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Abstract
The use of pre-defined parcellations on surface-based representations of the brain as a method
for data reduction is common across neuroimaging studies. In particular, prediction-based
studies typically employ parcellation-driven summaries of brain measures as input to predictive
algorithms, but the choice of parcellation and its influence on performance is often ignored. Here
we employed pre-processed structural magnetic resonance imaging data (sMRI) from the ABCD
Study® to examine the relationship between 220 parcellations and out-of-sample predictive
performance across 45 phenotypic measures in a large sample of 9-10-year-old children
(N=9,432). Choice of Machine Learning (ML) pipeline and use of alternative multiple
parcellation-based strategies were also assessed. Relative parcellation performance was
dependent on the spatial resolution of the parcellation, with larger numbers of parcels (up to
~4000) outperforming coarser parcellations, according to a power-law scaling of between 1/4
and 1/3. Performance was further influenced by the type of parcellation, ML pipeline, and
general strategy, with existing literature-based parcellations, a support vector based pipeline,
and ensembling across multiple parcellations, respectively, as the highest performing. These
findings highlight the choice of parcellation as an important influence on downstream predictive
performance, showing in some cases that switching to a higher resolution parcellation can yield
a relatively large boost to performance.

Introduction

The application of Machine Learning (ML) methodologies to associate structural
magnetic resonance imaging (sMRI) measures with phenotypic variation is an increasingly
popular approach for studying brain function and structure (Davatzikos 2019). Further, working
with surface-level representations of sMRI is a common technique employed by a number of
popular neuroimaging software packages, such as FreeSurfer (Fischl 2012). For example, a
common surface-based ML workflow is to use FreeSurfer-derived ROIs, either alone or with
other features, to predict a phenotype of interest (Boeke 2020, Sato 2013, Hong 2020, Bhagwat
2019, Hahn 2020, He 2020). Despite the ubiquity of this and similar approaches, the degree to
which the choice of parcellation might affect downstream performance is less well studied.
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Parcellations

Brain parcellations are used across various neuroimaging modalities. At their core, they
represent a method for reducing the dimensionality of a large three-dimensional volume or
surface representation of the brain to a lower dimensional representation (Eickhoff, 2017).
Parcellations typically have the added benefit of providing increased interpretability compared to
other approaches to dimension reduction by their explicit reduction to spatially contiguous
regions or networks of interest. Regions in this case define a group of voxels (3D equivalent to a
pixel / unit) or vertices (surface / network base unit), with each region constituting a distinct
spatial area (athough some parcellations allow overlaps between regions); networks define a
collection of not necessarily spatially contiguous regions. Full (i.e., unparcellated) volumetric or
surface-based brain data typically requires specifically designed analytic tools, as they contain
tens to hundreds of thousands of variables per scan. In contrast, parcellations allow researchers
to more easily employ traditional statistical or ML based methods in studying brain structure and
function. In practice, employing parcellations as a data reduction technique prior to machine
learning serves to aid in interpretability, reduces computational expense, and potentially
provides regularizing benefits (i.e., fewer downstream features as considered in a classic
understanding of the bias-variance trade-off, Von Luxburg 2011). That said, while brain
parcellation techniques have proven useful and are widely popular, they suffer from a key
limitation in contrast to finer spatial resolution analysis, namely that potentially useful information
is lost when averaging across the vertices of an ROI.

A number of different parcellation schemes have been proposed, grouped roughly into
structurally informed parcellations and functionally defined parcellations. Popular anatomically
informed parcellations include the Desikan atlas, consisting of 34 bilateral cortical ROIs, and the
Destrieux atlas, consisting of 74 cortical regions per hemisphere (Desikan 2006, Destrieux
2010). Functionally defined parcellations, emerging most prominently from the literature on
resting state fMRI, tend to be data driven. Popular examples include the earlier Gordon atlas
(Gordon et al., 2016), with parcel boundaries determined from resting state functional
connectivity boundary maps, as well as the newer Schaefer parcellations, which further consider
global similarity between parcels in addition to local boundary information (Schaefer, 2018).

Choice of Parcellation for Machine Learning

The choice of parcellation or alternative dimensionality reduction strategy is often
overlooked as a key parameter in building brain based-classifiers, or is undertaken in an ad hoc
manner with a selection based on convenience or other unstated reason (Franke 2010, de Wit
2017, Squarcina 2017, Karch 2019, Gowin 2019, He 2020). Other parameters such as the
choice of ML pipeline, feature selection or cross-validation strategy are often given more
importance in exploring different experimental configurations (Mateos-Pérez 2018, Janssen
2018, Jollans 2019, Nielsen 2019). However, some studies have examined the choice of
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parcellation in more depth. Arslan et al. provide a systematic comparison across a number of
surface-based parcellations and data reduction strategies as applied to resting state fMRI,
determining that there was not one “best” parcellation (Arslan, 2018). With specific regards to
downstream performance, Dadi et al. performed a thorough benchmarking with
connectome-based predictions from fMRI (Dadi, 2019). This work identified functionally defined
regions, as identified with data-driven clustering methods like dictionary learning, as the highest
performing. Previous work on sMRI showed that increasing the spatial resolution of the cortical
surface achieved higher performance when predicting age (Khundrakpam, 2015). The
relationship between spatial scale and performance is one that we examine in more depth within
this work.

Research Goals

Here we investigated prediction of phenotypes from sMRI-derived measures projected
onto the cortical surface under different summary parcellations. We investigated how choice of
parcellation can influence predictive performance as well as interact with other modelling
choices (e.g., does choice of “best” parcellation change under different ML strategies or for
different predictive targets?). We also considered if there is an overall best strategy or
combination of parcellations to obtain reliably high performance and what features make a
parcellation predictive. We explored in particular the potential relationship between number of
parcels and predictive performance, noting a potential power law scaling relationship. Likewise,
we were interested in identifying the range of sizes over which a scaling relationship between
size and performance might hold.

We also sought to characterize the potential gains in performance from employing
strategies that can make use of information from multiple parcellations in order to inform
predictions, such as ensembling. Specific questions we sought to address included which
multiple parcellation strategy, as well as which parcellations are included in that strategy, and
how those choices influence performance. For example, how do the number of parcellations as
well as the number of parcels in each parcellation contribute to performance gains. Should the
included parcellations for any one ensemble be all of one fixed size or instead span across
different sizes (e.g., five parcellations of size 300 each versus five parcellations with sizes 100,
200, 300, 400 and 500). Finally, how these different decisions influence trade-offs between
performance, runtime and interpretability, is an important consideration.

