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Abstract 21 

Amino acid substitution models are a key component in phylogenetic analyses of protein 22 

sequences. All amino acid models available to date are time-reversible, an assumption 23 

designed for computational convenience but not for biological reality. Another significant 24 

downside to time-reversible models is that they do not allow inference of rooted trees without 25 

outgroups. In this paper, we introduce a maximum likelihood approach nQMaker, an 26 

extension of the recently published QMaker method, that allows the estimation of time non-27 

reversible amino acid substitution models and rooted phylogenetic trees from a set of protein 28 

sequence alignments. We show that the non-reversible models estimated with nQMaker are a 29 

much better fit to empirical alignments than pre-existing reversible models, across a wide 30 

range of datasets including mammals, birds, plants, fungi, and other taxa, and that the 31 

improvements in model fit scale with the size of the dataset. Notably, for the recently 32 

published plant and bird trees, these non-reversible models correctly recovered the commonly 33 

known root placements with very high statistical support without the need to use an outgroup. 34 

We provide nQMaker as an easy-to-use feature in the IQ-TREE software 35 

(http://www.iqtree.org), allowing users to estimate non-reversible models and rooted 36 

phylogenies from their own protein datasets. 37 

Keywords: amino acid substitution models; reversible models; non-reversible models; 38 

maximum likelihood model estimation; phylogenetic inference; amino acid sequence 39 

analyses 40 

Introduction 41 

Amino acid substitution models play an essential role in model-based phylogenetic 42 

analyses of protein sequences. Current models are typically assumed to be time reversible to 43 
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ensure that model and tree estimation are computationally tractable. All time reversible 44 

models are also stationary, meaning that amino acid frequencies are at the equilibrium of the 45 

substitution matrix Q of transition rates between them. Time reversible models also obey 46 

detailed balance, i.e. fluxes between any pair of amino acids have equal magnitude in both 47 

directions. Software such as FastMG (Dang, et al., 2014) and QMaker (Minh, et al., 2021) 48 

can estimate time reversible models from collections of many multiple sequence alignments 49 

(MSAs). While mathematically convenient, there is evidence that the assumption of time 50 

reversibility may be violated (Squartini & Arndt, 2008; Naser-Khdour, et al., 2019). The 51 

challenge has been in implementing software that is computationally efficient enough to 52 

estimate time non-reversible models. If non-reversible models are a better fit to the data than 53 

reversible models, we should expect to see concomitant improvements in the estimation of 54 

tree topologies and branch lengths in phylogenetic analyses. 55 

Another benefit of non-reversible models is that they allow the root of a phylogenetic 56 

tree to be estimated in the absence of an outgroup (Naser-Khdour, et al., 2021; Bettisworth & 57 

Stamatakis, 2021). Rooting trees is an important part of studying evolutionary relationships 58 

among species. Unfortunately, the time reversible models limit maximum likelihood (ML) 59 

methods to construct only unrooted trees since the likelihood of the tree remains the same 60 

regardless of the root position. To circumvent this limitation, most studies use outgroups to 61 

root phylogenetic trees (Maddison, et al., 1984; Huelsenbeck, et al., 2002). However, finding 62 

an appropriate outgroup for the clade under study can still a challenge in practice (Pearson, et 63 

al., 2013). Non-reversible models remove the need for an outgroup because the root position 64 

is a parameter of the model, and different rooting positions will have different likelihoods. 65 

Recent studies based on simulated and empirical data reveal encouraging results of using 66 

non-reversible models in rooting phylogenies (Naser-Khdour, et al., 2021; Bettisworth & 67 

Stamatakis, 2021).  68 
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We recently introduced QMaker (Minh, et al., 2021), a software tool that allows users 69 

to efficiently estimate reversible models from large datasets. We showed that the algorithms 70 

in QMaker improve on existing methods (Le & Gascuel, 2008; Whelan & Goldman, 2001), 71 

and used QMaker to estimate a suite of new reversible matrices that can be applied to 72 

empirical data. QMaker uses a number of approaches to make it computationally feasible to 73 

rapidly estimate new Q matrices from large collections of empirical alignments, but was 74 

restricted to estimating only time-reversible Q matrices. 75 

In this paper, we present nQMaker, which extends QMaker to allow the estimation of 76 

stationary non-reversible models from large collections of alignments. nQMaker combines a 77 

tree search strategy to determine rooted maximum likelihood trees during the model 78 

estimation process and a ML algorithm to estimate 379 parameters of non-reversible models 79 

(instead of 179 parameters of reversible models) based on these rooted trees. We applied 80 

nQMaker to estimate six stationary non-reversible models from Pfam and five clade-specific 81 

datasets for mammals, birds, insects, yeasts, and plants. Our results show that stationary non-82 

reversible models not only improve the fit between the model and data, but also accurately 83 

infer rooted phylogenomic trees in those cases where we had confident a priori knowledge of 84 

the root position from other empirical analyses. 85 

Material and methods 86 

Datasets 87 

We used the general Pfam database (seed alignments version 31) and the same five 88 

clade-specific datasets as used in the QMaker paper (i.e., Plant, Bird, Mammal, Insect, and 89 

