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Abstract

Intracellular reaction rates depend on concentrations and hence their levels are often regulated. However
classical models of stochastic gene expression lack a cell size description and cannot be used to predict noise in
concentrations. Here, we construct a model of gene product dynamics that includes a description of cell growth,
cell division, size-dependent gene expression, gene dosage compensation, and size control mechanisms that can
vary with the cell cycle phase. We obtain expressions for the approximate distributions and power spectra of
concentration fluctuations which lead to insight into the emergence of concentration homeostasis. Furthermore, we
find that (i) the conditions necessary to suppress cell division-induced concentration oscillations are difficult to
achieve; (ii) mRNA concentration and number distributions can have different number of modes; (iii) certain size
control strategies are ideal because they maintain constant mean concentrations whilst minimising concentration
noise. Predictions are confirmed using lineage data for E. coli, fission yeast and budding yeast.

Introduction

Classical models of stochastic gene expression describe the fluctuations of protein and mRNA numbers in
single cells and tissues [1–3]. These models have been successful at fitting experimental copy number distributions
to estimate rate constants [4, 5]. They also have provided insight into the sources of intracellular fluctuations [6, 7],
in their control via feedback mechanisms [8–10] and in their exploitation to generate oscillations and multi-stable
states [11, 12].

However the majority of these models cannot be used to explain observations based on measurements of
the content of individual cells collected over many generations [13] because the models ignore basic biological
properties. For example in classical models, the mRNA and protein numbers will approach steady-state, while in
reality, there is a regular pattern consisting of the increase of the molecule numbers during the cell cycle followed by
their approximate halving at cell division. This pattern is strongly influenced by various sources of noise including
cell cycle duration variability, DNA replication, and binomial partitioning at cell division. Some recent models
[14–20] capture these phenomena and have led to a more detailed quantitative picture of gene expression; however
they do not have an explicit cell size description. It has recently been shown [20] that a subset of these models
which capture cell cycle duration variability via the Erlang distribution implicitly capture gene product number
fluctuations induced by cell size fluctuations because the Erlang distribution can be expressed in terms of the
parameters of any cell-size control mechanism [21]; however this is only the case when transcriptional activity of a
promoter is independent of cell size, as e.g. found in E. coli [22].

In contrast, in yeast and mammalian cells, it has been shown that the initiation rate increases with cellular
volume [23, 24]. This property has been hypothesized to be crucial to explaining concentration homeostasis, i.e.
the observation that concentrations of many mRNAs and proteins vary little with cellular volume [25]. To capture
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this phenomenon there is the need of a model of gene expression that explicitly describes cell size; this can then be
used to understand the factors giving rise to concentration homeostasis.

Here we develop a model that takes into account experimental observations of size-dependent gene expression,
gene dosage compensation, DNA replication, cell division, and cell-size control mechanisms that vary according to
cell cycle phases. By solving the model, we obtain insight into the statistical properties of concentration fluctuations
in single cells across their cell cycle, the emergence of concentration homeostasis, and the non-trivial relationship
between size control mechanisms and gene expression. Some of the predictions are confirmed by analysis of
published data and others provide motivation for future experiments.

Results

Building a computational model that captures salient features of the underlying molecular
biology

We consider a biologically detailed, stochastic model of gene expression coupled to cell size dynamics with
the following properties (Fig. 1(a)).
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Figure 1: Model and its mean-field approximation. (a) A detailed stochastic model with both cell size and gene expression
descriptions. The model consists of N effective cell cycle stages, gene replication at stage N0, cell division at stage N , bursty
production of the gene product, and degradation of the gene product. The growth of cell volume is assumed to be exponential
and gene dosage compensation is induced by a change in the burst frequency at replication from ρ to κρ with κ ∈ [1, 2) (see
inset graphs). Both the transition rates between stages and the mean burst size depend on cell size in a power law form due to
size homeostasis and balanced (or non-balanced) biosynthesis, respectively. The model also considers two-layer cell-size control
with its strength varying from α0 to α1 upon replication. Recent studies have revealed that in many cell types, the accumulation
of some activator to a critical threshold is used to promoter mitotic entry and trigger cell division, a strategy known as activator
accumulation mechanism [26]. In E. coli, the activator was shown to be FtsZ [27–29]; in fission yeast, it was believed to be
a protein upstream of Cdk1, the central mitotic regulator, such as Cdr2, Cdc25, and Cdc13 [30–33]. Biophysically, the N
effective stages can be understood as different levels of the key activator. (b) Schematics of the changes in cell volume and
time from birth as a function of cell cycle stage for the first three generations in the case of N = 10. In the full model (green
curve), the gene expression dynamics is coupled with the following two types of fluctuations: noise in cell volume at each stage
and noise in the time interval between two stages. The reduced model (red curve) ignores the former type of fluctuations by
applying an mean-field approximation while retains the latter type of fluctuations. The reduced model approximates the full
model excellently when N is large.

1. Cell volume grows exponentially with rate g. This assumption holds for a wide range of cell types [34–38].

2. Before replication, the synthesis of the gene product of interest, mRNA or protein, occurs at a rate ρ in bursts
of a random size sampled from a geometric distribution with mean B′ [2]. In some types of bacteria, for some
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promoters, transcriptional activity is constant throughout the cell cycle which also implies the transcriptional
parameters ρ and B′ are independent of cell size [22]. However, in yeast and mammalian cells, the products
of many genes are produced in a balanced manner: the synthesis rate ρB′ is proportional to cell volume
[23, 24]. Moreover, recent studies have shown that in the presence of balanced biosynthesis, cell size controls
the synthesis rate via modulation of the burst size, instead of the burst frequency [23]. To unify results in
various cell types, we assume that B′ = BV (t)β , where V (t) is cell volume, and B and 0 ≤ β ≤ 1 are two
constants. Balanced (non-balanced) biosynthesis corresponds to the case of β = 1 (β = 0). We emphasize
that while we assume bursty expression here, our model naturally covers constitutive expression since the
latter can be regarded as a limit of the former when ρ→∞, B → 0, and 〈n〉 ∝ ρB keeps constant [10, 39].

3. The gene product is degraded with rate d according to first-order kinetics.

4. The cell can exist in N effective cell cycle stages, denoted by 1, 2, ..., N . Note that the N effective stages
do not directly correspond to the four biological cell cycle phases (G1, S, G2, and M). Rather, each cell
cycle phase is associated with multiple effective stages [40]. Recently, there has been evidence that yeast
and mammalian cells may use different size control strategies before and after replication to achieve size
homeostasis [41–44]. To model this effect, we assume that the transition rate from one stage to the next
depends on cell volume in a power law form as (aV (t))α0 pre-replication and (aV (t))α1 post-replication,
where a is a constant and α0, α1 > 0 are the strengths of size control before and after replication. It is
shown in Methods that α0 → 0, 1,∞ correspond to mechanisms whereby the mean duration from birth to
replication or the mean added size from birth to replication or the mean cell size at replication is independent
of the size at birth, respectively. Similarly α1 → 0, 1,∞ correspond to mechanisms whereby the mean
duration from replication to division or the mean added size from replication to division or the mean cell size
at division is independent of the size at replication, respectively. In other words, αi → 0, 1,∞ corresponds
to timer, adder, and sizer, respectively. We define timer-like control to be when 0 < αi < 1 and sizer-like
control when 1 < αi <∞ [45].