The core analysis of the paper was a systematic evaluation of different combinations of
parcellations and ML pipelines. Each combination was scored based on its predictive
performance across 45 different phenotypic variables. We conducted this investigation using
data from the Adolescent Brain Cognitive Development (ABCD) Study, which provided sMRI
surface data from 9,432 participants. Further, we evaluated how information across multiple
parcellations can be leveraged to improve predictive performance, using both hyper-parameter
and ensemble approaches.
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Methods

Imaging Data

We used data from the ABCD Study® release 2.0.1. Imaging data were sourced from the
NDA Collection 3165 (See: https://collection3165.readthedocs.io/en/stable/). Data used within
this study were the sMRI cortical reconstruction outputs of a modified HCP-style pipeline. For
each participant, we used left and right hemisphere curvature, sulcal depth, cortical thickness
and unsmoothed myelin map, each in the standard FS LR 32k vertex space (Glasser, 2013). We
also employed each participant’s automatically computed FreeSurfer ROI-level summary
statistics.

Initially, the subset of participants with available data across all four modalities of interest (e.g.,
curvature, sulcal depth, cortical thickness, and myelination) was determined, dropping any
participant with missing data. Additional participant exclusions were applied based on a data
driven outlier removal process, resulting in 9432 final participants. Exact details on outlier
removal are available at sahahn.github.io/parc_scaling/outliers.

Target Variables

A collection of 45 target phenotypic variables (23 binary and 22 continuous), used to gauge
predictive performance of the different parcellation schemes, was sourced from release 2 of the
ABCD dataset. Variables were sourced directly from the rds file made available by the Data
Analysis, Informatics & Resource Center associated with the ABCD Study®. All collected
variables, both target and brain, are from the baseline time point of the ABCD study®. Best
efforts were made to source a list of representative and diverse variables. To facilitate the
comparison of different parcellations, a larger list of variables, sourced from Owens 2021, was
originally screened on a subset of the data (n=2000) to identify those showing some relationship
with the sMRI measures as based on 5-fold ridge regression performance (see
sahahn.github.io/parc_scaling/variables#is-predictive). As different target variables had highly
non-overlapping amounts of missing data, we did not drop any participants and instead replaced
all missing values with a missingness indicator. During evaluation, any target variables with
missing values were excluded from both training and validation folds, and therefore did not
contribute to the estimates of performance. As a result, the sample sizes available for each
target variable varied slightly.

Continuous Variables Participants
included

Mean ± Std Participants
excluded for
missing data
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Standing Height (inches) 9427 55.27 ± 3.32 5
Waist Circumference (inches) 9420 26.51 ± 4.74 12

Measured Weight (lbs) 9425 82.18 ± 23.24 7
CBCL RuleBreak Syndrome Scale 9425 1.16 ± 1.82 7

Parent Age (yrs) 9364 40.08 ± 6.72 68
Motor Development 9340 2.37 ± 0.8 92
Birth Weight (lbs) 9032 6.57 ± 1.48 400

Age (months) 9432 119.17 ± 7.45 0
Little Man Test Score 9163 0.59 ± 0.17 269

MACVS Religion Subscale 9429 3.32 ± 1.42 3
Neighborhood Safety 9426 3.93 ± 0.95 6

NeuroCog PCA1 (general ability) 8791 0.04 ± 0.76 641
NeuroCog PCA2 (executive function) 8791 0.02 ± 0.76 641
NeuroCog PCA3 (learning / memory) 8791 0.03 ± 0.7 641

NIH Card Sort Test 9312 92.89 ± 9.27 120
NIH List Sorting Working Memory Test 9282 97.15 ± 11.72 150

NIH Comparison Processing Speed Test 9297 88.4 ± 14.48 135
NIH Picture Vocabulary Test 9315 84.88 ± 7.93 117

NIH Oral Reading Recognition Test 9305 91.08 ± 6.72 127
WISC Matrix Reasoning Score 9234 18.03 ± 3.77 198

Summed Performance Sports Activity 9432 0.99 ± 1.03 0
Summed Team Sports Activity 9432 1.17 ± 1.18 0

Binary Variables Participants
included

Freq. Participants
excluded for
missing data

Speaks Non-English Language 9429 1.0 3
No 6399 0.68 -
Yes 3030 0.32 -

Thought Problems ASR Syndrome Scale 9432 1.0 0
<=2 7585 0.8 -
>2 1847 0.2 -

CBCL Aggressive Syndrome Scale 9432 1.0 0
<=4 7032 0.75 -
>4 2400 0.25 -

Born Premature 9333 1.0 99
No 7541 0.81 -
Yes 1792 0.19 -

Incubator Days 9432 1.0 0
0 8203 0.87 -

>0 1229 0.13 -
Months Breast Fed 9432 1.0 0

<=10 6497 0.69 -
>10 2935 0.31 -

Has Twin 9401 1.0 31
No 7507 0.8 -
Yes 1894 0.2 -

Planned Pregnancy 9236 1.0 196
No 3511 0.38 -
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Yes 5725 0.62 -
Distress At Birth 9432 1.0 0

0 6853 0.73 -
>0 2579 0.27 -

Mother Pregnancy Problems 9432 1.0 0
0 5492 0.58 -

>0 3940 0.42 -
Any Alcohol During Pregnancy 9432 1.0 0

No 7470 0.79 -
Yes 1962 0.21 -

Any Marijuana During Pregnancy 9432 1.0 0
No 9102 0.97 -
Yes 330 0.03 -

KSADS OCD Composite 9432 1.0 0
0 8457 0.9 -

>0 975 0.1 -
KSADS ADHD Composite 9432 1.0 0

0 7486 0.79 -
>0 1946 0.21 -

KSADS Bipolar Composite 9432 1.0 0
0 8056 0.85 -

>0 1376 0.15 -
Mental Health Services 9376 1.0 56

No 7923 0.85 -
Yes 1453 0.15 -

Detentions / Suspensions 9248 1.0 184
No 8786 0.95 -
Yes 462 0.05 -

Parents Married 9361 1.0 71
No 2856 0.31 -
Yes 6505 0.69 -

Prodromal Psychosis Score 9432 1.0 0
<=10 7689 0.82 -
>10 1743 0.18 -

Screen Time Week (hrs) 9432 1.0 0
<=4 8265 0.88 -
>4 1167 0.12 -

Screen Time Weekend (hrs) 9432 1.0 0
<=5 7430 0.79 -
>5 2002 0.21 -

Sex at Birth 9427 1.0 5
Female 4532 0.48 -

Male 4895 0.52 -
Sleep Disturbance Scale 9432 1.0 0

<=35 5295 0.56 -
>35 4137 0.44 -

Table 1 lists all the target variables employed in these analyses. The first half of the table
lists the 22 continuous variables and the second half lists the 23 binary variables, with
the latter further broken down by class value. The participants excluded for missing data
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refers to the number of missing values for that variable, which are not included in any of
the provided summary statistics, and those participants are likewise skipped when
evaluating that target variable. Full descriptions and extra information on each target
variable are included with the online supplementary materials
(sahahn.github.io/parc_scaling/variables).

