore, the sample sizes for analyses differ depending on the data available for
each particular question. For all cases in which data was restricted as described above, we
only included species in our models when at least 5 individuals were retained after filtering.

RESULTS

In total, our analysis included 7,074 corticosterone measurements from 1,750 individuals
sampled from 58 different species. In addition to variation in the absolute levels of baseline
and stress induced corticosterone (Figure 1A), individuals and species varied substantially in
both the percentage of maximum corticosterone reached by 10 minutes (Figure 1B) and in
the percentage of scope achieved after 10 minutes (Figure 1C).
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Figure 1: Comparative data from 58 species showing the overall absolute stress response (A), the percentage
of maximum corticosterone reached at each sampling point (B), and the percentage of the change from
baseline to maximum values reached at each sampling point (C). Each species is represented by a different
line.

Covariation between speed and circulating corticosterone

At the among individual level, a larger scope of corticosterone response was associated with
a faster absolute increase during the first 10 minutes after capture (Table 1; Figure 2A; 3
= 0.55, CI = 0.49 to 0.60) and with attaining a higher percentage of the scope within 10
minutes (Table 1; Figure 2C; 5 = 0.10, CI = 0.04 to 0.17). Individuals with higher baseline
corticosterone had a slower initial increase both in absolute terms and as a percentage of
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scope (Table 1; absolute 5 = -0.33, CI = -0.39 to -0.28; percent of scope = -0.40, CI =
-0.45 to -0.33), while individuals with higher maximum corticosterone had a faster increase in
absolute terms and a trend for a faster increase as a percentage of scope (Table 1; absolute
B = 0.53, CI = 0.47 to 0.59; percent of scope f = 0.06; CI = -0.01 to 0.12). In contrast,
individuals that reached a larger percentage of their maximum value by 10 minutes after
capture had higher baseline corticosterone, lower maximum corticosterone, and a smaller
scope (Table 1; baseline 5 = 0.18, CI = 0.12 to 0.25; maximum /5 = -0.30, CI = -0.37 to 0.24;
scope 3 = -0.29, CI = -0.35 to -0.23).
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Figure 2: Relationship between scope of the stress response and the absolute increase in corticosterone (A-B)
or percent of the scope reached (C-D) in the 10 minutes after capture. Panels A and C show relationships for
individuals within species with both scope and speed centered and standardized for each species. Black lines
are simple linear regressions for each species and red line and shaded region are the best fit and confidence
interval from the phylogenetically informed model. Panel B and D show the relationships for species averages
with the red line and shaded region illustrating the modeled fit accounting for phylogeny.
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At the among species level, a larger scope of corticosterone response was associated with a
faster absolute increase (Table 1; Figure 2B; § = 7.97, CI = 5.91 to 10.19), but scope was
not associated with the percentage of the scope reached in the first 10 minutes (Table 1;
Figure 2D; 5 = 0.02, CI = -0.02 to 0.06). Species with higher maximum corticosterone had a
larger absolute increase in corticosterone in the first 10 minutes, but baseline corticosterone
was not associated with the absolute increase (Table 1; maximum g = 8.65, CI = 6.15 to
10.94; baseline § = -0.47, CI = -2.81 to 1.93). Neither baseline nor maximum corticosterone
were associated with the percentage of scope achieved after 10 minutes (Table 1; baseline /3
= -0.02, CI =-0.06 to 0.03; maximum 5 = 0.02, CI = -0.02 to 0.07). Similar to the among
individual models above, species that reached a larger percentage of their maximum value by
10 minutes after capture had higher baseline corticosterone, lower maximum corticosterone,
and tended to have a smaller scope (Table 1; baseline § = 0.10, CI = 0.06 to 0.14; maximum
f =-0.06, CI =-0.10 to -0.02; scope § = -0.04, CI = -0.08 to 0.00).

Table 1. Models of covariation between speed and scope among individuals and species.