Yeast). The Pfam dataset consists of 13,308 MSAs from 1,150,099 sequences including 90 

3,433,343 sites. The Pfam dataset was randomly divided into training and testing sets each 91 

containing 6,654 MSAs. The clade-specific datasets contain between 1,308 (Plant) and 7,295 92 
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(Bird) loci, and between 38 (Plant) and 343 (Yeast) sequences. For each clade-specific 93 

dataset, we randomly selected 1,000 MSAs for estimating a non-reversible model and used 94 

the remaining MSAs for testing the estimated model. We filtered out small loci with less than 95 

50 sites in the Insect dataset (no other datasets contained loci with less than 50 sites). 96 

The six datasets are summarized in Table 1 and available from the online supplementary 97 

material at (https://doi.org/10.6084/m9.figshare.14516712). 98 

Table 1. Six datasets using for training and testing non-reversible models. 99 

Dataset #Sequences #Sites Training Testing Reference 

Pfam 1,150,099 3,433,343 6,654 6,654 (El-Gebali, et al., 2018) 

Bird 52 4,519,041 1,000 6,295 (Jarvis, et al., 2015) 

Insect 144 595,033 1,000 1,482 (Misof, et al., 2014)  

Mammal 90 3,050,199 1,000 3,162 (Wu, et al., 2018) 

Plant 38 432,014 1,000 308 (Ran, et al., 2018) 

Yeast 343 1,162,805 1,000 1,408 (Shen, et al., 2018) 

 100 

Methods 101 

The amino acid substitution process is modeled by a time-homogeneous, time-102 

continuous Markov process and represented by a 20 × 20 matrix 𝑄 = {𝑞𝑥𝑦} where 𝑞𝑥𝑦 is the 103 

number of substitutions between the two different amino acids 𝑥 and 𝑦 per time unit 104 

(diagonal values 𝑞𝑥𝑥 are assigned such that the sum of all elements on row 𝑥 of 𝑄 equals 105 

zero). In phylogenetic inference, the branch lengths reflect the number of substitutions per 106 

site, thus, the Q matrix is normalized by dividing the factor 𝜇, where 𝜇 = −∑𝜋𝑥𝑞𝑥𝑥, and 107 

𝜋𝑥 is the equilibrium frequency of 20 amino acids. 108 

The Q matrix is used to calculate transition probabilities between amino acids. 109 

Specifically, the so-called transition probability matrix 𝑃(𝑡) = {𝑝𝑥𝑦(𝑡)} where 𝑝𝑥𝑦(𝑡) is the 110 
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probability of changing from amino acid x to amino acid y after t substitutions can be 111 

calculated as follows: 112 

𝑃(𝑡) = 𝑒𝑄𝑡        (1)  113 

In a time-reversible model, the exchangeability rates between amino acid x and amino 114 

acid y are the same in both directions. We can only infer unrooted trees with time-reversible 115 

models because the likelihood of the tree remains the same regardless of the root placement 116 

(Felsenstein, 1981). The reversible 𝑄 matrix can be decomposed into a symmetric 117 

exchangeability rate matrix 𝑅 = {𝑟𝑥𝑦} and 𝛱 =  {𝜋𝑥} such that 𝑞𝑥𝑦 = 𝜋𝑦𝑟𝑥𝑦 if 𝑥 ≠ 𝑦, 118 

otherwise, 𝑞𝑥𝑥 =  − ∑ 𝑞𝑥𝑦𝑦 . Thus, a reversible model consists of 208 free parameters (i.e., 119 

189 parameters from the R matrix, and 19 parameters from 𝛱 vector).  120 

If the Q matrix can be diagonalized, the matrix 𝑃(𝑡) is efficiently calculated as follows:  121 

𝑃(𝑡) = 𝑈 × 𝑒𝜦𝑡  𝑈−1        (2)   122 

where 𝚲 is the diagonal matrix of eigenvalues of Q; U is the matrix of eigenvectors of Q and 123 