Parcellations

All considered surface parcellations were in standard FS LR 32k space, to match the
input data, and if necessary were re-sampled from their original space. We evaluated a number
of existing surface parcellations and a number of randomly generated parcellations (details
below). We also tested some additional variants including downsampled and FreeSurfer
extracted region-of-interest values. In total, we assessed 82 existing parcellations.  Parcellations
available at multiple scales were assessed at every scale; in some cases where multiple
versions of the same parcellation were available (e.g., from different resampling procedures or
with different post processing applied), all versions were tested. 68 of the 82 parcellations were
static or “hard” parcellations, in which each vertex is labelled as a part of exactly one parcel. We
additionally considered 14 probabilistic or “soft” parcellations, where each parcel is represented
by a set of probabilities or weightings across the whole surface or volume. As some
parcellations were only originally available in volumetric MNI space, we applied registration
fusion to map these parcellations to fsaverage space based on scripts available from Wu et al.
(Wu, 2018). From fsaverage surface space, resampling to FS LR 32k space was conducted with
tools available from the Human Connectome Project Workbench (Marcus, 2011). Depending on
the type and original space of the parcellation a number of different strategies were necessary,
and a more complete description of each option is available at
sahahn.github.io/parc_scaling#resample_parcellations.

Name # of Parcellations Type Reference

Schaefer Local-global
parcellation

10 (scales 100-1000) Hard Schaefer 2018

Gordon 3 (different sources) Hard Gordon 2016

Brodmann Areas 1 Hard Brodmann 1909

VDG11b 1 Hard Van Essen 2012

HCP-MMP 3 (different sources) Hard Glasser 2016

Automatic Anatomical
Labeling (AAL)

2 (different sources) Hard Tzourio-Mazoyer
2002

Baldassano 1 Hard Baldassano 2015
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Desikan 2 (different sources) Hard Desikan 2006

Destrieux 2 (different sources) Hard Destrieux 2010

Brainnetome 2 (different sources) Hard Fan 2016

Power 2 (different sources) Hard Power 2011

Shen 268 Parcels 2 (different sources) Hard Shen 2013

Shen 368 Parcels 1 Hard Salehi 2020

Yeo 3 (7 Networks, 17
Networks and parcel
level version)

Hard Yeo 2014

DiFuMo 5 (scales 64-1028) Soft Dadi 2020

MIST 9 (scales 9-444) Hard Urchs 2019

AICHA 1 Hard Joliot 2015

Economo 1 Hard von Economo 2915

NSPN500 1 Hard Whitaker 2016

Oasis 1 Hard Sabuncu 2011

SJH 1 Hard Harrison 2015

Allen 1 Soft Allen 2011

BASC 9 (scales 9-444) Hard Bellec 2013

MSDL 1 Soft Varoquaux 2011

Harvard Oxford 4 (different versions) Hard / Soft Jenkinson 2012

Craddock 4 (different versions) Soft Craddock 2012

Smith ICA 2 (different versions) Soft Smith 2009

CPAC 1 Hard Craddock 2013

Hammersmith 1 Hard Hammers 2003

JuBrain 1 Hard Eickhoff 2005

MICCAI 1 Hard http://www.neuromor
phometrics.com/2012
_MICCAI_Challenge_
Data.html

Slab 2 (907 and 1068) Hard Sripada 2014
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Princeton Visual 1 Hard Wang 2015

Table 2 - This table shows the source for all collected “existing” parcellations. Included
for each parcellation in the far left column is the corresponding name or shortened name
of the parcellation. The second column lists the number of sourced parcellations that fall
under this name to be used, where numbers greater than one refer to either different
versions of the same parcellation, or parcellations spanning multiple spatial resolutions.
The third column lists if the parcellations considered are ‘Hard’ (i.e., every vertex is
assigned to a parcel)  or ‘Soft’ (i.e., parcels are represented by probabilistic maps). Last,
the fourth column lists the reference to where the parcellation was sourced if available.

The existing parcellations were sourced from a number of different online repositories and in
many cases have characteristics that may not be optimal for the present analyses. For example,
some parcellations may not have been originally intended for sMRI (e.g., some were designed
for resting state fMRI), some parcellations may have been created in a different standard space
and therefore had to be re-sampled to the space required for the present analyses, and some
parcellations may not have been originally intended to produce static parcellations. In order to
partially address these concerns, we have included multiple versions of the same parcellation
when different versions were available. That said, these limitations reflect the real-world
challenges and options available currently to researchers.

We also generated random parcellations across a range of different scales. Random
parcellations are generated as follows: For a random parcellation of size N, N locations were
first selected at random across each hemisphere’s 59,412 vertices (with FS LR 32k space
medial wall vertices automatically set to no parcel). Each location became the seed for a new
contiguous region and was randomly assigned a size probability between 0 and 1, which is
considered when choosing which region to grow.  Next, a region was randomly selected
according to those probabilities (i.e., a region assigned an initial probability of .5 would be
picked on average twice as often as a region assigned .25). Then, one of the adjacent vertices
to the region was selected at random and added to that region.  This sequence, selecting a
region and adding one vertex, was repeated until all vertices were assigned to a region.

We also tested 6 different downsampled icosahedron parcellations. These spanned in size from
42 to 1442 regions per hemisphere. Finally, we assessed the Desikan and Destrieux ROI values
as extracted by FreeSurfer. These differ from the other tested parcellations both in how values
are generated (FreeSurfer extracts values in an individual's native space whereas we extract
values from data warped to a common space) in addition to the surface modalities used (only
average thickness, surface area and mean curvature were employed, which differed from the
features used in the base analyses).

Machine Learning Pipelines

We employed three base ML pipelines, each with classifier and regressor variants, as a
representative sample of different popular and predictive ML strategies. All machine learning
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analyses were conducted with the Brain Predictability toolbox: a python based library designed
to facilitate neuroimaging based ML (Hahn, 2020). The first step in each pipeline was a loading
component responsible for extracting data for the ROIs of the specified surface parcellation. The
output from this step was a vector of concatenated values for each of the surface metrics
(curvature, sulcal depth, thickness and myelin measures) in each ROI, generating a feature
vector of length four times the number of parcels for each participant. Next, the ROI values were
scaled using robust scaling, wherein each feature was standardized by subtracting the median
and then scaling according to the 5th and 95th percentiles of that feature’s distribution. These
features were then used as input to train a classifier or regressor under one of three different
base configurations, which included:

Elastic-Net
The base ML estimator within the pipeline under this configuration was a logistic or linear
regression with elastic-net penalty available from scikit-learn (Pedregosa, 2011). A nested
random hyper-parameter search (Random Search) over 60 combinations was evaluated
through a nested 3-fold CV to select the strength of regularization applied as well as the ratio
between l1 and l2 regularization.