5. Gene replication occurs when the cell transitions from a fixed stage N0 to the next. After replication, the
number of gene copies doubles. If the burst frequency per gene copy does not change at replication, then the
total burst frequency after replication is 2ρ. Dosage compensation is then modeled as a change in the burst
frequency at replication from ρ to κρ with 1 ≤ κ < 2. [23, 46].

6. Cell division occurs when the cell transitions from stage N to stage 1. The volumes of the two daughter cells
are assumed to be the same and exactly one half of the volume before division. Moreover, we assume that
each gene product molecule has probability 1/2 of being allocated to each daughter cell.

Simplifying the computational model via mean-field approximation

The model described above is very complex and hence it is no surprise that the master equation describing its
stochastic dynamics is analytically intractable. The difficulty in solving the statistics of gene product fluctuations
stems from the fact that they are coupled to two other types of fluctuations: (i) noise in the time elapsed between
two cell cycle stages; (ii) noise in cell volume when a cell cycle stage is reached. Specifically, if at time t a cell
enters stage k and has volume V (t), then it will jump to stage k + 1 after a random interval ∆t whose distribution
is determined by the time-dependent rate function (aV (t))αi . Since volume growth is exponential, the volume at
stage k+ 1 is given by V (t+ ∆t) = V (t)eg∆t. As can be seen from this reasoning, the fluctuations in cell volume
at a certain stage depend on the fluctuations in the time to move to this stage from the previous stage.

To simplify this model, we devised a mean-field approximation on the volume dynamics, i.e. we ignore volume
fluctuations at each stage but retain fluctuations in the time elapsed between two stages (Fig. 1(b)). Specifically, we
calculate an approximate mean cell size at each stage by averaging over generations. This implies that the volume
change from stage k to stage k + 1 is now deterministic and decoupled from the fluctuations in the time interval
between the two stages. Within this approximation, the volume at division is twice that at birth implying that the
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mean cell cycle duration is T ≈ log(2)/g and thus the cell cycle frequency is f ≈ g/ log(2). The time interval is
itself exponentially distributed with rate (avk)αi , where vk is the mean cell size at stage k. It is shown in Methods
that the mean birth size v1 is approximately given by the solution of the implicit equation

(vα0
1 +M0)α1/α0 +M1 = (2v1)α1 , (1)

where M0 = N0α0g/a
α0 and M1 = N1α1g/a

α1 . Moreover, the mean cell size at stage k is given by

vk = [vα0
1 + (k − 1)M0/N0]1/α0 for k ∈ [1, N0],

vk = [(vα0
1 +M0)α1/α0 + (k −N0 − 1)M1/N1]1/α1 for k ∈ [N0 + 1, N ].

(2)

This approximation is generally valid provided the number of cell cycle stagesN is large enough, which equivalently
means that the variability in cell cycle duration is not very large [21]. In our model, the time from birth to
replication occupies approximately a fixed proportion of the total cell cycle duration, with the proportion given by
w = log2(vN0+1/v1). This is consistent with the stretched cell cycle model proposed in [47].

We now can construct a reduced model. Since we will be replacing a stochastic variable, the cell volume,
by its mean, this is a type of mean-field approximation which has a long history of successful use in statistical
physics [48]. In the reduced model, we choose the transition rate from stage k to the next to be qk = (avk)α0 for
k ∈ [1, N0] and qk = (avk)α1 for k ∈ [N0 + 1, N ], the mean burst size at stage k to be Bk = Bvβk , and the burst
frequency at stage k to be ρk = ρ for k ∈ [1, N0] and ρk = κρ for k ∈ [N0 + 1, N ] (Supplementary Fig. S1); these
are the same rates as in the full model but with the instantaneous volume being replaced by its mean. The microstate
of the reduced model can be represented by an ordered pair (k, n), where k is the cell cycle stage and n is the copy
number of the gene product. Let pk,n denote the probability of observing microstate (k, n). The evolution of copy
number dynamics is governed by a master equation which is given in Methods. A detailed comparison between
stochastic simulations of the full and mean-field models show that they are in good agreement when N ≥ 15 and
become practically indistinguishable when N ≥ 30 (Fig. 2 and Supplementary Fig. S2).

The concentration distribution is generally a sum of gamma distributions; for perfect
concentration homeostasis, it is a single gamma

Many quantities of interest can be computed analytically using the master equation, Eq. (12), of the mean-field
model. We then enforce cyclo-stationary conditions, i.e. steady state for the distribution of gene product number at
each cell cycle stage. Let mlk =

∑∞
n=0 n(n− 1) · · · (n− l + 1)pk,n be the unnormalized lth factorial moment of

copy numbers when the cell is at stage k. In particular, m0k =
∑∞
n=0 pk,n is the probability that the system is at

stage k. For convenience, let ml = (mlk) be the row vector composed of all lth factorial moments. At the steady
state, m0 = (m0k) can be computed exactly as m0k = 1/[

∑N
i=1 qk/qi] for single-cell lineage measurements, i.e. a

single cell is tracked at a series of time points, and at division one of the two daughters is randomly chosen such
that we have information of the stochastic dynamics along a cell lineage. Then the first two moments m1 and m2

are given by (Supplementary Note 1)

m1 = −m0SHW
−1
11 , m2 = −2(m1SH +m0SH

2)W−1
22 , (3)

where S = diag(ρ1, · · · , ρN ), H = diag(B1, · · · , BN ), and the matrices Wll, l ≥ 0 are given by

Wll =


−q1 − ld q1

. . . . . .

−qN−1 − ld qN−1

qN/2
l −qN − ld

 .
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Figure 2: Comparison between the full and mean-field models under different choices of N and different size control
strategies. The blue (red) dots show the simulated concentration (copy number) distribution for the full model obtained from the
stochastic simulation algorithm (SSA). The blue (red) squares show the simulated concentration (copy number) distribution for
the mean-field model obtained from SSA. The blue (red) curve shows the analytical approximate concentration (copy number)
distribution given in Eq. (4) (Eq. (13)). The full and mean-field models are in good agreement when N ≥ 15 and they become
almost indistinguishable when N ≥ 30. Moreover, the analytical solution performs well when N ≥ 15 and perform excellently
when N ≥ 30. The model parameters are chosen as N0 = 0.4N,B = 1, β = 0, κ = 2, d = 1, η = 10. The growth rate g
is determined so that f = 0.1. The parameters ρ and a are chosen so that the mean gene product number 〈n〉 = 100 and the
mean cell volume 〈V 〉 = 1. The strengths of size control are chosen as α0 = α1 = 1 for the upper panel, α0 = 2, α1 = 0.5
for the middle panel, and α0 = 0.5, α1 = 2 for the lower panel. When performing SSA, the maximum simulation time for each
lineage is chosen to be 105. To deal with the time-dependent propensities in the full model, we use the numerical algorithm
described in [49, Sec. 5].