𝑈−1 is its inverse matrix. 124 

In this paper, we relax the time-reversible assumption in estimating amino acid 125 

substitution models by estimating all 379 parameters of the Q matrix. The transition 126 

probability matrix 𝑃(𝑡) can be calculated using a combination of eigen-decomposition and 127 

scaling-squaring techniques provided by the Eigen3 library (Guennebaud and Jacob 2010) 128 

and implemented in IQ-TREE 2 (Minh, et al., 2020). Specifically, IQ-TREE 2 uses eigen-129 

decomposition to diagonalize Q into its (complex) eigenvalues, eigenvectors and inverse 130 

eigenvectors to calculate 𝑃(𝑡) using Equation 2. If Q is not diagonalizable, then IQ-TREE 2 131 

employs the scaling-squaring technique to compute 𝑃(𝑡) based on the second order Taylor 132 

expansion of Equation 1.  133 
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Given a dataset 𝐃 = {𝐷1, … , 𝐷𝑛} consisting of n multiple amino acid sequence 134 

alignments, let 𝐓 = {𝑇1, … 𝑇𝑛} be the tree set corresponding to the dataset D, i.e., 𝑇𝑖 is the ML 135 

tree of alignment 𝐷𝑖. The ML estimation method determines the tree set T and a model Q to 136 

maximize the likelihood value 𝐿(𝑄, 𝐓; 𝐃). We assume that amino acid substitutions among 137 

alignments and sites are independent, thus, the likelihood value 𝐿(𝑄, 𝐓; 𝐃) can be calculated 138 

as follows: 139 

𝐿(𝑄, 𝐓; 𝐃) = ∏ 𝐿(𝑄, 𝑇i; 𝐷𝑖)

𝑛

𝑖=1

= ∏ ∏ 𝐿(𝑄, 𝑇i; 𝐷𝑖𝑗) =

𝑙𝑖

𝑗=1

𝑛

𝑖=1

∏ ∏ 𝑃(𝐷𝑖𝑗|𝑄, 𝑇i)

𝑙𝑖

𝑗=1

𝑛

𝑖=1

       (3) 140 

where 𝑙𝑖 is the length of alignment 𝐷𝑖; and 𝐷𝑖𝑗 is the data at site 𝑗 of alignment 𝐷𝑖. The 141 

likelihood value 𝐿(𝑄, 𝑇i; 𝐷𝑖𝑗) can be calculated by the conditional probability 𝑃(𝐷𝑖𝑗| 𝑄, 𝑇i) of 142 

data 𝐷𝑖𝑗 given the model Q and the tree 𝑇𝑖. 143 

As amino acid substitution rates vary among sites, we incorporate the site rate 144 

heterogeneity by determining site rate models 𝑽 = {𝑉1, … , 𝑉𝑛} for alignments D, i.e., 𝑉𝑖 is the 145 

site rate model of alignment 𝐷𝑖. Typically, a site rate model combines a Γ distribution of 146 

rates, a proportion of invariant sites (Yang, 1993; Gu, et al., 1995), or a distribution-free rate 147 

models (Yang, 1995). The best-fit rate model for each MSA or locus was determined by 148 

using ModelFinder (Kalyaanamoorthy et al. 2017). The likelihood value 𝐿(𝑄, 𝐓, 𝐕; 𝐃) is now 149 

technically calculated as follows: 150 

𝐿(𝑄, 𝐓, 𝐕; 𝐃) = ∏ ∏ 𝐿(𝑄, 𝑇i, 𝑉𝑖; 𝐷𝑖𝑗) =

𝑙𝑖

𝑗=1

𝑛

𝑖=1

∏ ∏ 𝑃(𝐷𝑖𝑗|𝑄, 𝑇i, 𝑉𝑖)        (4)

𝑙𝑖

𝑗=1

𝑛

𝑖=1

 151 

where 𝑃(𝐷𝑖𝑗|𝑄, 𝑇i, 𝑉𝑖) is the conditional probability of data 𝐷𝑖𝑗 given the model Q, the tree 𝑇𝑖, 152 

and the site rate model 𝑉𝑖. 153 
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The maximum likelihood estimation method determines parameters of the model Q, 154 

the trees T and the site rate models V to optimize the likelihood value 𝐿(𝑄, 𝐓, 𝐕; 𝐃) in 155 

Equation 4. 156 

Using nQMaker to estimate non-reversible models 157 

Estimating the Q matrix is computationally difficult because we have to 158 

simultaneously estimate its parameters, the trees T, and the site rate models V. A number of 159 

approximate maximum-likelihood methods have been proposed to estimate model Q from 160 

large datasets (Minh, et al., 2021; Whelan & Goldman, 2001; Le & Gascuel, 2008; Dang, et 161 

al., 2014). The methods show that the parameters of Q can be accurately estimated using 162 

nearly optimal trees T and site rate models V. Thus, we can iteratively estimate the model Q, 163 

the trees T, and site rate models V to optimize the likelihood value 𝐿(𝑄, 𝐓, 𝐕; 𝐃). Currently, 164 

QMaker (Minh, et al., 2021) has been shown to efficiently estimate reversible models using 165 

this approach. 166 

The nQMaker approach presented here extends QMaker to estimate non-reversible 167 

models from large datasets including MSAs. It composes of five main steps as illustrated in 168 