SVM
The base ML estimator within the pipeline under this configuration was a Support Vector
Machine (SVM) classifier or regressor with radial basis function kernel available from scikit-learn
(Amari 1999). A front-end univariate feature selection procedure was added to this pipeline
(based on an ANOVA F-value between a feature and the target variable, keeping only a
percentage of the top features). A nested random hyper-parameter search (Random Search)
over 60 combinations was then evaluated through a nested 3-fold CV in order to select the
SVM’s strength of regularization and kernel coefficient as well as the percentage of features to
keep in the front-end feature selector. All three hyper-parameters were optimized
simultaneously. Notably, the feature selection step could remove no more 50% and no fewer
than 1% of the passed features.

LGBM
The base ML estimator was an extreme gradient boosted tree-based classifier and regressor
from the Light Gradient Boosting Machine (LGBM) package (Chen, 2015). The tuned
hyper-parameters for this algorithm included the type of boosting, the number of estimators,
different tree sampling parameters, and regularization parameters. Given the high number of
hyper-parameters to tune in contrast to the other base estimators (nine), we employed a
two-point differential evolution-based hyper-parameter search strategy (Two Points DE)
implemented through the python library Nevergrad (Rapin 2018). The search was run for 180
iterations, in which each set of parameters was evaluated with a single 25% nested validation
split.

More detailed information on ML pipeline implementation can be found at
sahahn.github.io/parc_scaling/ml_pipelines.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464804doi: bioRxiv preprint 

http://sahahn.github.io/parc_scaling/ml_pipelines
https://doi.org/10.1101/2021.10.18.464804
http://creativecommons.org/licenses/by/4.0/


Evaluation

To evaluate a given target variable, parcellation, or machine learning strategy’s
performance, we defined an explicit framework to compare different combinations of methods.
We evaluated each combination of target variable, parcellation and ML pipeline with five-fold
cross-validation using the full set of available participants (Figure 1). Each of the validation
folds, including any nested parameter tuning folds, were conducted such that participants from
the same family were preserved within the same training or testing fold. The 5-fold structure was
kept constant and therefore comparable across all combinations of ML pipeline, target variable,
and parcellation. In the case of missing target variables, those participants with missing data
were simply excluded from their respective training or validation fold. This strategy was used for
each of the proposed combinations to generate metrics of performance: explained variance for
regression predictors and area under the receiver operator characteristic curve (ROC AUC) for
binary predictors.

Figure 1: Diagram outlining the core analytic procedure conducted where combination of
parcellation, ML pipeline and target variable were systematically evaluated. Section a.
shows the four different sMRI measures used as input data for each participant. Section
b. highlights that each of the four measures were parcellated into mean region-of-interest
values for 220 different parcellations. Section c. shows the three different ML pipelines,
each based on a different base ML estimator, which were tested on each
parcellation-target pair. Section d. lists a subset of the 45 different target variables for
which out-of-sample predictive utility was estimated for each parcellation-pipeline pair.

Multiple Parcellation Strategies
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In addition to the base analysis described above, we sought to quantify how additional
strategies operating across multiple parcellations might perform. Considering multiple
parcellations at once has the benefit of potentially capturing overlapping information present
across different spatial scales, and could therefore prove superior to adhering to just one
scheme. Given a potentially limitless number of potential configurations, we explored only a
small subset. These extensions to the base analysis can be separated into three different
analysis types: choice of parcellation as a nested hyper-parameter, ensembling over multiple
parcellations using voting, and ensembling using stacking (Wolpert, 1992).  In all of these
analytic approaches, randomly generated parcellations were used as a virtually limitless number
can be generated at any desired spatial scale.

In order to treat choice of parcellation as a hyperparameter, we employed a nested grid search.
A three-fold nested cross-validation scheme on the training set, respecting family structure as
before (i.e., assigning members of the same family to the same fold), was used to evaluate each
potential parcellation. Within each of these internal folds a ML pipeline was trained, with its own
nested parameter tuning, and then evaluated on its respective internal validation set. This
process yielded an average for each of the three folds’ scores for each parcellation. The
parcellation which obtained the highest score was selected for re-training on the full training set
which involved, as in each nested fold, training a ML pipeline with its own nested parameter
search. The final trained ML estimator, with the selected best parcellation, was then evaluated
on the validation fold. This process was repeated across the whole training set according to the
same five-fold structure as used in the base analyses, thus allowing the results to be directly
comparable.

In ensemble analyses, we tested two different ensemble strategies: voting and stacking. In the
voting ensemble approach, a separate ML pipeline was trained for each available parcellation,
where each individual pipeline-parcellation pair was trained in the same way as in the base
analysis. To do this, each trained ML pipeline from the previous step first generated a prediction.
Then, the voting ensemble aggregated the predictions as either the mean, in the case of
regression, or the most frequently predicted class, in the case of classification. The aggregated
scores were then scored as a single set of predictions.

The stacking ensemble, while similar to the voting ensemble, is more complex. For each of
the pipeline-parcellation combinations, a separate three-fold cross-validation framework
was used in the training set. In this framework, three ML pipelines were trained on 2/3 of the
training set and predictions were made for the remaining 1/3, ultimately yielding an
out-of-sample prediction for each participant in the training set. The predictions from all
pipeline-parcellation combinations were used as features to train a “stacking model”. The
purpose of the stacking model was to learn a relative weighting of each parcellation-pipeline
combination (i.e., to give more weight to “better” parcellation-pipeline combinations and less
weight to “worse” ones). The algorithm used to train the stacking model was a ridge
penalized linear or logistic regression with nested hyper-parameter tuning. Once trained,
this stacking model was used to predict the target variable in a novel sample (i.e., the
held-out test set). The stacking ensemble procedure notably involved a large increase in
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computation relative to the voting ensemble, as the stacking ensemble involved training
three pipelines for each parcellation-pipeline combination, whereas the voting ensemble
consisted of training only one ML pipeline for each.

For the number of different random parcellations available to a search or ensemble strategy, we
evaluated four different numbers of parcellations: 3, 5, 8 and 10. Further, for each of these
numbers of parcellations, we tested fixed size parcellations as well as differentially sized
parcellations across a range of sizes (100, 200, 300, 400, 500, 50-500, 100-1000 and
300-1200). For example, for a combination of 3 parcellations and a fixed size of 100, three
random parcellations with size 100 could be used. For a combination of 5 parcellations of a
range of sizes from 100-1000, parcellations of size 100, 325, 550, 775 and 1000 could be used.
All combinations are then repeated twice with two different versions of parcellations at each size
used.