It follows that the concentration mean at stage k is given by µk = m1k/(m0kvk) and the variance at stage k is given
by σ2

k = (m1k +m2k)/(m0kv
2
k)− µ2

k. Once µk and σ2
k are known, the steady-state distribution of concentration

can be computed approximately as (Methods)

p(x) ≈
N∑
k=1

m0k(µk/σ
2
k)µ

2
k/σ

2
k

Γ(µ2
k/σ

2
k)

xµ
2
k/σ

2
k−1e−µkx/σ

2
k , (4)

which is a mixture of N gamma distributions; the distribution of copy number can also be computed and is
given in Methods. The analytical distribution agrees well with stochastic simulations when N ≥ 15 (Fig. 2 and
Supplementary Fig. S2). The moments and distributions can also be computed for population measurements, i.e.
all single cells in a population are measured at a particular time such that we have information of the stochastic
dynamics across a growing population (Methods). For the rest of this paper, we focus on lineage calculations
because the results from population calculations are qualitatively the same.

It can be shown that in the special case of balanced biosynthesis (β = 1, i.e. the mean burst size scales linearly
with cell size) and perfect dosage compensation (κ = 1, i.e. the total burst frequency is independent of the number
of gene copies), both the mean µk and variance σ2

k of concentration fluctuations are independent of stage k, i.e.
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invariant across the cell cycle, provided the number of gene product molecules is large (Supplementary Note 2). We
shall call this condition perfect concentration homeostasis. In this case, we have µk = ρB/deff and σ2

k = ρB2/deff ,
where deff = d + log(2)f is the effective decay rate of the gene product due to degradation and dilution at cell
division. As well, in this case, Eq. (4) reduces to a gamma distribution and the theory agrees with the classical
model of Friedman et al. [50] which has no explicit cell size description.

We note that the condition of perfect concentration homeostasis is stronger than what is normally referred to as
concentration homeostasis which is indicated by an approximate linear relationship between the mean molecule
numbers and cell volume [24, 25] — this ensures invariant mean concentrations but not a specific constraint on the
variance of concentration fluctuations. The conditions necessary for perfect homeostasis do not generally exist in
nature, e.g. the burst frequency per gene copy does not precisely halve upon replication and hence gene dosage
compensation is never perfect [23, 46]. This means that generally some deviation of the concentration distribution
from gamma is expected, and this is captured by Eq. (4).

Accurate concentration homeostasis requires a fine tuning of dosage compensation and
balanced biosynthesis

In what follows, we shall stick to the standard definition of concentration homeostasis in the literature [51],
which does not specifically impose constraints on the variance but only requires constancy of the mean concentration
across the cell cycle. In keeping with this definition, we introduce a new parameter γ as a measure of the accuracy
of concentration homeostasis:

γ =

√(
1
N

∑N
k=1 µ

2
k

)
−
(

1
N

∑N
k=1 µk

)2
1
N

∑N
k=1 µk

. (5)

This is the coefficient of variation (CV) of the mean concentrations across all stages. The smaller the value of γ,
the stronger the homeostatic mechanism.

We then use γ to investigate the conditions for accurate concentration homeostasis. In Fig. 3(a), we illustrate γ
as a function of β and κ. Of particular interest is that there is a region of parameter space (shown in blue) where γ
is minimised; this is approximately given by the curve κ =

√
2

1−β
(shown by the yellow dash line). This implies

that to maintain accurate homeostasis, a lack of balanced biosynthesis requires also a lower degree of dosage
compensation.

Now we look in detail at the case where there is no dosage compensation (κ = 2). In Fig. 3(b), we illustrate γ
as a function of η and β, where η = d/f is the ratio of the degradation rate to cell cycle frequency (a measure of the
stability of the gene product). Note that γ becomes smaller as η decreases, implying that stable gene products (e.g.
most proteins) give rise to better concentration homeostasis than unstable ones (e.g. most mRNAs). The combined
results from Fig. 3(a),(b) indicate that homeostasis is the weakest when β = 1, κ = 2, and η is large. This shows
that balanced biosynthesis, weak dosage compensation, and large degradation rates together can break homeostasis.

Next we look in detail at the case where synthesis is non-balanced (β = 0). In Fig. 3(c), we illustrate γ as
a function of κ and w. Interestingly, we find that γ is remarkably small when κ ≈

√
2 ≈ 1.4 and w ≈ 0.5. The

optimal values of κ and w are stable and depend very less on other parameters. This shows that when β = 0,
accurate homeostasis can still be obtained at an intermediate strength of dosage compensation when replication
occurs halfway through the cell cycle.

Precise determination of the onset of concentration homeostasis using the power spectrum
of fluctuations

Generally the time traces of gene product numbers increase from birth up till division time, at which point they
halve. This periodicity would be also expected to some extent in concentrations. However clearly if there is strong
concentration homeostasis, no such periodic behaviour would be visible. Hence it stands to reason that a lack of
a peak in the power spectrum of concentration oscillations (computed from a single lineage) can be interpreted
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Figure 3: Concentration homeostasis and its relation to concentration oscillations. (a) Heat plot of γ (the accuracy of
concentration homeostasis) versus β (the degree of balanced biosynthesis) and κ (the strength of dosage compensation). The
yellow dashed line shows the exponential curve κ =

√
2
1−β , around which homeostasis is accurate. (b) Heat plot of γ versus β

and η (the stability of the gene product) when there is no dosage compensation (κ = 2). Stable gene products give rise to more
accurate homeostasis than unstable ones. (c) Heat plot of γ versus κ and w (the proportion of cell cycle before replication)
when synthesis is non-balanced (β = 0). Homeostasis is the most accurate when κ =

√
2 and w = 0.5. (d) The mean

concentration µk in cell cycle stage k versus the proportion of cell cycle before stage k, which can be computed explicitly
as wk = log2(vk/v1). (e) Typical time traces of concentration. Here c(t) denotes the concentration at time t for a single
cell lineage. (f) Theoretical (blue curve) and simulated (red circles) power spectra of concentration fluctuations. Throughout
the paper, we normalize the spectrum so that G(0) = 1. Here the power spectrum G(ξ) =

∫∞
−∞R(|t|)e

−2πiξtdt is defined
as the Fourier transform of the autocorrelation function R(t). The theoretical spectrum is computed from Eq. (6), while the
simulated spectrum is obtained by means of the Wiener-Khinchin theorem, which states that G(ξ) = limT→∞〈|ĉT (ξ)|2〉/T ,
where ĉT (ξ) =

∫ T
0
c(t)e−2πiξtdt is the truncated Fourier transform of a single concentration trajectory over the interval [0, T ]

and the angled brackets denote the ensemble average over trajectories. The vertical lines show the cell cycle frequency f and its
harmonics. See Supplementary Note 4 for the technical details of this figure.

as strong concentration homeostasis. Stochastic simulations, shown in Fig. 3(d)-(f), indicate that this intuition is
indeed the case: as γ increases (from left to right), the trajectory becomes more oscillatory and the power spectrum
switches from monotonic to a peaked one at a non-zero value of frequency.