Percent of Maximum Percent of Response Absolute Increase
at 10 Minutes at 10 Minutes Base to 10 Minutes
Predictor Estimate ClI pMCMC Estimate ClI pMCMC Estimate CI pMCMC
Among Individuals
Model 1: ~ base + maximum R?=0.09 (m); 0.10 (c) R2=0.14 (m); 0.15 (c) R?=0.27 (m); 0.28 (c)
Intercept 0.00 -0.10to 0.11 0.99 0.00 -0.10t00.10 0.99 0.00 -0.10t0 0.10 0.97
Base (species centered) 0.18 0.12t0 0.25 <0.001 -0.40 -0.45to -0.33 <0.001 -0.33 -0.39t0-0.28 <0.001
Maximum (species centered) -0.30 -0.37 to 0.24  <0.001 0.06 -0.01t00.12 0.08 0.53 0.47 t0 0.59  <0.001
Model 2: ~ scope R2=0.08 (m); 0.09 (c) R2=0.01 (m); 0.02 (c) R?=0.29 (m); 0.30 (c)
Intercept 0.00 -0.11t0 0.10 0.99 0.00 -0.11to00.11 0.99 0 -0.10 t0 0.10 0.98
Scope (species centered) -0.29 -0.35t0-0.23 <0.001 0.10 0.04to 0.17 0.001 0.55 0.49t0 0.60 <0.001
Among Species
Model 1: ~ base + maximum R?=0.27 (m); 0.67 (c) R?=0.02 (m); 0.38 (c) R?=0.56 (m); 0.59 (c)
Intercept 0.57 0.48t00.66 <0.001 0.31  0.23to0 0.40 <0.001 17.66 14.81t020.40 <0.001
Base 0.10 0.06 to 0.14  <0.001 -0.02 -0.06 to 0.03 0.42 -0.47 -2.81101.93 0.73
Maximum -0.06 -0.10 to -0.02 0.004 0.02 -0.02to0 0.07 0.33 8.65 6.15t010.94 <0.001
Model 2: ~ scope R?=0.04 (m); 0.68 (c) R2=0.01 (m); 0.36 (c) R?=0.50 (m); 0.55 (c)
Intercept 0.58 0.45t00.70 <0.001 0.31  0.23t0 0.40 <0.001 17.63 14.44t020.51 <0.001
Scope -0.04 -0.08 to 0.00 0.06 0.02 -0.02to 0.06 0.40 797 591t010.19 <0.001

* R?indicated as marginal (m) and conditional (c) for each model

Life history traits and variation in speed

Species that were sampled at locations with higher intra-season variation in temperature had
faster stress responses as a percentage of maximum or percentage of response and a trend
toward larger absolute increases (Table 2; Figure 3A; percent of response 5 = 0.06, CI =
0.03 to 0.10; percent of maximum S = 0.05, CI = 0.02 to 0.08; absolute increase 5 = 2.00,
CI = -0.17 to 4.04). There was no evidence that any of the three response variables were
related to precipitation variability, mass, metabolic rate, or reproductive value and this lack

of relationship was the same when using datasets that included imputed or only measured
values (Table 2).

Species with longer average lifespans had significantly slower stress responses as a percent of
maximum or percent of scope and tended to have a slower absolute increase during the first
10 minutes (Table 2; Figure 3B; percent of scope = -0.04, CI = -0.08 to 0.00; percent of
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Figure 3: Relationship between the percent of the scope achieved after 10 minutes and the intra-season
variation in temperature (A) or the average lifespan (B). In both panels, black points are observed data for
each species and red lines and shading indicate the predicted fit and confidence interval from phylogenetically
controlled models that also account for variation in baseline and maximum corticosterone values. In panel B,
the black line indicates the best fit when considering only observed values rather than imputed values and
open circles indicate species whose lifespan values were imputed.

maximum [ = -0.05, CI = -0.10 to 0.00; absolute increase § = -1.82, CI = -5.36 to 1.92).
This same pattern was recovered in the smaller dataset using only measured values and in
that case longer lifespan was significantly associated with a slower stress response for all three
response variables (percent of scope f = -0.08, CI = -0.14 to -0.02; percent of maximum [ =
-0.06, CI = -0.11 to -0.01; absolute increase § = -2.99, CI = -5.77 to -0.46).
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Table 2. Models of speed in relation to life history and environment.

