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Abstract 
Motor cortex is integral to generating voluntary movement commands. However, as a dynamical 
system, it is unclear how motor cortical movement commands are informed by either new or 
sensory-driven corrective instructions. Here, we examine population activity in the primary motor 
cortex of macaques during a continuous, sequential arm movement task in which the movement 
instruction is updated several times over the course of a trial. We use Latent Factor Analysis via 
Dynamical Systems (LFADS) to decompose population activity into a portion explainable via 
dynamics, and a stream of inferred inputs required to instruct that dynamical system. The time 
series of inferred inputs had several surprising properties. First, input timing was more strongly 
locked to target appearance than to movement onset, suggesting that variable reaction times 
may be a function of how inputs interact with ongoing dynamics rather than variability in 
instruction timing. Second, inferred inputs were tuned nearly identically for both initial and 
corrective movements, suggesting a commonality in the structure of inputs across visually-
instructed and corrective movements that was previously obscured by the complexity of the 
dynamical system that is M1. 
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Introduction 
 
Animal behavior requires the motor system to produce reliable movements with precise 

temporal structure. While some aspects of motor pattern generation occur in the brainstem and 
spinal cord (Marder & Calabrese, 1996), motor cortex exhibits activity patterns with complex 
temporal structure (Churchland, & Shenoy, 2007; Sergio et al., 2005) that relates to many 
aspects of movement as well (e.g. Evarts, 1968; Georgopoulos et al., 1982, 1986; Hatsopoulos 
et al., 2007; Kalaska, 2009). However, it remains unclear to what extent activity reflects 
intrinsically arising pattern generation (Brown, 1914; Yuste et al., 2005) versus external sensory 
and top-down inputs (Churchland et al., 2010; Omrani et al., 2017; Scott, 2008). 
 One approach to understanding the pattern generation aspects of this activity has been 
through the lens of dynamical systems analysis (Churchland et al., 2012; Seely et al., 2016; 
Perich et al., 2020; Rouse, 2018; Sauerbrei et al., 2020; Vyas et al., 2020) particularly in 
reaching primates. In the context of brief and largely open-loop reaching, dynamical systems 
have been used to show that motor cortex can be approximated well as having rotational 
dynamics (Churchland et al., 2012) or a variant thereof (Hennequin et al., 2014; Russo et al., 
2018; Sabatini & Kaufman, 2021), and is initialized by movement-specific inputs (Churchland et 
al., 2012, 2010) and then triggered by a large, external, condition-invariant signal (Kaufman et 
al., 2016; Michaels et al., 2015). This approximation of motor cortex as having autonomous 
dynamics has worked well in cases where movements are brief. Yet, just as inputs external to 
motor cortex must initialize the system, successful motor behavior requires continual updates of 
these instructions. The dependence on ‘external’ inputs is especially clear at the time of 
movement initiation (Dacre et al., 2021; Sauerbrei et al., 2020) and during errors, when input is 
necessary to correct movement (Perich et al., 2020). Thus, we expect the motor system to differ 
from an autonomous dynamical system whenever the brain sets new goals or corrects mistakes 
dependent on feedback (Elliott et al., 2010). This difference should be particularly salient during 
continuous motor behavior, when task goals are repeatedly updated.  
 A recently developed method, Latent Factor Analysis via Dynamical Systems (LFADS) 
(Pandarinath et al., 2018), addresses this distinction by incorporating both autonomous 
dynamics and a separate stream of inputs in fitting neural activity with a deep neural network 
architecture. That is, this method attempts to learn the dynamics of the neural activity to the 
extent that they can be parsimoniously modeled as a dynamical system, and concurrently learns 
what inputs must be provided at what time points to this “generator” network to explain the full 
pattern of activity observed. 
 Here, we apply LFADS to neural activity recorded during a Random Target Pursuit task 
(Hatsopoulos et al., 2004), in which a monkey is presented with a new target whenever it 
contacts the current one, and in which subjects make frequent errors and execute corrections. 
We then analyzed the inferred inputs to the dynamical system and observed distinct, large input 
transients when new targets appeared. These transients were locked to the target presentation 
more strongly than to the movement itself. Further, we found that inferred inputs predicted the 
updated goal location in hand-centered coordinates better than shoulder-centered coordinates, 
consistent with prior work on target specification (Bremner & Andersen, 2012; Buneo et al., 
2002; Pesaran et al., 2006). Finally, we found that input transients had highly similar tuning and 
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temporal structure for both initial, visually instructed movements and for error correction sub-
movements. Thus, motor cortical activity corresponding to continuous movement is well-
modeled as a dynamical system receiving brief external inputs which specify new goals and 
corrective movements similarly.  