We next study the power spectrum analytically. Because the propensities of the reactions in our model are
linear in gene product numbers, the autocorrelation of concentration fluctuations can be computed in closed form
as (Supplementary Note 3)

R(t) = (m1 +m2)V −1eW11tV −1
1− (m1V

−1
1)2

+

∫ t

0

m1V
−1eW00sHSeW11(t−s)V −1

1ds,
(6)

where V = diag(v1, · · · , vN ) and 1 = (1, · · · , 1)T . The power spectrum is then the Fourier transform of the
autocorrelation which can be computed straightforwardly. It can be shown that the power spectrum is a weighted
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sum of N Lorentzian functions, which either decreases monotonically or has an off-zero peak around the cell cycle
frequency f , whose height is proportional to both N2 and (Supplementary Note 3)

C(β, κ, w) = |1− κ2β−1 + (κ− 1)2(β−1)we2πwi|2. (7)

Furthermore, when N � 1, the power spectrum also has peaks around the higher order harmonics of f (right panel
of Fig. 3(f)).

Generally, the condition C(β, κ, w) = 0 is the necessary condition for the power spectrum to lack an off-zero
peak which means that strong homeostasis is present. This can be achieved when β = κ = 1 (balanced biosynthesis
and perfect dosage compensation) which implies also γ = 0. However interestingly, it can be achieved also when
balanced biosynthesis is broken. When β 6= 1, Eq. (7) vanishes when 1− κ2β−1 + (κ− 1)2(β−1)w cos(2πw) = 0

and sin(2πw) = 0, i.e. κ =
√

2
1−β

and w = 0.5. In this case, γ 6= 0 and thus according to Eq. (5), it means
that there is still some variation of the mean concentration across the cell cycle. Hence we refer to this case as
quasi-perfect homeostasis (middle column of Fig. 3(d)-(f)). This also corresponds to the minimum shown by the
yellow dashed line in Fig. 3(a). In particular, when β = 0, quasi-perfect homeostasis is obtained when κ =

√
2

and w = 0.5 (Fig. 3(c)). The optimal value of κ =
√

2 ≈ 1.4 is comparable to the experimental values of κ
measured for Oct4 and Nanog genes in mouse embryonic stem cells [46]. However generally the conditions for
strong homeostasis, i.e. no peak in the power spectrum, appear quite restrictive (β = κ = 1 or β 6= 1, κ =

√
2

1−β
,

and w = 0.5) and hence likely this is rarely seen in nature.
It has been shown [20] that for unstable gene products and non-balanced biosynthesis, the time traces of copy

number display the strongest oscillation regularity when w = 0.5; here we have shown that the time traces of
concentration display the weakest regularity when w = 0.5 (Supplementary Fig. S3). This shows that copy number
and concentration time traces may exhibit totally different dynamical behaviors.

A sizer-timer size control strategy maintains concentration homeostasis while minimising
concentration noise

Recently, evidence has emerged that budding yeast, fission yeast, and mammalian cells may exhibit multiple
layers of size control in each cell cycle, e.g. there can be different size control strategies at work before and
after replication [41–44]. A natural question is why eukaryotic cells apply such two-layer control strategies to
achieve size homeostasis. In our model, we assume that the size control strength varies from α0 to α1 upon
replication. It can be shown that when the variability in cell size is small, the birth size Vb and the division size Vd
are interconnected by Vd = 21−αVb + ε, where α = wα0 + (1− w)α1 is the effective control strength over the
whole cell cycle and ε is a noise term independent of Vb (Methods). The cell behaves as an overall timer/adder/sizer
when α→ 0, 1,∞. Note that in real systems, α is never much larger than 1, e.g. for fission yeast, which is known
to have a sizer-like mechanism, it has recently been estimated that α is 1.4− 2.1 [52].

To understand the effect of size control on concentration homeostasis, we illustrate γ as a function of β,
α0, and α1 (Fig. 4(a),(b)). Recall that balanced biosynthesis, weak dosage compensation, and unstable gene
products may break concentration homeostasis. When synthesis is balanced (β = 1) and dosage compensation
is not very strong (κ is not very close to 1), we find that homeostasis depends strongly on size control and its
accuracy is significantly enhanced if cells use different size control strategies before and after replication (see also
Supplementary Fig. S4(a),(b)). Homeostasis is strong if (i) the cell behaves as a sizer before replication and a
timer after replication or (ii) the cell behaves as a timer before replication and a sizer after replication. Thus such
sizer-timer or timer-sizer compound control strategies may help eukaryotic cells maintain accurate homeostasis
without any clearly distinguishable concentration oscillations (Fig. 4(e)) for genes with a wide range of dynamic
parameters. In contrast, when synthesis is non-balanced (β = 0) such as in bacteria, the same strategy before and
after replication is ideal to maintain concentration homeostasis (Supplementary Fig. S4(e)-(f)).

Furthermore, we find that size control also affects gene expression noise. In our model, the steady-state
concentration mean µ and variance σ2 can be computed analytically as µ =

∑N
k=1m1k/vk and σ2 =

∑N
k=1(m1k+
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Figure 4: Influence of size control on concentration homeostasis and concentration noise. (a),(b) Heat plot of γ (the
accuracy of concentration homeostasis) versus β (the degree of balanced biosynthesis), α0 (the strength of size control before
replication), and α1 (the strength of size control after replication). When synthesis is balanced (β = 1), concentration
homeostasis is accurate when the cell applies different size control strategies before and after replication. Both the timer-sizer
and sizer-timer compound strategies enhance the accuracy of homeostasis. (c),(d) Heat plot of φ (noise in concentration) versus
β, α0, and α1. While the timer-sizer compound strategy leads to accurate concentration homeostasis, it results in large gene
expression noise. The sizer-timer compound strategy both maintains homeostasis and reduces noise. The model parameters are
chosen as N = 50, N0 = 23, ρ = 1.7, B = 1, κ = 2, d = 0.1, η = 1 in (a)-(d), α1 = 1 in (a),(c), and β = 1 in (b),(d). The
growth rate g is determined so that f = 0.1. The parameter a is chosen so that the mean cell volume 〈V 〉 = 1. (e) Typical
time traces of concentration under three different size control strategies: adder (upper panel), timer-sizer (middle panel), and
sizer-timer (lower panel). See Supplementary Note 5 for the technical details of this figure.