Figure 1 and described as follows: 169 

1. Initialize a set of candidate matrices Q; typically we use LG (Le & Gascuel, 2008), 170 

JTT (Jones DT, 1992), and WAG (Whelan & Goldman, 2001) as three initial 171 

matrices. Set the current best matrix 𝑄𝐵𝐸𝑆𝑇 ≔ 𝐿𝐺. 172 

2. For each 𝐷𝑖, determine 𝑄𝑖 ∈ 𝐐 as the best-fit matrix, 𝑉𝑖 as the best site rate model, 173 

then employ IQ-TREE 2 to estimate an ML tree 𝑇𝑖 based on 𝑄𝑖 and 𝑉𝑖 (if 𝑄𝑖 is non-174 

reversible, 𝑇𝑖 is a rooted tree). Let 𝒯𝑖 and ℒ𝑖  be the topololgy and branch lengths of 175 

tree 𝑇𝑖, respectively. For clade-specific datasets, instead of constructing a separate 176 
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topology 𝒯𝑖 for each locus, we estimate only one edge-linked topology 𝒯 across all 177 

loci.  178 

3. With 𝑉𝑖 and 𝒯𝑖 fixed, estimate 𝑄𝑁𝐸𝑊 and ℒ𝑖 to maximize the log-likelihood function. 179 

Precisely, we iterate two sub-steps: 180 

3a. With 𝑉𝑖, 𝒯𝑖, and ℒ𝑖 fixed, estimate 𝑄𝑁𝐸𝑊. 181 

3b. With 𝑉𝑖, 𝒯𝑖, and 𝑄𝑁𝐸𝑊fixed, estimate ℒ𝑖. If the log-likelihood is increased 182 

more than 0.1, go to step 3a, otherwise, go to the next step. 183 

4. Assign 𝑄𝐵𝐸𝑆𝑇 ≔ 𝑄𝑁𝐸𝑊. If the Pearson correlation coefficient between 𝑄𝐵𝐸𝑆𝑇 and 184 

𝑄𝑁𝐸𝑊 is less than 0.999, add 𝑄𝐵𝐸𝑆𝑇 to the set of candidate matrices Q, repeat from 185 

step 2. Otherwise, return 𝑄𝐵𝐸𝑆𝑇 as the final matrix for the database 𝐃. 186 

The key difference between nQMaker and QMaker is that nQMaker uses rooted 187 

maximum likelihood trees to estimate the 379 parameters of non-reversible models, rather 188 

than using unrooted trees to estimate the 189 parameters of reversible models in QMaker. 189 

Experiments on large datasets show that the estimation process usually stops after three 190 

iterations.  191 
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 192 

Figure 1: The flowchart of nQMaker to estimate a time non-reversible model from a 193 

collection of multiple protein sequence alignments. 194 

Model estimation  195 

We used nQMaker to estimate non-reversible models (denoted NQ) from the training sets of 196 

six datasets, i.e., NQ.pfam for Pfam, NQ.plant for Plant, NQ.bird for Bird, NQ.insect for 197 

Insect, NQ.mammal for Mammal and NQ.yeast for Yeast. The reversible models for the 198 

datasets (Q.pfam, Q.plant, Q.bird, Q.insect, Q.mammal and Q.yeast) were obtained from the 199 

QMaker paper (Minh, et al., 2021). We compared non-reversible models and reversible 200 

models on testing sets using Akaike information criterion (AIC) values (Akaike, 1974). All 201 

models were tested with rate models “+G4” (Γ distribution with four categories), “+I” 202 

(invariant site model), and “+Rc” (distribution-free rate model with 𝑐 categories). The 203 

reversible models were also tested with “+F” option (i.e., amino acid frequencies were 204 
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directly estimated from testing data). Note that each non-reversible model is represented by a 205 

single matrix 𝑄, therefore “+F” option is not valid for non-reversible models.  206 

The non-reversible model for the Pfam dataset was estimated with two commands in IQ-207 

TREE 2: 208 

iqtree2 -S ALN_DIR -mset LG,WAG,JTT -cmax 4  209 

iqtree2 -S ALN_DIR.best_model.nex -te ALN_DIR.treefile --210 

model-joint NONREV+FO 211 

where -S ALN_DIR option specifies the directory of training data; -mset LG,WAG,JTT 212 

option defines the initial candidate matrices to reduce computational burden; -cmax 4 213 

option restricts up to four categories for the rate heterogeneity across sites. The first 214 

command outputs the best models to ALN_DIR.best_model.nex and the best trees to 215 

ALN_DIR.treefile. These files are then used as the input for the second command, 216 

which estimates a join non-reversible Q matrix across all input alignments. 217 

For clade-specific datasets, we used -p option instead of -S option to estimate an edge-218 

linked partition model with a single tree topology shared across all loci. This -p option is 219 

typically used for the estimation of trees using concatenated sequences, assuming a single 220 

species tree but rescaling the branch lengths of the individual single-locus trees. Previous 221 

work has shown that edge-linked partitioned models usually perform best among among a 222 

range of related options (Duchêne, et al., 2019). 223 

Results 224 

Non-reversible models generally provided much better fit to the data than reversible models 225 
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First, we compared the non-reversible (NQ) and reversible (Q) models on the test 226 

alignments of the Pfam, bird, mammal, insect, plant and yeast datasets. Recall that the test 227 

alignments were not used to estimate the NQ matrices, ensuring that they can be used as 228 

unbiased datasets with which to compare the performance of the NQ models to other models. 229 