Results 

We analyzed Utah array recordings from M1 while three monkeys performed a Random 
Target Pursuit (RTP) task (Fig. 1A). Movement was constrained to the horizontal plane by a 
two-link exoskeleton. In each trial of this task the monkey made continuous arm movements 
from target to target, each of which appeared at a random location on the screen when the 
previous one was hit with a cursor projected just above the hand (Fig. 1). The RTP task 
therefore requires continual updating of motor commands in response to stimuli throughout the 
trial, evoking continuous movement. 
 
A dynamics-based fit to M1 activity required time-varying inputs 
 
 We used LFADS, a machine learning method based on artificial recurrent neural 
networks, to model the neural spiking data. This model treats neural data as arising from a 
dynamical system, initialized at the start of the trial with a seed that is specific to the upcoming 
activity, and subject to a time-varying set of inputs that arise from outside the dynamical system 
(Fig. 2A). This model is structured as an autoencoder: neural data are first transformed into the 
initial state for each trial, then run through a dynamical system to generate the state of the 
system over time (conceptually like the factors that would result from Principal Component 
Analysis), and finally these factors are related back to the same neural activity via a Generalized 
Linear Model. The non-dynamical inputs form a side loop (Fig. 2A, red path), where both the 
initial state and errors of the factors (failures to reconstruct the data) inform a stream of 
corrective external inputs to the dynamical generator. The output of LFADS is therefore a 
denoised set of firing rates over time on single trials for each neuron. This model has been 
shown to reliably distinguish between different conditions on single trials from the neural data 
alone; accurately predict external kinematic variables; and importantly for our purposes, 
correctly infer external inputs when a movement was perturbed on a given trial (Pandarinath et 
al., 2018). In the framework of the LFADS model, the presence of inputs at a given time in the 
trial means that the evolution of population activity cannot be parsimoniously explained by the 
autonomous dynamics of a recurrent neural network. Here, we were particularly interested in 
the nature of these inferred inputs, which reveal what inputs a dynamical system would require 
at each time point to recapitulate the neural activity recorded during continuous pursuit of 
random targets. 
 
 Because the inference of inputs was the focus here, we took particular care to fit the 
hyperparameters of the model affecting these external inputs. In general, the same data can be 
fit as arising from either a more complex dynamical system (higher dimensional or with ‘more 
nonlinear’ dynamics) receiving less exogenous input, or a simpler dynamical system receiving 
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stronger and more frequent inputs (Chicone, 2006). For LFADS, whether the system fits a more 
complex dynamical system or more complex inputs is informed by hyperparameters that are set 
by the user. If the “input penalty” hyperparameter is chosen to be too low, too much of the 
activity will be attributed to the inputs, not enough of the autonomous dynamics will be learned, 
and the model will not be able to leverage the dynamics to denoise the data optimally. If the 
model penalizes external input too heavily, then the model will not capture updates to the motor 
plan due to the changing state of the task.  
 

To first evaluate the importance of external inputs to model performance, we measured 
how well the ongoing movement kinematics could be linearly decoded from the denoised single-
trial firing rates (Keshtkaran et al., 2021; Pandarinath et al., 2018) inferred by models with and 
without external inputs (Fig. 2B). For the model with external inputs, we observed a mean cross-
validated decoding r2 of 0.75 ± 0.08 (mean ± s.d. across monkeys), compared to an r2 of 0.39 ± 
0.08 without external inputs. This result indicates that external inputs improved the model fit of 
firing rates for the purpose of accurately decoding kinematics. The denoised rates produced by 
LFADS also outperformed direct decoding from the recorded firing rates (r2 = 0.46), as found 
previously with LFADS applied to motor cortex data from other tasks (Pandarinath et al., 2018). 
Consequently, for the remainder of the study we limited our study to LFADS containing external 
inputs.  
 