m2k)/v2
k − µ2. Noise in concentration can be characterized by φ = σ2/µ2, the CV squared of concentration

fluctuations. Fig. 4(c),(d) illustrate φ as a function of β, α0, and α1, from which we can see that concentration
noise depends only weakly on β but depends strongly on size control. Noise is minimised when the cell behaves
as a sizer before replication and a timer after replication, and is maximized when the control strategy varies from
timer to sizer at replication, whether synthesis is balanced or not (Fig. 4(d) and Supplementary Fig. S4). This
suggests that while the timer-sizer compound strategy is conducive to concentration homeostasis, it gives rise to
large concentration noise (Fig. 4(e)). However, the sizer-timer compound strategy both maintains homeostasis and
reduces noise.

In a recent work [44], it was found that both the duration of the G1 phase and the added volume in G1 decrease
with birth volume in two types of cancerous epithelial cell lines (HT29-hgem and HeLa-hgem), indicating that
the control strategy before replication is sizer-like. Moreover, they also found that the duration of the S-G2 phase
decreases and the added volume in S-G2 increases with the volume at the G1/S transition in both cell types, showing
that the cell uses a timer-like strategy after replication. Similar results have been found in yeast [41–43]. Our results
may explain why the sizer-timer compound strategy is preferred over others and hence commonly used in nature.

Bimodality in the concentration distribution is rarer than bimodality in the distribution
of molecule numbers

To gain a deeper insight into gene product fluctuations, we contrast the copy number and concentration
distributions in Fig. 5(a)-(c). Clearly, the shapes of the two can be significantly different; for some parameter
sets, one is unimodal and the other is bimodal. Both distributions can display bimodality, due to a change in
the burst frequency upon replication; however, the concentration distribution is generally less wide than the
copy number distribution, which agrees with experimental observations [25]. According to simulations, in the
presence of balanced biosynthesis, the intrinsic noise in concentration is almost the same as that in copy number,
while the extrinsic noise in concentration is always smaller than that in copy number (Supplementary Note 1 and
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Figure 5: Influence of model parameters on copy number and concentration distributions. (a)-(c) The copy number (red
curve) and concentration (blue curve) distributions display different shapes under different choices of parameters. (a) Both
distributions are unimodal. (b) The concentration distribution is unimodal while the copy number one is bimodal. (c) Both
distributions are bimodal. (d) Concentration distributions under three different size control strategies: adder (blue curve),
timer-sizer (red curve), and sizer-timer (green curve). Two-layer control strategies lead to unimodal concentration distributions
that are not far from gamma. (e),(f) Heat plot of the Hellinger distance D of the concentration distribution from its gamma
approximation versus β (the degree of balanced biosynthesis), κ (the strength of dosage compensation), η (the stability of the
gene product), and B (the mean burst size). The violet (blue) curve encloses the region for the copy number (concentration)
distribution being bimodal. The bimodal region for the copy number distribution is much larger than that for the concentration
distribution. (g),(h) The mRNA copy number (red curve) and concentration (blue curve) distributions for the HTB2 gene in
budding yeast measured using smFISH. The green (yellow) curves show the distributions of cells in the G1 (G2-S-M) phase. No
apparent dosage compensation was observed with the mean copy number (concentration) in G2-S-M being 2.22 (1.66) times
greater than that in G1. The data shown are published in [53]. See Supplementary Note 6 for the technical details of this figure.

Recall that concentration has the gamma distribution when β = κ = 1 and 〈n〉 � 1. To understand the
deviation from gamma, we depict the Hellinger distance D of the concentration distribution from its gamma
approximation as a function of β, κ, η, and B (Fig. 5(e),(f)). Note that Fig. 5(e) is similar to Fig. 3(a), implying
that the deviation from gamma is closely related to concentration homeostasis. Accurate homeostasis usually results
in a concentration distribution that is gamma-shaped. In particular, stable gene products usually have a unimodal
concentration distribution that is not far from gamma. Since sizer-timer and timer-sizer compound strategies
enhance the accuracy of homeostasis, they both lead to a smaller deviation from gamma (Fig. 5(d)). In Fig. 5(e),(f)
we show the regions of parameter space where the concentration and copy number distributions are unimodal and
bimodal. Both distributions display bimodality when β, κ, and η are large and B is small. However, the region of
parameter space for observing bimodality in copy number distributions is much larger than that for concentration
distributions. Bimodality in the concentration distribution occurs only in the presence of balanced biosynthesis,
weak dosage compensation, large degradation rates, and small burst size.

Confirmation of theoretical predictions using bacterial and yeast data

Next we use published experimental data to test some of the predictions of our model: (i) unstable gene
products can have a concentration distribution with either the same or a smaller number of modes than the copy
number distribution; (ii) strong concentration homeostasis is rare, i.e. while the gene product numbers may scale
approximately linearly with cell volume, nevertheless oscillations in concentration due to the periodicity of cell
division are still detectable; (iii) deviations from perfect homeostasis result in deviations of the concentration
distribution from gamma. We used three data sets reporting mRNA or protein measurements for bacteria, budding
yeast, and fission yeast, to test these results, as follows.
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To test prediction (i), we used the population data collected in diploid budding yeast cells using single-molecule
mRNA fluorescence in situ hybridization (smFISH) [53]. In this data set, the mRNA abundance and cell volume
are measured simultaneously for four genes: HTB1, HTB2, HHF1, and ACT1, with the cell cycle phase (G1, S,
and G2/M) of each cell being labelled. These mRNAs are produced in a balanced manner [53] and expected to
be unstable since the median mRNA half-life in budding yeast is ∼ 20 min [54], which is much less than the
mean cell cycle duration of 1.5 − 2.5 hr [55, 56]. Interestingly, for HTB2, we observed an apparent bimodal
distribution for mRNA number and a unimodal distribution for mRNA concentration (shown by the red and blue
lines in Fig. 5(g),(h)). Calculating the distributions conditional on the G1 and S-G2-M phases (shown by the green
and yellow lines) clarifies that the bimodality stems from replication and a lack of dosage compensation. Similar
distribution shapes were also observed for HTB1 and ACT1, although bimodality in the concentration distribution is
significantly less apparent; for HHF1, both distributions are unimodal (Supplementary Fig. S6).