Percent of Maximum Percent of Response Absolute Increase
at 10 Minutes at 10 Minutes Base to 10 Minutes
Confidence Confidence Confidence

Model Predictor Effect Interval pMCMC  Effect Interval pMCMC Effect Interval pMCMC
Model 1: Temp. Variability R?=0.35(m); 0.72 (c) R?=0.18 (m); 0.48 (c) R?=0.58 (m); 0.61 (c)

Intercept 0.58 0.49 to 0.66 0.32 0.25t00.41 17.59 14.77 to 20.43

Baseline 0.09 0.06 to 0.13 0.001 -0.02 -0.06 to 0.02 0.259  -0.59 -2.951t01.88 0.611

Maximum -0.05 -0.09 to -0.01 0.013 0.04 -0.01to00.08 0.078 9.15 6.56 to 11.5 0.001

Temp. Variation 0.05 0.02 to 0.08 0.002 0.06 0.03 to 0.10 0.001 2.00 -0.17 to 4.04 0.063
Model 2: Precip. Variability R?=0.23 (m); 0.66 (c) R?=0.05 (m); 0.40 (c) R?=0.56 (m); 0.60 (c)

Intercept 0.56 0.47 to 0.65 0.30 0.21t0 0.39 17.40 14.53 to 20.27

Baseline 0.09 0.05to00.13 0.001 -0.02 -0.06 to 0.03 0.452  -0.30 -2.89 to 2.25 0.805

Maximum -0.06 -0.10 to -0.02 0.007 0.02 -0.03 to 0.07 0.36 8.52 6.02to 11.12 0.001

Precip. Variation 0.00 -0.03 to 0.04 0.921 -0.02 -0.06 to 0.02 0.259 -1.03 -3.2t0 1.13 0.344
Model 3: Mass R?=0.33 (m); 0.71 (c) R?=0.13 (m); 0.46 (c) R?=0.59 (m); 0.62 (c)

Intercept 0.58 0.49 to 0.67 0.34 0.23t00.43 17.87 14.7 to 20.8

Baseline 0.10 0.06 to 0.14 0.001 -0.02 -0.07 to 0.02 0.354  -0.34 -3.04to0 2.04 0.792

Maximum -0.06 -0.10 to -0.03 0.003 0.02 -0.02 to 0.07 0.315 8.83 6.42to 11.52 0.001

log(Mass) -0.03 -0.08 to 0.03 0.282 -0.03 -0.10 to 0.02 0.246  -0.11 -2.5to 2.47 0.931
Model 4: Metabolic Rate R?=0.32 (m); 0.68 (c) R?=0.06 (m); 0.41 (c) R?=0.55(m); 0.60 (c)

Intercept 0.59 0.50 to 0.68 0.34 0.24t00.44 17.75 13.89to0 20.73

Baseline 0.09 0.05to00.14 0.001 -0.02 -0.07 to 0.03 0.371  -0.29 -2.96 to 2.35 0.824

Maximum -0.06 -0.10 to -0.02 0.002 0.02 -0.03 to 0.07 0.353 8.77 6.18to 11.39 0.001

log(Mass) -0.03 -0.11 to 0.04 0.358 -0.04 -0.12 to 0.05 0.407 0.17 -4t0 4.19 0.931

Metabolic Rate 0.01 -0.05 to 0.06 0.833 0.00 -0.07 to 0.07 0.965 -0.33 -4.39t03.31 0.859
Model 5: Lifespan R?=0.32 (m); 0.71 (c) R?=0.10 (m); 0.41 (c) R?=0.56 (m); 0.60 (c)

Intercept 0.58 0.49 to 0.67 0.33 0.25t00.42 18.63 10.3 to 28.32

Baseline 0.09 0.04to00.13 0.001 -0.04 -0.08 to 0.01 0.119 -4.89 -8.45t0-1.69 0.008

Maximum -0.04 -0.08 to 0.00 0.043 0.05 0.00to0 0.10 0.064 12.28 9.36to 16 0.001

Lifespan -0.04 -0.08 to 0.00 0.042 -0.05 -0.10 to 0.00 0.034 -1.82 -5.36to0 1.92 0.321
Model 6: Reproductive Value R?=0.26 (m); 0.62 (c) R2=0.08 (m); 0.41 (c) R?=0.55(m); 0.77 (c)

Intercept 0.58 0.46 to 0.68 0.33 0.22t0 0.44 17.74 14.99 to 20.45

Baseline 0.07 0.01to0.12 0.024 -0.05 -0.11to 0.02 0.129 -0.96 -3.49t0 1.8 0.460

Maximum -0.03 -0.09 to 0.02 0.242 0.04 -0.03t0 0.10 0.284 9.32 6.62to 11.91 0.001

Repro. Value -0.06 -0.12 to 0.00 0.064 -0.05 -0.12 to 0.02 0.172  -1.38 -3.69 to 0.96 0.245

* R? indicated as marginal (m) and conditional (c) for each model

DISCUSSION

While the factors shaping selection on the scope of GC responses have been well described in
recent years, much less is known about whether variation in the speed of the GC response is
also an important trait. Our results support the general idea that the speed of the acute
GC response may be a target of selection both through its association with the scope of
the GC response and via independent associations with environmental context or important
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life history characteristics. At present, it is unclear under what conditions variation in
speed or scope contribute more to fitness outcomes, largely because the available data in
many published studies cannot distinguish between speed and scope. Nevertheless, our
results suggest that the speed of the GC response, independent of scope, may play a role in
determining how individuals and species cope with challenging environmental conditions.