In summary, all possible combinations of the following parameters were evaluated:

- 8 Size Configurations (5 Fixed Sizes + 3 Across Sizes)
- 4 Numbers of Parcellations (3, 5, 8, 10)
- 3 Base Strategies (Grid, Voted, Stacked)
- 4 Pipelines (3 Base Pipelines + 'All' Configuration)
- 45 Target Variables
- 2 Random Repeats

Multiple Parcellation Evaluation

In the base analysis, each parcellation was evaluated with five-fold cross-validation
across all combinations of target and ML pipeline. Here, we evaluate each additional multiple
parcellation strategy, Grid (choice of parcellation as a hyper-parameter), Voted (voting
ensemble) and Stacked (stacking ensemble) with the same five-fold cross-validation across the
same combinations of target and ML pipeline. This setup allowed us to compare directly
between using a single fixed parcellation versus information across multiple parcellations.
Additionally, we also considered a special ‘All’ configuration, ensembling and selecting across
both parcellation and choice of ML pipeline (e.g., a voting ensemble which averages predictions
from SVM, Elastic-Net and LGBM pipelines, each trained on random parcellations of size 100,
200 and 300). This configuration provides the potential to exploit information from not just
multiple parcellations, but also the unique information generated from each ML pipeline.

Mean Rank

In order to evaluate and compare across the different binary and regression metrics, as
well as to address scaling issues between metrics (e.g., sex is more predictable than the ADHD
composite score), we adopted mean rank as our ultimate performance metric of interest. We
computed the relative per-target ranking across parcellations (or in some cases
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parcellation-pipeline combinations), where the parcellation result with the highest score would
receive rank 1 (i.e., lower rank better). This metric is therefore sensitive to the collection of
included parcellations or parcellation-pipeline pairs. Mean rank can also refer to different
aggregations of these base ranks. For example in Figures 2 and 5 an average rank is first
computed separately for each pipeline across all the targets, then set as a final mean rank
across pipeline averages. In contrast, for example in the bottom of Figure 3, mean rank is
computed directly between pairs of parcellation-pipelines.

Modelling Results

We employ ordinary least squares regression (OLS), as implemented in the python
package statsmodel (Seabold 2010), to model results from the base experiments. Base notation
for OLS equations are written as where A is the dependent variable and B + C are𝐴   ̴ 𝐵 + 𝐶
independent fixed effects. Alternatively if written as then D will be added as a fixed𝐴   ̴ 𝐵 * 𝐷
effect along with an interaction term between B and D (equivalent to alternative notation

). If a fixed effect was categorical, then it was dummy coded and each𝐴   ̴ 𝐵 +  𝐷 +  𝐵 * 𝐷
dummy variable added as a fixed effect. Last, if a variable was within the brackets of log10(),
then the logarithm of the variable with base 10 was used. For example, if the dependent
variable was Mean Rank with fixed effects of the log of Parcellation Size and which ML Pipeline
was used, we would write .𝑀𝑒𝑎𝑛 𝑅𝑎𝑛𝑘   ̴ 𝑙𝑜𝑔10(𝑃𝑎𝑟𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒) + 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒

Computations

The computations for this work were performed on the Vermont Advanced Computing
Core, a high performance computing cluster made available to researchers. All code and
shareable data are available at sahahn.github.io/parc_scaling which further includes instructions
on how to download any non-sharable data.

Results

Averaged Performance-Size Scaling
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Figure 2: Performance represented by mean relative ranking between 220 parcellations,
against the number of parcels in each parcellation. Shape and color of each point
indicates the type of parcellation. The inset figure shows the main figure on a log10
scale. Green circles indicate that a parcellation is from an existing source, either static or
probabilistic. Gray plus markers indicate that the parcellation was randomly generated.
Purple pentagons indicate that the parcellation represents a down-sampled icosahedron.
The two orange stars indicate the parcellation values as extracted directly from
Freesurfer. Example estimates of R2 and ROC AUC are also provided on the y-axis as
estimated from the means obtained across the 22 regression or 23 binary target
variables of as close as possible to that rank.

The results from the core analysis with a focus on the relationship between performance and
number of parcels in each parcellation scheme are shown in Figure 2. Specifically, we consider
here the mean rankings as averaged across all different base ML pipelines as well as target
variables. Notably, the best (lowest) mean rank observed was the downsampled version of the
probabilistic DiFuMo 1024 scale parcellation, with mean rank 46.88 (Dadi 2020). The two
Freesurfer extracted parcellations obtained mean ranks of Desikan=142.59 and
Destrieux=97.42.

coef. std err t P>|t|

Intercept (Existing) 2.608 0.015 171.426 1.4e-221
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Freesurfer Extracted 0.015 0.042 0.347 0.729

Icosahedron -0.010 0.026 -0.372 0.710

Random 0.049 0.009 5.574 7.9e-08

Size -0.275 0.007 -41.940 5.9e-102

Table 3: OLS model fit on all𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘)   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒) + 𝑝𝑎𝑟𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒
parcellation results of size 4,000 and less, corresponding to the results plotted in Figure
2. As parcellation type was a categorical variable, it was dummy coded with Existing type
parcellations as the intercept and separate model coefficients (coef.) generated for the
additional parcellation types (Freesurfer, Icosahedron and Random), as well as for Size.
Model fit R2=0.90, F=459.2, P(F)=1.79e-100.

We first estimated the range of parcellation sizes where a power-law like distribution best
fit the data to be 4000 parcels and fewer (a description of this procedure is described at
https://sahahn.github.io/parc_scaling/estimate_powerlaw.html, Clauset, 2007). In order to model
the relationship between parcellation size and performance while accounting for type of
parcellation we fit an OLS model as, , on𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘)   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒) + 𝑝𝑎𝑟𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒
parcellations with 4,000 or fewer parcels. Model fit statistics are reported in Table 3, where
notably the overall model fit was R2=0.90. Of further interest, the estimated coefficient for
parcellation size (i.e., the scaling exponent in a power law distribution) was 0.-2753 and highly
significant. The only significant effect for parcellation type was if a parcellation was randomly
generated (coef=.0488). No other significant effects between subgroups of parcellations were
found, although this may be due to the small number of samples in these subgroups (e.g., only
6 icosahedron parcellations). Further, a separate OLS allowing for interactions between the
number of parcels and parcellation type did not reveal any significant interactions.
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Choice of Pipeline
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Figure 3 shows the log10-log10 relationship between number of parcels and mean rank
calculated in two different ways. The top figure, Intra-Pipeline Comparison, shows mean
rank for each pipeline computed relative only to other parcellations evaluated with the
same pipeline. Comparisons were made between 220 (i.e., maximum mean rank is 220
or on log10 y-axis 2.34) parcellations for each pipeline. In contrast, the bottom figure,
Inter-Pipeline Comparison, shows the mean rank calculated between each
parcellation-pipeline combination. Comparisons were made between 660 (2.82 on log10
y-axis) parcellation-pipeline combinations. Each parcellation-pipeline result is colored by
its underlying pipeline type, regardless of type of parcellation. Robust regression lines of
best fit on the log10-log10 data are plotted separately for each pipeline across both
figures (shaded regions around the lines of fit represent the bootstrap estimated 95%
CI).