To test predictions (ii) and (iii), we used the lineage data collected in E. coli and haploid fission yeast cells
using a mother machine [13, 57]. In the E. coli data set [13], the time course data of cell size and fluorescence
intensity of a stable fluorescent protein were recorded for 279 cells lineages under three growth conditions. In the
fission yeast data set [57], similar data for a stable fluorescent protein were monitored for 10500 cell lineages under
seven growth conditions. For both cell types, we illustrate the change in the mean concentration across the cell
cycle, as well as the distribution and power spectrum of concentration fluctuations, in Fig. 6(a)-(c) and (e)-(g). In
agreement with prediction (ii), from Fig. 6(a),(b) we see that for E. coli, while the mean concentration is practically
invariant across the cell cycle, nevertheless homeostasis is not strong enough to suppress concentration oscillations
whose signature is a peak at a non-zero frequency in the power spectrum. A similar phenomenon was also observed
for fission yeast (Fig. 6(e),(f)). The higher-order harmonics of concentration fluctuations (second and third peaks
in the spectrum) can be seen for fission yeast but not for E. coli; this is likely due to a stronger periodicity (smaller
variability) in cell cycle duration in fission yeast compared to that in E. coli [21, 52]. Finally, in agreement with
prediction (iii), from Fig. 6(d),(h) we see that for both organisms, the Hellinger distance D, which measures the
distance of the concentration distribution from a gamma, is positively correlated with the homeostasis accuracy γ
and the off-zero peak height H , both of which measure how strong homeostasis is.

Discussion

In this paper, we have developed and solved a complex model of gene product fluctuations which presents
a unified description of intracellular processes controlling cell size, cell cycle phase, and their coupling to gene
expression. The analytical difficulties in solving a model with considerable biological details were circumvented
by means of a novel type of mean-field approximation which involves neglecting cell size fluctuations such that the
cell size at a given fraction of the cell cycle is independent of the generation number. This approximation led to a
reduced model from which we derived expressions for the moments, distributions, and power spectra of both gene
product number and concentration fluctuations. We showed by simulations that the full and reduced models are in
good agreement over all of parameter space provided the number of cell cycle stages N is greater than 15. Previous
work estimated N to be 15− 38 for the bacterium E. coli, according to temperature [21], 16− 50 for fission yeast,
depending on temperature and medium [52], 27 for human B-cells, 21 for rat 1 fibroblasts, 50 for human mammary
epithelial cells, and 59 for the cyanobacterium S. elongatus [18].

We note that whilst the majority of gene expression models have no cell size description, recently a few
pioneering papers have considered extensions to include such a description. In [51], it was shown that concentration
homeostasis can arise when RNA polymerases are limiting for transcription and ribosomes are limiting for
translation. This model takes into account gene replication and cell division but neglects dosage compensation
and multi-layer size control, and some of the mechanistic details are specific to E. coli. In addition, the analysis is
deterministic and while stochastic simulations are presented, a detailed study of fluctuations in molecule number
and concentration is missing. In [58], mRNA number distributions are approximated by a negative binomial using a
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Figure 6: Analysis of single-cell lineage data of concentration fluctuations in E. coli and fission yeast. The data shown are
published in [13, 57]. The E. coli data set contains the lineage measurements of both cell length and fluorescence intensity
of a stable fluorescent protein at three different temperatures (25oC, 27oC, and 37oC). The fission yeast data set contains the
lineage measurements of both cell area and fluorescence intensity of a stable fluorescent protein under seven different growth
conditions (Edinburgh minimal medium (EMM) at 28oC, 30oC, 32oC, and 34oC and yeast extract medium (YE) at 28oC, 30oC,
and 34oC). (a) The change in the mean concentration across the cell cycle for E. coli under three growth conditions. Here, we
divide each cell cycle into 50 pieces and compute the mean and standard deviation (see error bars) of all data points that fall into
each piece. The CV of the mean concentrations of all pieces gives an estimation of the homeostasis accuracy γ. (b) Power
spectra of copy number (red curve) and concentration (blue curve) fluctuations under three growth conditions. (c) Experimental
concentration distributions (blue bars) and their gamma approximations (red curve) under three growth conditions. (d) Scatter
plots between γ (the accuracy of concentration homeostasis), H (the height of the off-zero peak of the power spectrum), and D
(the Hellinger distance between the concentration distribution from its gamma approximation) under three growth conditions.
(e)-(h) Same as (a)-(d) but for fission yeast. Here (e)-(g) only show the three growth conditions for YE, while (h) shows the
scatter plots between γ, H , and D under all seven growth conditions (for both EMM and YE). Both cell types show remarkable
positive correlations between γ, H , and D.

model that takes into account replication, division, dosage compensation, and balanced biosynthesis. The main
limitations of this approach is its lack of flexibility to capture complex distributions and the assumption that the
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size control strategy is timer. In [59], a simplified model is considered whereby replication, dosage compensation,
and multi-layer size control are neglected (an adder is the focus of the paper). A stochastic analysis is presented
whereby the linear noise approximation (LNA) [60, 61] is extended to obtain the first two moments of copy number
and concentration fluctuations. The focus of the study was to shed light on the similarities and differences with
classical models that are in widespread use. Because the use of the LNA, only a Gaussian approximation to the
copy number and concentration distributions are possible. Our model differs from the above models in numerous
ways, by (i) including a wider description of relevant biological processes; (ii) capturing complex distributions and
power spectra of concentration fluctuations using a novel non-LNA-based approach; (iii) showing that accurate
homeostasis results from a complex tradeoff between dosage compensation, balanced biosynthesis, degradation,
and the timing of replication; (iv) showing that concentration homeostasis is typically not strong enough to suppress
concentration oscillations due to cell division; (v) showing that the number of modes of mRNA number distributions
is greater than or equal to that of mRNA concentration distributions; (vi) showing that a sizer-timer compound
strategy is ideal because it maintains accurate concentration homeostasis whilst minimising concentration noise.

Among the limitations of our model are the assumption that the parameters β and κ are independent of each
other (in reality the two are likely related because both balanced biosynthesis and dosage compensation emerge
from RNA polymerase dynamics), and its lack of a description of growth rate variability [44, 62, 63] and of
regulation via feedback mechanisms [10, 12, 64–68]. In particular regarding the latter, it remains to be seen how
the plethora of results on noise-induced bifurcations and oscillations derived using classical models are modified
when size-dependent transcription and cell-size control strategies are introduced.

Methods

Derivation of the mean cell volume at each stage using a mean-field approximation

Let Vb, Vr, and Vd denote the cell volumes at birth, replication, and division, respectively. Let α0 and α1

denote the strengths of size control before and after replication, respectively. Here we shall prove that (i) the
generalized added size before replication, ∆0 = V α0

r − V α0

b , has an Erlang distribution with shape parameter N0

and mean M0 = N0α0g/a
α0 and (ii) the generalized added size after replication, ∆1 = V α1

d − V α1
r , is also Erlang

distributed with shape parameter N1 = N −N0 and mean M1 = N1α1g/a
α1 . Using this property, N0 and N1

can be experimentally inferred as the inverse CV squared of ∆0 and ∆1, respectively.
To prove this, we first focus on the volume dynamics before replication. Note that when Vb is fixed, the cell

volume at time t is given by V (t) = Vbe
gt. Since the transition rate from one stage to the next is equal to (aV (t))α0

before replication, the distribution of the transition time T is given by

P(T > t) = e−
∫ t
0

(aV (s))α0ds = e−
∫ t
0

(aVb)
α0eα0gsds = e−

(aVb)
α0

α0g
(eα0gt−1).