The patterns of covariation that we found between the speed and scope of the acute GC
response were largely similar to those predicted by the optimality model of Luttbeg et al.
(2021). In absolute terms, both among-individual and among-species models demonstrated
a strong association between the scope of the GC response and the rate of increase during
the initial 10 minutes after capture. This pattern matches the prediction that slower GC
regulation will result in a smaller scope with more similar baseline and maximal GC levels
to minimize the amount of time spent in a mismatched (suboptimal) phenotype (Luttbeg
et al., 2021). In contrast with the strong association between scope and absolute speed,
the link between the percentage of scope achieved after 10 minutes and the scope itself
was much less clear. While individuals with larger scopes were still faster in this relative
measure, there was considerable heterogeneity among species in this relationship, and no
overall species-level association between these measures. The fact that the absolute rate
of increase in corticosterone and the relative increase as a proportion of total scope show
different patterns suggests that—at least at the interspecific level-speed and scope could vary
somewhat independently and may be subject to different selective pressures. More studies
are needed that can separately measure speed and scope to assess the relative importance
and amount of variation in these two traits, especially at the within-species level (Taff, 2021).

Among the environmental and life history factors tested, the strongest predictor of the speed
of GC responses in birds was thermal variability. Species inhabiting environments with more
intra-season variation in temperature mounted faster GC responses. This is consistent with
the hypothesis that the ability to mount a rapid GC response to thermal challenges may
be favored in highly variable environments and suggests a “supportive” effect of selection.
In contrast, variation in precipitation did not predict the speed of GC responses in birds.
A previous analysis found that variation in both temperature and precipitation positively
predicted baseline GC levels across vertebrates; this was interpreted as reflecting the role
of baseline GCs in helping organisms to prepare for and cope with energetically demanding
environments (Vitousek et al., 2019). We suggest that the different patterns seen here
in the relationships between the speed of GC responses and variation in temperature and
precipitation could reflect a difference in the timescale of the threat posed by these challenges:
while extreme temperatures can represent an immediate threat to survival — for which it can
be important to respond rapidly — variation in precipitation likely challenges birds over longer
timescales (days to weeks). Thus, the relative benefit of responding rapidly to challenges may
be greater in more thermally variable environments than in those that vary in precipitation.

Shorter-lived species also mounted faster GC responses, when speed was measured as a per-
centage of scope or maximum corticosterone level. This pattern could reflect selection favoring
more rapid stressor-induced plasticity in populations that face more extrinsic challenges (in
accordance with the “supportive” hypothesis). However, the same relationship could also
result from selection favoring slower responses in longer-lived species, who may be more at
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risk of accumulated phenotypic damage from elevated GC levels (“protective” hypothesis).

Contrary to our predictions, we did not find a significant relationship between lifetime
reproductive attempts and any of the measures of the speed of the GC response during
the breeding season. One measure of speed even showed a negative trend, opposite to the
direction predicted. Thus, we found no support for the prediction that birds engaging in
more valuable reproductive attempts (those with fewer lifetime reproductive opportunities)
reduce the likelihood of GC-induced reproductive impairment by responding more slowly
to threats. It is important to note, however, that the various life history measures that we
assessed were tightly correlated in this data set. Species with greater longevity also had more
lifetime opportunities to reproduce. Thus, while longevity is clearly a stronger predictor of
the speed of GC responses than reproductive value in this dataset, the non-independence
of these measures prevent us from determining the extent to which reproductive value may
independently predict the speed of GC responses.