For each dataset, we counted the number of test alignments for which the NQ model was 230 

better than the Q model using the AIC. Table 2 shows that the NQ models fit the data better 231 

than the Q models for all clade-specific datasets, typically being selected as the best fit model 232 

for 60-70% of the test alignments. For the Pfam dataset, the reversible model Q.pfam 233 

outperformed the non-reversible model NQ.pfam, with the former being the best fit for two-234 

thirds of the test alignments. 235 

We suspected that the poor performance of NQ.pfam might be caused by a large 236 

number of small Pfam alignments (76% of Pfam test alignments have ≤ 100 sequences). 237 

This is supported by post-hoc data analysis, which shows that the NQ.pfam model 238 

outperformed the Q.pfam model in just 26% of small test alignments (with ≤ 100 sequences) 239 

but in 56% of large test alignments (with > 100 sequences). The median size of alignments 240 

best fit by NQ.pfam (78 sequences) is much larger than the median size of alignments best fit 241 

by Q.pfam (26 sequences). We further examined the effect of the number of sequences in the 242 

alignment on the model fit of NQ.pfam by classifying test alignments in Pfam into 10 subsets 243 

(bins) by the number of sequences such that 𝑖𝑡ℎ (𝑖 = 0 … 9) bin contains all test alignments 244 

with (𝑖 × 100 + 1) to (𝑖 × 100 + 100) sequences. We calculated the Spearman correlation 245 

between the rank of the bin and the proportion of alignments in the bin which are best fit by 246 

NQ.pfam. The Spearman correlation value is 0.903 indicating that the model fit of NQ.pfam 247 

increases with the number of sequences in testing alignments.  248 

 249 
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Table 2. The number of alignments where the NQ and Q models were selected as best-fit on 250 

six datasets. For example, the NQ model outperformed the Q model on 61.87% of testing 251 

alignments in the Bird dataset. 252 

 Pfam Bird Insect Mammal Plant Yeast 

NQ 2218 

(33.33%) 

3895 

(61.87%) 

1001 

(67.54%) 

1950 

(61.67%) 

190 

(61.69%) 

869 

(61.72%) 

Q 4436 

(66.67%) 

2400 

(38.13%) 

481 

(32.46%) 

1212 

(38.33%) 

118 

(38.31%) 

539 

(38.28%) 

Second, we compared 10 different models including six non-reversible models, three 253 

general models (JTT, LG, and WAG), and one best-fit reversible model for each testing 254 

dataset (e.g. Q.pfam for Pfam or Q.plant for Plant). Similar to the results above, these results 255 

show that the non-reversible models performed best for the clade-specific datasets, but not for 256 

the Pfam dataset (Figure 2). In most cases, the second best model for each clade specific 257 

dataset was the reversible model previously estimated for that dataset (e.g. Q.mammal is the 258 

second best dataset behind NQ.mammal for the mammal dataset). 259 
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  260 

Figure 2. The percentage of testing alignments best fit by each model in Pfam and five clade-261 

specific datasets. 262 

Many genome annotations are contaminated with Pfams that do not belong to the 263 

ostensibly sequenced and assembled specie’s genome but to one of its parasites (Breitwieser, 264 

et al., 2019; Salzberg, 2019). To obtain “cleaned” clade-specific data, James et al. (James, et 265 

al., 2021) excluded all Pfam domains whose annotations suggested parasitic origin, e.g. 266 

“viral” or “transcriptase”.  We used their list of cleaned (white-listed) Pfams as a filter on our 267 

training and testing Pfam sets to create a cleaned training Pfam set of 3655 MSAs and a 268 

cleaned testing Pfam set of 3611 MSAs. We chose not to use a more thoroughly cleaned 269 
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version of the Pfam dataset including the removal of individual sites or sequences within each 270 

MSA as it might be too conservative and could eliminate informative data (Tan, et al., 2015). 271 

We then estimated a new non-reversible model from this cleaned Pfam dataset, which we call 272 

NQ.cPfram. 273 

We compared the NQ.pfam model with the NQ.cPfam model estimated from the 274 

cleaned training Pfam set. Experiments showed that NQ.pfam was better than NQ.cPfam on 275 

2519 (69.7%) out of 3611 cleaned testing MSAs. The NQ.pfam model outperformed the 276 

NQ.cPfam model on 4774 (71.7%) testing MSAs from the original Pfam dataset. Thus, the 277 

contaminated MSAs in the Pfam dataset did not considerably affect the quality of the 278 