Intra-Pipeline Inter-Pipeline

coef. std err t P>|t| coef. std err t P>|t|

Intercept (Elastic-Net) 2.598 0.020 133.247 <1e-300 2.884 0.018 160.158 <1e-300

LGBM -0.032 0.026 -1.231 0.219 0.017 0.025 0.422 0.673

SVM 0.310 0.029 10.801 1.8e-25 0.520 0.025 20.432 3.9e-72

Size (Elastic-Net) -0.265 0.009 -30.051 2.3e-122 -0.202 0.007 -27.342 2.4e-110

Size * LGBM 0.022 0.012 1.923 0.055 0.097 0.010 9.267 2.7e-19

Size  * SVM -0.132 0.012 -10.662 1.5e-25 -0.280 0.010 -26.707 8.0e-107

Table 4: Both the left and right of the table present summary results from OLS model
. The key difference is that on the left𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘)   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒) *  𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒

(Intra-Pipeline) mean rank is calculated within each pipeline separately and on the right
(Inter-Pipeline) mean rank is calculated only once across all parcellation-pipeline
combinations. The Intra-Pipeline (left) model fit was R2=.877, F=829.6, P(F)=2.74e-262.
The Inter-Pipeline (right) model fit was  R2=0.921, F=1522, P(F)<1.0e-300.
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The top panel of Figure 3 shows the relationship between observed performance to number of
parcels changes when estimated using different ML pipelines. We estimated the region where
power law scaling holds separately for each of the three pipelines in order to provide a more fair
comparison between pipelines (LGBM: 7-4000, Elastic-Net: 7-1500, SVM: 20-4000). The OLS
model (Table 4 - left) was then fit with only the results within these estimated ranges. The base
estimated coefficient for the number of parcels (Size) was -.2651, similar to the previous
estimate. The SVM pipeline significantly differed from the referent Elastic-Net with coefficient
.3104, whereas the LGBM pipeline did not. These results indicate that there are differences
between the pipelines (i.e., size/scaling coefficient, range of scaling and intercept), as well as
confirm more generally that scaling, albeit with varying degree, holds regardless of pipeline.

The bottom panel of Figure 3 and right side of Table 4 show another comparison between
pipelines, but with an alternative definition of mean rank that allows for an inter-pipeline
comparison. Rank here is now relative to all other pipeline-parcellation pairs (660 total),
whereas before ranks were calculated separately for each pipeline. The base size coefficient
(Elastic-Net slope) was -0.203, differing significantly in the interaction term for both SVM -0.2804
and LGBM 0.0973. The estimated intercept (Elastic-Net), 2.886, significantly differed only for the
SVM pipeline (coef=0.521) and not the LGBM pipeline. A potential point of interest is the area
around size 100 where the line of fit for the Elastic-Net and SVM based results intersect,
marking a transition point where the SVM starts to outperform Elastic-Net based pipelines. We
note that while internal scaling (i.e., that some relationship between performance and size holds
despite choice of pipeline) may be mostly consistent, as shown in the top of Figure 3, when
allowing for explicit comparisons between pipelines we find significant differences in both
performance and the slope of size to performance.

Variation Across Target Variable
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Figure 4 shows for each parcellation the computed log10 mean rank across pipeline for
each of the 45 target variables (Blue), as well as the mean rank across all targets
(Orange). Results are plotted on the x-axis according to their log10 number of parcels in
the corresponding parcellation.

Whereas the previous figures showed mean rank computed across all target variables, Figure 4
shows the extent to which the results varied across the 45 different target variables. Notably, we
can compare the model fit of a simple OLS model, , between𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘)   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒)
the target specific ranks (R2=0.482) and the mean across targets (R2=0.883). That is to say, the
degree to which the performance gains are explained by parcellation size are more consistent
on average, but case to case exhibit more variance. Visually, the observed variance, or rather
deviance of target specific ranks from the mean, appears to increase at larger parcellation sizes.
To formally characterize the general pattern of increasing spread in mean rank (across targets)
as the number of parcels grows, we first calculated the interquartile range (IQR) of log10 mean
rank at each unique parcellation size. Next, we fit an OLS model, , with fit𝐼𝑄𝑅   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒)
R2=0.796, F=312.3, P(F)=2.38e-29, and significant size coefficient (slope) of 0.176.
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Single vs. Multiple Parcellations

Figure 5 plots the log10 mean parcellations rank as averaged across pipelines
separated by different parcellation strategies. This figure includes the single parcellation
results from Figure 2 plotted as gray dots, as well as the three multiple parcellation
strategies (Grid - pink, Voted - green and Stacked - blue). For the multiple parcellation
strategies, results are further split into those in which the pool of parcellations were
sourced from random parcellations of the same size (+), or sourced from a range of
parcellations across different spatial scales (x)- Results are plotted on the x-axis
according to their log10 number of parcels, where number of parcels for the ensemble
based methods are calculated as a sum of the ensemble parcellations. Alternatively, for
the grid search, results were plotted under the highest number of parcels that search had
access to (e.g., if between sizes 100, 200 and 300, it would be plotted under size 300).
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coef. std err t P>|t|

Intercept (Not Ensemble) 2.786 0.011 248.940 <1e-300

Is Ensemble 0.615 0.046 13.348 5.6e-34

Size -0.164 0.005 -36.167 2.4e-129

Size * Is Ensemble -0.281 0.014 -19.696 3.5e-61

Table 5: OLS model fit on all results as𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘)   ̴ 𝑙𝑜𝑔10(𝑠𝑖𝑧𝑒) + 𝑖𝑠 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
plotted in Figure 5. Model fit R2=0.96, F=3211, P(F)=2.5e-283.

Figure 5 compares single parcellation results versus different types of multiple parcellation
results. Size, as plotted on the x-axis, for ensemble based parcellations was calculated as the
sum of base parcels used, which was done in order to capture the total number of unique
parcellations contributing to that predictive model. Alternatively, the sizes for the ‘Grid’
hyper-parameter based results were set to match the largest size parcel considered as
ultimately only a single parcellation contributes to the prediction. With the introduction of the
multiple parcellation strategies, we can now test the following four ideas:

1. Are ensembles of parcellations better than non-ensembled strategies?

The results from Table 5, specifically the interaction between size and if ensemble based,
indicated that ensembles of parcellations were better than the single parcellation based results.

2. Are voting or stacking based ensembles better?

An OLS model fit on only the subset of ensemble results found no significant differences
between the voting and stacking based ensembles (p>|t|=0.320).