Neither body mass nor metabolic rate were associated with the speed of GC responses in
birds. Previous analyses in birds and across vertebrates found that smaller species have
higher baseline GCs (Bokony et al., 2009; Hau et al., 2010; Vitousek et al., 2019) but that
size is unrelated to stress-induced GCs (Bokony et al., 2009; Vitousek et al., 2019; but see
Hau et al., 2010). These findings suggest that body size alone does not predict whether
a faster or slower GC response is optimal. Despite widespread predictions that metabolic
rate is a major driver of variation in GC release and clearance, metabolic rate appears to
generally be a rather poor predictor of variation in GC levels across species. Mass-specific
metabolic rate is not related to baseline GC levels within birds (Francis et al., 2018) or across
vertebrates (Vitousek et al., 2019; but see Haase et al., 2016 in mammals). Birds with higher
mass-specific metabolic rates do have higher stress-induced GC levels (Francis et al., 2018),
but this pattern is not present over larger taxonomic scales (Vitousek et al., 2019). The lack
of a relationship between metabolic rate and the speed of glucocorticoid responses seen here
underscores that the speed of endocrine responses — like other GC regulatory traits — can
evolve independently of metabolic rate. It also suggests that total energetic demand is not a
strong predictor of the optimal speed of GC responses.

Taken together these findings suggest that selection favors rapid GC responses in organisms
facing frequent major challenges — consistent with the “supportive” role of GCs. In contrast,
there was little definitive support for the idea that slower GC responses may help to protect
organisms from the costs of over responding — and thus be favored in contexts in which
the costs of mounting a GC response are particularly high (the “protective” hypothesis).
Note however that as described above, the observed relationship between longevity and the
speed of GC responses could reflect selection favoring either “supportive” or “protective”
roles. A recent phylogenetic comparative analysis found a similar overall pattern for baseline
corticosterone: across vertebrates, baseline GCs are higher in populations and species in
more challenging environments, consistent with the “supportive” hypothesis (Vitousek et al.,
2019). Variation in peak stress-induced corticosterone was instead best explained by selection
favoring reduced costs (the “protective” hypothesis). Understanding how the speed of GC
responses is related to the frequency of challenges has important implications for predicting
how species will respond to climate changes that result in increased frequency, duration, and
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intensity of extreme weather events.

Over several decades, evidence has been growing that steroid hormones can have very rapid
effects, within minutes, which are not compatible with binding to genomic receptors. The
latter act as gene transcription factors requiring hours for full response (e.g., Balthazart, 2021).
Rapid effects of glucocorticoids in mammals, birds and amphibians have been attributed to
non-genomic receptors, possibly in cell membranes, that generate behavioral and physiological
responses to environmental perturbations (Panettieri et al., 2019). Such effects include
increased aggression in rats (Mikics et al., 2004), altered cell signaling (Haller et al., 2008),
locomotion, anxiety and general behavior in response to an environmental challenge (Makara
and Haller, 2001; Mikics et al., 2005). Non-genomic receptors for GCs appear to be associated
with membranes in mammals (Tasker et al., 2005) and in amphibians these membrane
receptors in the central nervous system interact with G-proteins further suggesting non-
genomic actions (Moore and Orchinik, 1994). In a songbird, non-invasive treatment with
corticosterone (via ingestion of a mealworm injected with the steroid hormone) increased
plasma levels of corticosterone and perch-hopping activity within 15 minutes (Breuner et
al.; 1998). It also appears that this rapid effect on activity is evident in birds held on
spring-like long days and not manifest in birds held on winter-like short days (Breuner and
Wingfield, 2000). However, in general the mechanisms of action by non-genomic receptors
are not well understood, but the perspectives presented in this paper may direct hypotheses
and experimental approaches relevant to environmental context and speed of the acute
stress response including new insights into the cellular mechanisms by which more rapid GC
responses allow for more effective avoidance or tolerance of stressors.

One limitation of this study is that we were only able to test life history related hypotheses
at the between species level. There is evidence that variation in the scope of the GC response
is related to life history traits or performance among species (Bokony et al., 2009; Hau et
al., 2010; Jessop et al., 2013; Vitousek et al., 2019) and among individuals within a species
(Breuner et al., 2008; Ouyang et al., 2011; Schoenle et al., 2021; Vitousek et al., 2014). Similar
patterns may apply to speed, but few studies address speed at the within species or within
individual level (but see Baugh et al., 2013) and simulations demonstrate that separately
measuring speed and scope at these levels will be challenging (Taff, 2021). Moreover, while
there is appreciation for the way that GC regulation varies across multiple levels (Hau et al.,
2016), there is no guarantee that associations found at one level will apply at other levels
(Agrawal, 2020). For example, here we failed to find a relationship between speed and average
reproductive attempts. However, the species in our dataset varied enormously in lifespan and
this variation may have masked the importance of variation in reproductive value between
more closely related species. It is entirely plausible that a more narrowly focused analysis
(e.g., between populations of the same species along a latitudinal gradient) would support
the reproductive value hypothesis. Studies of both speed and scope would benefit from a
focus on developing frameworks that explicitly make level-specific predictions (Agrawal, 2020;
Hau et al., 2016).