NQ.pfam model.  279 

Non-reversible model fit correlates with sequence lengths  280 

We first assessed the effect of single-locus alignment length on the model fit of NQ 281 

models on five clade-specific datasets. For each clade-specific dataset, we classified the test 282 

alignments into 10 bins by the alignment length, then calculated the Spearman correlation 283 

between the rank of the bin and the proportion of alignments which are best fit by the NQ 284 

model for that dataset. The results showed variable Spearman correlations among datasets: 285 

0.47 for NQ.Bird, 0.87 for NQ.insect, 0.56 for NQ.Mammal, -0.02 for NQ.Plant, and 0.42 for 286 

NQ.yeast, indicating that the link between single-locus alignment length and model fit varies 287 

considerably across datasets. 288 

We also sought to examine the fit of the new NQ models on longer concatenated 289 

alignments. To do this, we examined the model fit of NQ models on concatenated alignments 290 

from clade-specific datasets with 1, 5, 10, 20, 50, 100, and 200 loci. For each number of loci, 291 

we randomly created 100 replicate concatenated alignments, then calculated the proportion of 292 

100 replicates where the NQ model was the best-fit model. For example, for the Plant dataset 293 
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and the case of 10 loci, we created 100 concatenated alignments each composed of 10 294 

different random loci selected from the Plant test dataset, then assessed the performance of 295 

NQ.plant on the 100 concatenated alignments. The results on five clade-specific datasets (see 296 

Figure 3) show that the proportion of replicates for which the NQ model is the best-fit model 297 

increases with the number of loci in the concatenated alignment. The NQ models 298 

outperformed the corresponding Q models on almost all concatenated alignments with ≥ 20 299 

loci, and on practically all concatenated alignments with >50 loci (Figure 3). This result 300 

suggests that for phylogenomic datasets with many loci, non-reversible models will almost 301 

always outperform reversible models in terms of their model fit, and may therefore lead to 302 

more accurate estimation of trees and branch lengths in these cases. 303 

 304 

Figure 3. The proportion of 100 concatenated alignments best fit by non-reversible models 305 

on five clade-specific datasets.  306 
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Analysis of the properties of non-reversible models 307 

We used principal component analysis (PCA) to visualize the difference between non-308 

reversible and reversible models. Each model was represented by one vector of all amino acid 309 

substitution rates and subsequently analyzed by our R script. Figure 4 illustrates the PCA 310 

analysis of six non-reversible models and 25 existing reversible models. Figure 4 shows that 311 

the models group into three distinct clusters, i.e., one cluster of non-reversible models, one 312 

cluster of reversible models estimated from mitochondrial data, and another cluster of 313 

reversible models estimate from other genomic regions. This PCA analysis indicates that 314 

non-reversible models provided a very distinct pattern of amino acid substitutions not 315 

captured by existing reversible models. To understand these NQ matrix substitution patterns, 316 

we calculated the net flux between each amino acid pair for each clade. Figure 5 shows 317 

drastic departures from reversibility in all taxonomic groups, and substantial differences 318 

between them. The largest non-reversible fluxes are not between particularly codon-adjacent 319 

or (what are typically considered) chemically-similar amino acids. Further study is needed to 320 

understand the contributions of amino acid chemistry to the direction and magnitude of the 321 

fluxes, and thus to the non-reversible evolutionary process summarized in the NQ matrices.  322 
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 323 

Figure 4. Principal component analysis of six non-reversible models and 25 reversible 324 

models. The non-reversible models are grouped into one distinct cluster. 325 

 326 
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Figure 5. Departures from reversibility vary across taxonomic groups. Chord diagrams show 328 

net flux measurements between amino acids (represented by 1-letter codes and side-chain 329 

structures) calculated from non-reversible rate matrices, where net flux = |fluxij – fluxji| = 330 

|(rateij * freqi.) – (rateji * freqj)|. The size of each band along the outer circle represents the 331 

equilibrium frequency of each amino acid, and the width of each chord at its attachment 332 

points is proportional to the magnitude of net flux between each pair of amino acids for that 333 

taxonomic group. For clarity, only the largest 5% of net fluxes are shown. Color in chord 334 

diagrams is for ease of interpretation and contains no extra information. Inset histogram 335 

shows the distribution of all normalized net flux values for each group, each equal to (2 * net 336 

fluxij) / (fluxij + fluxji). 337 

Non-reversible models correctly inferred the root placement of reconstructed trees 338 

We assessed the root placement of trees reconstructed with non-reversible models 339 

from the two clade-specific datasets where previous publications have indicated a well-340 

supported root placement, i.e., the plant tree from Ran et al. (Ran, et al., 2018) and the bird 341 

tree from Jarvis et al. (Jarvis, et al., 2015). The branches on reconstructed trees were labeled 342 

with rootstrap values (ranging from 0 to 1) calculated from 1000 bootstrap trees (Naser-343 