3. Are ensembles of fixed size random parcellations or random parcellations from a range of
sizes better?

A significant reduction in performance was observed when parcellations were sourced from
across sizes vs. from fixed sizes (across sizes coef.=0.141, relative to fixed sizes
intercept=3.276).

4. Does the ‘Grid’ hyper-parameter based multiple parcellation selection perform better than
selecting a single random parcellation of similar size?
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An OLS model fit on a subset of just the ‘Grid’ and random parcellation results between sizes
100 and 1200 indicated that there were no significant differences.

Full ensemble specific results and OLS model details can be found in the supplementary
material at sahahn.github.io/parc_scaling/ensemble_comparison, and full grid vs. random at
sahahn.github.io/parc_scaling/grid_vs_random.

Highest Performance

Figure 6 plots the mean ranks as computed between a specially chosen set of high
performing parcellation-pipeline results. This subset includes foremost results from the
‘All’ ensemble (blue diamond), where a single ensemble is used to combine predictions
from Elastic-Net, LGBM and SVM pipelines all trained on the same set of fixed-size
parcellations (across size parcellation ensemble results not included here). Further,
results from just the fixed size SVM ensemble are shown (orange plus), as well as the
single, non randomly generated, parcellation results from just the SVM based pipeline
(green circle). Results are plotted by the number of parcels on the x-axis, along with a
log10-log10 inset version of the same plot. Example estimates of mean R2 and ROC
AUC are also provided on the y-axis as estimated across only the regression or binary
target variables from parcellation results as close as possible to that rank.
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The subsets of results plotted in Figure 6 were chosen to highlight the best performing individual
results as identified throughout the previous analyses, as well as introduce the results from the
special ‘All’ ensemble. In summary, the SVM outperformed other pipelines in the inter-pipeline
comparison (Figure 3) and existing parcellations outperformed randomly generated ones
(Figure 2), which is why the subset ‘SVM Non-Random Existing’ was included. Similarly, an
inter-pipeline comparison was conducted for the ensemble based results, which suggested the
SVM based ensembles had better performance relative to the other pipelines beyond size 500
(see sahahn.github.io/parc_scaling/ensemble_by_pipeline). Last, we included the ‘All’
ensemble, which as expected performed as well or better than the SVM based ensemble (as it
has all of the same base ensembled pipelines). Combined, these subsets of results highlight the
best performing strategies across different spatial scales.

Discussion

The current study tested the impact of parcellation choice as a factor in out of sample
performance across a variety of target variables using structural MRI data. To do this we
estimated the 5-fold predictive performance across different combinations of parcellation and
ML pipeline for all target variables. Across all combinations, we found that, in general,
parcellations with more parcels performed better than those with fewer parcels up to about
4,000 parcels, although at the expense of greater variability in performance. The increase in
performance as the number of parcels increases can be well characterized by a power law
scaling relationship (i.e., diminishing returns to gains in performance as resolution increases).
We also found that pre-existing parcellations based on cytoarchitecture or functional MRI
performed better than randomly derived parcellations of comparable size, suggesting merit to
existing parcellation schemes. However, pre-existing parcellations tended to have fewer parcels
than our results suggest will perform best. Among the ML pipelines and strategies tested, SVM
based pipelines had the best predictive performance, although this could be further improved by
ensembling over multiple parcellations and/or pipelines.

One of the key goals of this work was describing the relationship between spatial scale
(i.e., number of parcels) and predictive performance. Based on our results, this relationship
appears to follow a power-law scaling, although the details of this scaling can vary with choice
of pipeline and parcellation strategy. We identified scaling across roughly 3 orders of magnitude
(~10-4000) with coefficients between ¼ and ⅓ (exact coefficient dependent on specific setup).
We further tested how stable this relationship was when compared in an intra-pipeline fashion,
finding that the general pattern was preserved. That said, the SVM-based results varied
significantly from the other two pipelines, with a steeper estimated scaling coefficient and a
larger estimated region of scaling.

There are several possible reasons for the increase in predictive performance with
parcellation resolution. First, we note that by ‘applying’ parcellations within the context of the
analyses above, we are simply taking the mean value across a contiguous region of vertices.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464804doi: bioRxiv preprint 

http://sahahn.github.io/parc_scaling/ensemble_by_pipeline
https://doi.org/10.1101/2021.10.18.464804
http://creativecommons.org/licenses/by/4.0/


That means that when the region of interest is centered on a non-homogeneous area that the
mean value of the region will essentially have added noise. Therefore by increasing the
resolution of the parcellation, with a larger number of smaller parcels, each parcel will be less
likely to span across multiple distinct structures (i.e., “true regions”). That said, once the
resolution becomes too fine grained, subdividing true regions of interest can also introduce
noisy estimates.

The very existence of a tightly knit scaling between parcellation granularity and
out-of-sample phenotypic predictive performance may itself be meaningful, regardless of the
exact scaling or range of scaling. Because existing parcellations have a relatively small number
of parcels, this scaling suggests that commonly employed parcellations may be too coarse to
capture some important inter-individual phenotypic variance. In other words, up to a certain
resolution there is still valuable information lost due to averaging over too large an area,
potentially containing distinct functions. This increasing marginal utility of smaller and smaller
brain regions is fully compatible with the view of the brain as a “hierarchically organized system”,
where meaningful cortical areas can be composed at multiple resolutions (Eickhoff 2018). In this
sense, as the number of parcels increases it may provide a better mapping onto different
resolutions of “true” cortical areas. For example, a small number of parcels may only be
capturing differences at the highest hierarchical level, but as more parcels are added the gains
in performance we found may represent a mapping onto the next meaningful hierarchical
resolution of cortical areas.

The observed scaling between performance and size can also be used to inform
practical recommendations for researchers. First, we note that current common practices with
respect to choice of parcellation may not fully be exploiting all available predictive information.
As a representative case, we focus on the results from the two FreeSurfer extracted sets of
ROIs. As shown in Figure 2, we note that the observed mean rank for both FreeSurfer based
parcellations are almost fully explained by their number of parcels (Desikan - 70, Destrieux -
150) and their status as an existing parcellation. For these and other existing parcellations
commonly used, their inability to exploit all predictive information therefore comes down
primarily to the number of unique ROI’s. Therefore, when prioritizing predictive capability, a
simple heuristic is to select the highest possible resolution parcellation, in this case Destrieux
over Desikan. Importantly, the diminishing returns nature of the scaling relationship (e.g.,
consider relative performance gains between sizes 100 to 3000 vs. 3000 to 4000) as well as the
region where scaling ends (e.g., 20,000 parcels likely performs worse than 3000), should also
be taken into account.