This shows that
P(V α0

b (eα0gT − 1) > t) = e−
aα0 t
α0g . (8)

Let vk be the volume when the cell first enters stage k with v1 = Vb and vN0+1 = Vr. Note that V α0

b (eα0gT −1) =

vα0
2 − vα0

1 is the generalized added size at stage 1. Hence Eq. (8) suggests that vα0
2 − vα0

1 is exponentially
distributed with mean α0g/a

α0 . Similarly, we can prove that the generalized added size vα0

k+1 − v
α0

k at stage k is
also exponentially distributed with mean α0g/a

α0 for each k ∈ [1, N0]. As a result, the generalized added size
before replication, V α0

r − V α0

b , is the independent sum of N0 exponentially distributed random variables with
the same mean α0g/a

α0 . This indicates that V α0
r − V α0

b has an Erlang distribution with shape parameter N0 and
mean M0 = N0α0g/a

α0 , and is also independent of Vb. The fact that V α1

d − V α1
r is Erlang distributed with shape

parameter N1 and mean M1, and is also independent of both Vb and Vr can be proved in the same way.
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Moreover, it is easy to see that for each k ∈ [1, N0], the generalized added size vα0

k+1 − v
α0
1 , has an Erlang

distribution with shape parameter k and mean kα0g/a
α0 . Similarly, for each k ∈ [N0 + 1, N ], the generalized

added size vα1

k+1 − v
α1

N0+1 is also Erlang distributed with shape parameter k −N0 and mean (k −N0)α1g/a
α1 .

We next focus on three important special cases. When α0 → 0, the transition rate from stage k ∈ [1, N0] to
the next is a constant independent of k and thus the time elapsed from birth to replication has an Erlang distribution
independent of the birth size; this corresponds to the timer strategy. When α0 = 1, the added size Vr − Vb before
replication has an Erlang distribution independent of the birth size; this corresponds to the adder strategy. When
α0 →∞, the α0th power of the cell size at replication, V α0

r , has an Erlang distribution independent of the birth
size; this corresponds to the sizer strategy. Similarly, when α1 → 0, the transition rate from stage k ∈ [N0 + 1, N ]

to the next is a constant independent of k and thus the time elapsed from replication to division has an Erlang
distribution independent of the replication size; this corresponds to the timer strategy. When α1 = 1, the added
size Vd − Vr after replication has an Erlang distribution independent of the replication size; this corresponds to
the adder strategy. When α1 → ∞, the α1th power of the cell size at division, V α1

d , has an Erlang distribution
independent of the replication size; this corresponds to the sizer strategy.

Since the exact mean cell volume at each stage is difficult to obtain, we make the approximation that the
number of stages is large, which holds for most cell types and most growth conditions [18, 20, 21]. When N � 1,
the fluctuations in cell volume at each stage are very small and thus can be ignored. In this case, both ∆0 = M0

and ∆1 = M1 can be viewed as deterministic and Vd = 2Vb. Thus the typical birth size Vb is the solution of the
implicit equation

(V α0

b +M0)α1/α0 +M1 = (2Vb)
α1 .

Moreover, when N is large, both vα0

k − v
α0
1 and vα1

k − v
α1

N0+1 can be viewed as deterministic and replaced by their
means, as given above. Thus the typical cell size at stage k is given by

vk = [vα0
1 + (k − 1)M0/N0]1/α0 for k ∈ [1, N0],

vk = [(vα0
1 +M0)α1/α0 + (k −N0 − 1)M1/N1]1/α1 for k ∈ [N0 + 1, N ].

Effective size control strategy over the whole cell cycle

In our model, we assume that the size control strategies before and after replication can be different with the
strength of size control changing from α0 to α1 at replication. The following question naturally arises: what is
the size control strategy over the whole cell cycle? To answer this, we first focus on the cell size dynamics before
replication. Recall that the generalized added size V α0

r − V α0

b before replication has an Erlang distribution and is
independent of Vb. When the fluctuations of Vb and Vr are small, we have the following Taylor expansions:

V α0

b ≈ vα0

b + α0v
α0−1
b (Vb − vb) = (1− α0)vα0

b + α0v
α0−1
b Vb,

V α0
r ≈ vα0

r + α0v
α0−1
r (Vr − vr) = (1− α0)vα0

r + α0v
α0−1
r Vr,

where vb = v1 and vr = vN0+1 are the typical values of Vb and Vr, respectively. Therefore, we obtain

V α0
r − V α0

b ≈ (1− α0)(vα0
r − v

α0

b ) + α0v
α0−1
r Vr − α0v

α0−1
r Vb

= (1− α0)(vα0
r − v

α0

b ) + α0v
α0−1
r

[
Vr −

(
vb
vr

)α0−1

Vb

]
= (1− α0)(vα0

r − v
α0

b ) + α0v
α0−1
r (Vr − 2(1−α0)wVb),

where w = log2(vr/vb) is the proportion of cell cycle before replication. This shows that

V α0
r − V α0

b ≈ a+ b(Vr − 2(1−α0)wVb),

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464773
http://creativecommons.org/licenses/by-nc-nd/4.0/


where a = (1− α0)(vα0
r − v

α0

b ) and b = α0v
α0−1
r are two constants. Hence Vr − 2(1−α0)wVb is approximately

independent of Vb, i.e.
Vr − 2w(1−α0)Vb = ε0, (9)

where ε0 is a noise term independent of Vb and which has a mean greater than zero. Similarly, for the cell size
dynamics after replication, we have

Vd − 2(1−w)(1−α1)Vr = ε1, (10)

where ε1 is a noise term independent of both Vb and Vr, and which has a mean greater than zero. Combining the
above two equations, we can eliminate Vr and obtain

Vd − 21−[wα0+(1−w)(1−α1)]Vb = ε1 + 2(1−w)(1−α1)ε0, (11)

where the right-hand side is a noise term independent of Vb. Eqs (9) and (10) again show that αi → 0, 1,∞
corresponds to timer, adder, and sizer, respectively.

To proceed, note that if the strength of size control does not change upon replication, i.e. α0 = α1 = α, then
similar reasoning suggests that Vd − 21−αVb is a noise term independent of Vb. Therefore, if the strength of size
control changes from α0 to α1 at replication, then it follows from Eq. (11) that the effective size control strength α
over the whole cell cycle should be defined as

α = wα0 + (1− w)α1.