Khdour, et al., 2021) to provide statistical support for the placement of the root on the 344 

branches. We also performed approximately unbiased (AU) test (Shimodaira, 2002) with 345 

1000 replicates for all branches to determine a confidence set of root branches (i.e., branches 346 

with 𝑝𝐴𝑈  >  0.05 are considered as potential root branches and included into the confidence 347 

set) (Naser-Khdour, et al., 2021). 348 

Figure 6 illustrates the plant rooted tree and the bird rooted tree reconstructed using 349 

NQ.plant and NQ.bird, respectively. The expected root branch, based on the analysis of (Ran, 350 

et al., 2018) using outgroups of the plant tree, belongs to the AU test confidence set and has a 351 
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rootstrap value of 1 (supported by all bootstrap trees). Similarly, the expected root branch, 352 

based on the analysis of (Jarvis, et al., 2014) using outgroups, was confirmed by the AU test 353 

and labeled with a very high rootstrap value of 0.998 (supported by 99.8% of bootstrap trees). 354 

These results demonstrate that non-reversible models reconstructed rooted trees with high 355 

confidence in root placements that agree with the roots inferred by outgroup rooting. 356 

  357 
Plant rooted tree inferred with NQ.plant

 

Bird rooted tree inferred with NQ.bird 

 

Figure 6. The plant rooted tree of 35 species (A) reconstructed from a concatenated protein 358 

alignment of 1308 loci using IQ-TREE 2 with the NQ.plant model. The bird rooted tree of 48 359 

species (B) reconstructed from a concatenated protein alignment of 8295 loci using the 360 

NQ.bird model. Bold branches are branches contained in the confidence set of the AU test 361 

and numbers displaying on branches are the rootstrap values. 362 

Non-reversible models inferred different locus trees and coalescent based species trees 363 

A B 
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Next, we examined whether the six new non-reversible matrices can infer different 364 

tree topologies. For each single-locus MSA in each dataset, we inferred an unrooted ML tree 365 

using the best-fit model among nine published reversible models (JTT, WAG, LG, Q.pfam, 366 

Q.plam, Q.mammal, Q.bird, Q.insect and Q.yeast), which we call TREV. We then performed a 367 

second IQ-TREE run considering 15 models, comprising the same nine reversible models but 368 

adding the six new non-reversible models (NQ.pfam, NQ.plant, NQ.mammal, NQ.bird, 369 

NQ.insect, or NQ.yeast), to infer another tree TNEW. If one of the six NQ models fits the data 370 

better, then TNEW will be rooted and will therefore differ from TREV. In this case we launch 371 

another IQ-TREE run with a same matrix as TREV but using a different random seed. We call 372 

the resulting tree TREV2. Otherwise, if NQ models do not provide a better fit, then the 2nd run 373 

will use the same model as the first run but TNEW might still be different from TREV due to 374 

search heuristics. Thus, for each alignment we now have three trees TREV, TNEW, and TREV2 375 

when a non-reversible model fits the data best.  376 

We then compared the three trees for each alignment when a non-reversible model fits 377 

the data best using normalized Robinson-Foulds (nRF) distances. To calculate the nRF we 378 

first unrooted the rooted tree (if required) then used IQ-TREE to calculate the nRF with 379 

options -rf1 --normalize-dist. To ask whether non-reversible models lead to bigger changes in 380 

tree topologies than expected from search heuristics alone, we compared the two distributions 381 

of normalized Robinson-Foulds (nRF) (Robinson and Foulds 1981) nRF(TNEW, TREV) and 382 

nRF(TREV, TREV2). The two nRF distributions are depicted in Figure 7. We found that using 383 

non-reversible models changes locus tree topologies in every dataset (the red line) and, 384 

particularly in the Pfam dataset, changes are somewhat greater between reversible and non-385 

reversible models than between reversible models initiated with different random seeds (the 386 

blue line). 387 
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  388 

Figure 7. Distributions of normalized Robinson-Foulds (nRF) distances between the trees 389 

inferred by non-reversible and reversible models. The red line is the distribution where the 390 

best-fit model is one of the new non-reversible models inferred in this study (NQ.pfam, 391 

NQ.plant, NQ.mammal, NQ.bird, NQ.insect, or NQ.yeast). Comparing to best-fit reversible 392 

model, new model shows an effect on the tree topology (the best-fit reversible model is 393 

chosen from nine existing models Q.pfam, Q.plant, Q.mammal, Q.bird, Q.insect, Q.yeast, 394 

LG, JTT, or WAG; and is showed by the blue line). 395 
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Because of the observed differences between gene tree topologies, we examined to 396 

what extent it influences the reconstruction of species trees using coalescent based methods. 397 