We focused here on only the initial rapid increase in GCs after a stressor, but there are other
timing related elements of the GC response that could be considered variation in speed (e.g.,
time spent at maximum, maximum rate of negative feedback, time to return to baseline
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levels). Several recent papers have demonstrated that variation in the strength of negative
feedback is an important predictor of performance (Romero and Wikelski, 2010; Taff et
al., 2018; Zimmer et al., 2019). Interestingly, these results are sometimes interpreted as
demonstrating variation in the speed of negative feedback even though measures are only
taken at two time points, making it difficult to separate the scope and speed of negative
feedback. Moreover, the speed of GC regulation represents only a single component of speed
in the more general stress response (Romero and Gormally, 2019). There has been increasing
recognition in recent years that GC regulation alone is insufficient to understand variation in
the stress response, because a greater GC response does not necessarily indicate a greater
response in a variety of important downstream physiological or behavioral traits (Gormally
et al., 2020; Neuman-Lee et al., 2020; Romero and Gormally, 2019). While these studies
have generally focused on variation in scope, the same arguments apply to understanding
variation in speed. A more complete understanding of speed will require identifying the entire
functional shape of acute GC responses.

To some extent, there has been a growing appreciation for the need to understand flexibility
in the shape of GC responses, even when speed and scope are not explicitly identified as
potentially separate traits of interest. The recent emphasis on within-individual reaction norm
approaches for studying variation in GC regulation (speed, scope, or the entire functional
shape of responses) is an exciting development in this field (Hau et al., 2016; Taff and Vitousek,
2016; Wada and Sewall, 2014). However, we caution that these tools are still limited in many
cases by available data and simulations demonstrate that creative study designs may be
required to separately assess variation in speed and scope (Taff, 2021). Technical advances
that allow for continual monitoring of GCs during an entire acute response under relatively
natural conditions would be a huge step forward for this field. Regardless of the limitations,
both the speed and scope of the acute GC response are clearly associated with important life
history traits. Understanding how speed and scope covary or the conditions under which one
or the other trait is a more important determinant of fitness may help to predict why some
individuals and populations are able to survive in challenging conditions when others fail.
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Box 1: Defining and measuring the speed of acute stress responses.

Conceptually, variation in the speed of the acute stress response is reflected by how quickly
organisms can change their phenotype to match challenging conditions (Taff & Vitousek,
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2016). However, translating this broad definition to specific measurements reveals that there
are several different aspects of the stress response that could be considered as representing
variation in the speed of GC upregulation.

Maximum rate of increase: The maximum rate of change of circulating glucocorticoids
during an acute response. Will most likely be achieved during the early minutes of a stress
response.

Time to reach maximum: The total amount of time from encountering a stressor to
reaching the maximum circulating glucocorticoid level.

Time to reach x percent of maximum: The amount of time taken from encountering a
stressor to reaching a certain percentage of the maximum value. For example, species could
be compared in how long it takes to reach 50% of their maximum value.

Time to reach x percent of scope: The amount of time taken from encountering a
stressor to reaching a certain percentage of the acute glucocorticoid response (maximum -
baseline values). This may differ from the percent of maximum because individuals or species
that maintain high baseline glucocorticoids will start a response at a higher percentage of
their maximum value.

In theory, individuals or groups could vary independently in each of these aspects of the
speed of acute responses, though in practice it may be common to find strong covariation
between these components. It is also worth noting that the maximum rate of increase and
the time to reach a percent of the maximum are directly linked with absolute glucocorticoid
levels, because higher maximum levels and higher baseline levels will necessarily covary with
these measures. In contrast, the time to reach the maximum and time to reach a percent
of the response are independent of absolute levels and may be more useful for comparing
speed between groups that differ dramatically in absolute circulating glucocorticoids. These
definitions focus only on the rapidly increasing phase of glucocorticoid responses, but similar
definitions of speed could be extended to describe the negative feedback phase and return to
baseline levels.
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