The cell behaves as an overall timer/adder/sizer when α→ 0, 1,∞.
The above discussion also provides a method of inferring α0 and α1 from experimental data. From Eq. (9),

the slope of the regression line through the data points (Vb, Vr) gives an estimate of (1− α0)w, from which α0

can be inferred. Similarly, from Eq. (10), the slope of the regression line through the data points (Vr, Vd) gives an
estimate of (1− α1)(1− w), from which α1 can be inferred.

Master equation for the dynamics of gene product number

Let pk,n denote the probability of observing microstate (k, n), where k is the cell cycle stage and n is the copy
number of the gene product. Then the evolution of copy number dynamics is governed by the master equation

ṗ1,n =
n−1∑
m=0

ρ1µ1,n−mp1,m −
∞∑
m=1

ρ1µ1,mp1,n + (n+ 1)dp1,n+1

− ndp1,n + qN

∞∑
m=n

(
m

n

)(
1

2

)m
pN,m − q1p1,n,

ṗk,n =
n−1∑
m=0

ρkµk,n−mpk,m −
∞∑
m=1

ρkµk,mpk,n + (n+ 1)dpk,n+1

− ndpk,n + qk−1pk−1,n − qkpk,n, 2 ≤ k ≤ N,

(12)

where µk,n = [Bk/(Bk + 1)]n[1/(Bk + 1)] is the burst size distribution at stage k, the first two terms on the
right-hand side describe bursty production, the middle two describe degradation, and the last two describe cell
cycle progression or binomial partitioning of gene product molecules at cell division. The master equation for the
concentration dynamics can also be derived in the large molecule number limit (Supplementary Note 2).

Lineage distributions of gene product number

We consider the distribution of copy numbers for lineage measurements. Note that at each cell cycle stage,
the stochastic dynamics of copy number is exactly the classical discrete bursty model proposed in [69], whose
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steady-state is the negative binomial distribution. Therefore, it is natural to approximate the conditional distribution
of copy number at each stage by the negative binomial distribution

pn|k ≈
1

n!

(
µ̄2
k

σ̄2
k − µ̄k

)
n

(
1− µ̄k

σ̄2
k

)n(
µ̄k
σ̄2
k

)µ̄2
k/(σ̄

2
k−µ̄k)

,

where µ̄k = m1k/m0k and σ̄2
k = (m1k +m2k)/m0k − µ̄2

k are the conditional mean and variance of copy number
at stage k, respectively, and (x)n = x(x+ 1) · · · (x+ n− 1) denotes the Pochhammer symbol. Hence the overall
distribution of copy number is given by the following mixture of N negative binomial distributions:

pn =
N∑
k=1

m0kpn|k ≈
N∑
k=1

m0k

n!

(
µ̄2
k

σ̄2
k − µ̄k

)
n

(
1− µ̄k

σ̄2
k

)n(
µ̄k
σ̄2
k

)µ̄2
k/(σ̄

2
k−µ̄k)

. (13)

Lineage distributions of gene product concentration

We consider the distribution of concentration for lineage measurements. Note that at each cell cycle stage,
the stochastic dynamics of concentration is exactly the classical continuous bursty model proposed in [50], whose
steady-state is the gamma distribution. Therefore, it is natural to approximate the conditional distribution of
concentration at each stage by the gamma distribution

p(x|k) ≈ (µk/σ
2
k)µ

2
k/σ

2
k

Γ(µ2
k/σ

2
k)

xµ
2
k/σ

2
k−1e−µkx/σ

2
k ,

where µk = m1k/(m0kvk) and σ2
k = (m1k + m2k)/(m0kv

2
k) − µ2

k are the conditional mean and variance of
concentration at stage k, respectively. Hence the overall distribution of concentration is given by the following
mixture of N gamma distributions:

p(x) =
N∑
k=1

m0kp(x|k) ≈
N∑
k=1

m0k(µk/σ
2
k)µ

2
k/σ

2
k

Γ(µ2
k/σ

2
k)

xµ
2
k/σ

2
k−1e−µkx/σ

2
k .

Population distributions of gene product number and concentration

Up till now and in the main text, we have calculated gene product statistics for lineage measurements. Here we
perform calculations for population measurements following the approach described in [14, 18]. Let Ck(t) be the
mean number of cells at stage k in the population at time t. Then all Ck(t), 1 ≤ r ≤ N satisfy the following set of
differential equations:

Ċ1 = −q1C1 + 2qNCN ,

Ċ2 = −q2C2 + q1C1,

· · ·

ĊN = −qNCN + qN−1CN−1,

(14)

where the term 2qNCN in the first equation is due to the fact that the cell divides when the system transitions from
stage N to stage 1. We then make the ansatz

Ck(t) = πkC(t),

where C(t) is the total number of cells in the population and πk is the proportion of cells at stage k. Then Eq. (14)
can be rewritten as

π1Ċ = (2qNπN − q1π1)C,

π2Ċ = (q1π1 − q2π2)C,

· · ·

πN Ċ = (qN−1πN−1 − qNπN )C.

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464773
http://creativecommons.org/licenses/by-nc-nd/4.0/


It then follows from the above equation that

2qN
πN
π1
− q1 = q1

π1

π2
− q2 = · · · = qN−1

πN−1

πN
− qN = J,

where J = Ċ/C. This clearly shows that

πN
π1

=
q1 + J

2qN
,

π1

π2
=
q2 + J

q1
, · · · , πN−1

πN
=
qN + J

qN−1
. (15)

Multiplying all the above equations shows that J is the solution to the equation

(q1 + J)(q2 + J) · · · (qN + J) = 2q1q2 · · · qN .

It thus follows from Eq. (15) that

πk =
(qk+1 + J) · · · (qN + J)

qk · · · qN−1
πN .

Since all πk add up to 1, we finally obtain

πk =
(qk+1 + J) · · · (qN + J)/(qk · · · qN−1)∑N
k=1(qk+1 + J) · · · (qN + J)/(qk · · · qN−1)

.

Now we have obtained the proportion of cells at each stage. Therefore, the population distribution of copy
number is given by the following mixture of N negative binomial distributions:

ppop
n =

N∑
k=1

πkpn|k ≈
N∑
k=1

πk
n!

(
µ̄2
k

σ̄2
k − µ̄k

)
n

(
1− µ̄k

σ̄2
k

)n(
µ̄k
σ̄2
k

)µ̄2
k/(σ̄

2
k−µ̄k)

.

Similarly, the population distribution of concentration is given by the following mixture of N gamma distributions:

ppop(x) =

N∑
k=1

πkp(x|k) ≈ πk(µk/σ
2
k)µ

2
k/σ

2
k

Γ(µ2
k/σ

2
k)

xµ
2
k/σ

2
k−1e−µkx/σ

2
k .
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