These methods use distributions of single-locus trees to infer a species tree, so changes in the 398 

underlying single-locus trees may affect species-tree inference. To this end, for each clade-399 

specific dataset, we used ASTRAL version 5.15 (Zhang, et al., 2018) to construct a species 400 

tree ASTRALREV from the set of TREV and a species tree ASTRALNEW from the set of TNEW 401 

trees. For plant dataset, the ASTRALREV tree and the ASTRALNEW tree (Figure 8A) differ by 402 

the position of a single taxon, Liriodendron. The topological differences are more pronounced 403 

for Mammals, Insects, Yeasts, Birds with 2, 10, 15, and 17 different branches between the 404 

ASTRALREV and ASTRALNEW trees. Figure 8B highlights these differences for the Bird 405 

dataset.  406 

 407 

A B 
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Figure 8. ASTRALNEW species trees from Plant (A) and Bird (B) data reconstructed from the 408 

set of TNEW locus trees. Shown on each internal branch the ASTRAL local posterior 409 

probability. 410 

 411 

Discussion 412 

Most phylogenetic analyses of protein sequences use time-reversible substitution 413 

models, which can be limited in their ability to accurately model the biological process of 414 

amino acid substitution. Although estimating time non-reversible models is complicated and 415 

computationally expensive (e.g., 105 days with a computer of 36 cores for estimating 416 

NQ.pfam), it has the potential to allow model of sequence evolution to better reflect the 417 

underlying evolutionary mechanisms, and hence could improve the estimation of 418 

evolutionary relationships and timescales among species. 419 

In this paper, we introduced a new approach, nQMaker, to estimate non-reversible 420 

models from large datasets including hundreds to thousands of MSAs. We applied nQMaker 421 

to estimate six non-reversible models: a general protein model from Pfam and five clade-422 

specific datasets for birds, insects, mammals, plants, and yeasts respectively. Our analyses 423 

show that the non-reversible models capture a distinct pattern of amino acid substitutions not 424 

captured by the traditional reversible models, that the non-reversible models affect the 425 

inference of tree topologies, and allow for the estimation of root positions without outgroups. 426 

Our results show that non-reversible models are often selected in preference to 427 

reversible models, and that this tendency increases with the size of the alignment. Non-428 

reversible models were selected using standard model selection approaches for most single-429 

locus alignments. In concatenated multi-locus alignments, non-reversible models tended to be 430 
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the best fit model in practically all datasets with at least 20 loci. The trees inferred with non-431 

reversible models were often topologically different from those constructed with reversible 432 

models, suggesting that when a non-reversible model is the best-fit model for a dataset, 433 

topological accuracy of phylogenetic inference may be improved.  434 

Rooting phylogenetic trees is an essential task in studying evolutionary relationships 435 

among species. This is normally accomplished by using outgroup species or additional 436 

assumptions such as molecular clocks (Huelsenbeck, et al., 2002). Non-reversible models 437 

provide an alternative approach that implicitly enables the reconstruction of rooted trees as 438 

part of the model. Our analyses of Bird and Plant datasets with non-reversible models 439 

identified the root of the trees of these groups with a very high statistical confidence that 440 

agree with previous studies (Ran, et al., 2018; Jarvis, et al., 2015). Together with other 441 

encouraging results on mammals (Naser-Khdour, et al., 2021) and from simulated data 442 

(Bettisworth & Stamatakis, 2021), this provides increasing evidence that non-reversible 443 

models are effective and accurate in identifying root placements for empirical datasets, and 444 

will especially be useful when an appropriate outgroup is difficult to obtain.  445 

The non-reversible models consist of 379 parameters, the pairwise substitution rates 446 

between 20 amino-acids. Therefore, they should be estimated from large datasets consisting 447 

of hundreds to thousands MSAs to avoid over-fitting the data. The six non-reversible rate 448 

matrices we estimate in this study are now available in the latest version of IQ-TREE 2, 449 

allowing researchers to readily utilize these models for their datasets. We recommend that 450 

users perform model selection to determine the best fit model for any specific alignment 451 

under study, and note that it is possible to combine both reversible and non-reversible models 452 

in a single partitioned analysis. The nQMaker algorithm is implemented in IQ-TREE 2, so 453 

researchers can estimate non-reversible models from their own datasets. For example, the 454 
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NQ.plant model was estimated from 1000 plant alignments in 1.5 days using a computer with 455 

36 cores. 456 

A limitation of our models is that while relaxing the time reversibility, they still 457 

assume stationarity, i.e., the amino acid frequencies stay constant along the tree. However, 458 

the stationary assumption is highly likely to be violated during the evolution of distantly 459 

related proteins, e.g., between bacteria and eukaryotes. Failure to account to heterogeneous 460 

sequence composition might mislead phylogenetic reconstruction. Apart from non-stationary 461 

models, one can also use a mixture model of several Q matrices such as C10-C60, LG4M and 462 

LG4X (Le, et al., 2012). Therefore, deriving non-stationary and/or mixture amino acid 463 

models will be an important avenue of future research. 464 
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