Notably, it is not necessarily true that parcellations with a higher number of parcels will
always perform better. For example, comparing between randomly generated parcellations and
existing literature-based parcellations revealed consistently better performance for existing
parcellations. This could suggest that, on average, the existing parcellations map better onto
meaningful neuroanatomy relative to random parcellations of similar size. Different phenotypes
of interest also vary in how much they follow the observed scaling relationship. We also found
an interesting increase in spread of mean ranks as the number of parcels grew, where not only
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the mean rank increased but also the inter quartile range at each size increased. This behavior
is likely a result of the distributed and complex brain-based nature of the phenotypes studied,
where different targets may have different optimal resolutions. That said, the pattern in the
average case remains clear and, we argue, is still meaningful despite recognizing that variation
exists across possible phenotypes.

We also explored the influence of choice of ML pipeline. For parcellations larger than
size ~100 the SVM based pipeline outperformed all other pipelines, with the Elastic-Net the best
at smaller sizes. The LGBM tree-based pipeline was not competitive at any size, an observation
in line with recent work based on sMRI data from UK Biobank participants (Schulz 2020). We
further ruled out the hypothesis that the SVM’s comparative scaling was driven by unique
access to a nested front end feature selection (See
sahahn.github.io/parc_scaling/effect_of_fs.html). While perhaps interesting conceptually,
treating choice of parcellation as a nested hyper-parameter, in practice, yielded lackluster
results, especially when compared with the ensemble based methods. We observed that this
approach fell closely in line with expected random parcellation performance at the same size. In
contrast, we observed a significant performance improvement from the multiple parcellation
ensemble-based strategies when compared to the single parcellation only results. Notably, the
ensemble-based random parcellations continue to exhibit scaling beyond the ~4000 range
where scaling was estimated to have ended with respect to the analyses with single
parcellations. These results establish the merit in constructing ensembles across multiple
parcellations to achieve maximal predictive performance. Specifically, we found no significant
differences in predictive performance between the voting and stacking ensemble approaches
tested. We did observe significant differences between ensembles with random parcellations of
the same size versus ensembles with parcellations of multiple sizes, in this case finding that the
fixed size parcellations on average performed better. Therefore, to maximize predictive
performance and computational demands, we recommend that, of the ensemble methods
tested, fixed size parcellations with a voting ensemble be used in future work.

One obvious potential explanation for the observed ensemble performance gain is that it is due
solely to an inherent utility of ensembling, which has been shown to reliably increase
performance across a wide range of ML applications (Dietterich 2000, Zhou 2009). On the other
hand, ensembles as employed in this work are specifically designed to capture information from
multiple overlapping parcellations. It is plausible that the performance boost obtained by this
methodology may be related to the boost from increasing resolution; this could indicate that the
“true” best parcellations are not uniform and universal. Instead, by allowing overlapping
parcellations, more predictive information can be extracted despite noisy ground truth data.
Alternatively, it could also be that ensembling over multiple views or sizes provides benefit by
forcing different classifiers to exploit different unique predictive signals (Allen-Zhu 2020). The
cortical surface exhibits high covariance between different brain regions on measures employed
as input features (e.g., cortical thickness); it may therefore be reasonable to assume that there
is more than one multivariate predictive pattern capable of performing well out of sample on the
target of interest (Alexander-Bloch, 2013). If this is the case, then different instances of random
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parcellations may help base estimators of the ensemble learn distinct predictive patterns that
when combined can improve predictive power.

Throughout this work, different strategies and algorithms outperformed others at different
spatial scales. The two top performing strategies were the SVM based pipeline with existing
parcellations and an ensemble combining the three ML algorithms (the ‘All ensemble) with
randomly generated parcellations of the same size. The ‘All’ ensemble results in particular were
interesting as they were both the most complex, where predictions were averaged across
multiple combinations of pipeline and parcellation, but were also consistently the highest
performing. Despite the noted variability across targets and noting that one parcellation /
algorithm will never always provide the best performance, we still believe it useful to
characterize the general patterns which influence performance (Wolpert 1995). In this case, we
draw attention to the relative merit of SVM based pipelines, non-random individual parcellations,
and ensembling across multiple parcellations and / or ML algorithms.

In practice, a researcher’s choice of parcellation often does not solely prioritize predictive
performance. Instead other key influences include interpretability and computational resources.
As parcellation resolution increases, the number of regions to interpret as well as runtime for the
analysis will scale accordingly. Runtime and memory requirements are also influenced greatly
by choice of algorithm. For example, on a machine with 8 cores and 8GB of RAM, an iteration of
the 5-fold cross-validation with Elastic-Net and 200 parcels required around 15 minutes to run
compared to an SVM and 2000 parcels which required around 15 hours to run. Likewise,
evaluations can quickly grow intractable; for example, on a machine with 4 cores and 256GB of
RAM, employing non parcellated vertex-level data directly (59,412 “parcels”) required over a
week to finish even a single of the five folds. Another inherent benefit to employing some
existing parcellations, regardless of their number of parcels, is their popularity itself, which can
facilitate easier comparisons via named regions with prior published work. Trade-offs are
discussed in further detail at sahahn.github.io/parc_scaling/trade_offs.html.

Extensions of the present study beyond structural MRI to other MRI modalities
represents a potentially interesting future direction, especially in the case of functional
connectome data where features grow exponentially with number of regions. Likewise, it is
unknown if the current findings apply to segmentation based on volumetric data. Other possible
extensions could be to investigate further how results change if each structural metric (i.e.,
thickness, surface area, etc) were treated independently, with for example ensembles over
structural metric specific ML pipelines. Another factor is that neuroimaging based ML has been
shown to exhibit a performance to sample size scaling, where larger samples, up to a certain
point, can continue to yield performance boosts (Schulz 2020). As such, it is important to note
that the influence of sample size on the observed parcellation performance scaling remains
unknown. As the current work uses samples of around 7,500 in each fold, it is not clear from
current results how well the observed performance-size scaling will hold for smaller studies.
Another future direction could be to test different ML estimators, for example deep learning
based algorithms that may exhibit different scaling, as they can in theory better handle data with
structured high dimensional feature spaces (He 2020, Abrol 2021).
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Conclusion

In testing a variety of parcellation schemes and ML modeling approaches, we have
identified an apparent power law scaling of increasing predictive performance by increasing
parcellation resolution. The details of this relationship were found to vary according to type of
parcellation as well as ML pipeline employed, although the general pattern proved stable. The
large sample size, range of predictive targets, and collection of existing and random
parcellations tested all serve to lend confidence to the observed results. Researchers selecting
a parcellation for predictive modelling may wish to consider this size-performance trade-off in
addition to other factors such as interpretability and computational resources. We also
highlighted important factors that improved performance above and beyond the size-scaling, for
example, finding that existing parcellations performed better than randomly generated
parcellations. Further, we demonstrated the benefit of ensembling over multiple parcellations,
which yielded a performance boost relative to results from single parcellations.
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