Having established the importance of external inputs in the LFADS model to infer single-
trial firing rates, we next evaluated how much external input in the model was optimal. To do so 
we iteratively considered multiple values of the input penalty hyperparameter. For each monkey, 
we found that the decoding performance peaked at an intermediate hyperparameter (Fig. 2C). 
For subsequent analyses, we set the controller penalty to a single value for all monkeys (2.0) 
which was at or near the peak decoding performance for each animal and yielded smooth input 
time series. We also considered the dimensionality of the inferred inputs, testing values of 0, 1, 
2, 3, and 4 (Fig. 2E). Performance of decoding kinematics from the denoised factors was 
equivalent using any model with 1 or more inferred input dimensions. However, in decoding the 
position of the targets, inferred inputs of dimensionality 2 for monkeys RS and MK were optimal, 
while dimensionality 3 gave the best performance for monkey RJ (Fig. 2F). Therefore, we 
analyzed the models which used these optimal values. 

  
Inferred inputs were sparse and locked to target presentation 
 
 In principle, external input could be continuous or pulsatile, and changes in the inputs 
could occur sparsely or frequently. LFADS penalizes the input magnitude at all time points, and 
thus will tend to remove sustained features in the inputs – which are easy for the autonomous 
generator to incorporate – much like a high-pass filter. We therefore focused our analysis on 
their sparsity, which allowed us to evaluate how frequently inputs changed.  
 

We computed the Gini coefficient, a measure of sparsity (Hurley & Rickard, 2009), of 
each input as we varied the input penalty hyperparameter for model fitting. Raising the input 
penalty might have had two different effects on the resulting model. If the penalty had a 
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subtractive effect on inferred inputs, then the Gini coefficient would increase monotonically with 
input penalty as fewer peaks remained. Alternatively, if the penalty had a divisive effect on 
inferred inputs and simply rescaled the input trace, then the Gini coefficient would be 
unchanged. We found that the Gini coefficient first increased then decreased as the input 
penalty increased (Fig. 2D). The Gini coefficient peaked at values at or close to the ones that 
produced the best kinematic decoding performance (Fig. 2C,D). In other words, the best models 
of the dynamical structure of M1 activity were those for which external input was most 
concentrated at particular times, as opposed to being distributed more uniformly throughout the 
trial. 

With this optimized model, inferred inputs maintained a relatively low and stable baseline 
with sparse, large, brief excursions that tended to occur immediately following the presentation 
of a new target (Fig. 3). Averaging the magnitude of inferred inputs across target presentations 
revealed a peak at ~50 ms after target appearance for all three monkeys (Fig. 4A). The timing of 
the inferred input peak coincides with previous reports of the latency from visual movement 
cues to the start of changes in M1 activity (Dickey et al., 2013; Lamarre et al., 1983). To 
examine how reliable the peak timing was on individual trials, we computed the latency from the 
target to the first inferred input above a threshold (Fig. 4B). As the threshold was increased, the 
peaks became more sharply peaked around 50 ms following target presentation, indicating that 
the largest transients were the most consistently timed. 
 

To better evaluate the specific timing of the input transients, we examined whether the 
timing of the transients was more consistently related to the timing of target presentation or to 
the timing of movement initiation towards the target. The start of the initial movement was 
identified by examining the speed of the hand following target presentation and selecting the 
appropriate speed local minimum (see Methods). We then examined the latencies to each input 
peak as defined above to the target presentation and the initial movement (Fig. 4C). The 
distribution of latencies relative to the target had both a smaller variance and smaller width at 
half-height compared to the latencies relative to the initial movement (p < 0.001 for both, 
permutation test, see Methods). This result suggests that the post-target input transients are 
more consistently timed to stimulus appearance rather than movement onset. This in turn 
suggests that controller inputs are related to visual inputs, and therefore that the variable 
latency of responding to a new target may result from the interaction of these inputs with the 
dynamical system of M1. 

 
We then verified that inferred inputs in the post-target presentation period were larger 

than the inputs during other parts of the trial. We calculated the total input magnitude in 100 ms 
sliding windows throughout the entirety of each trial. Using the magnitude of the input in each 
window we determined whether windows near target appearances could be distinguished from 
all other windows by iteratively calculating the area under the receiver operator characteristic 
(ROC) for each window. For each monkey, the window ranging from 0 ms to 100 ms following 
the target presentation was most distinguishable from all other times, with peak areas under the 
ROC curve of 0.85, 0.76, and 0.56 for monkeys RS, MK, and RJ, respectively (Fig. 4D). This 
establishes that large input transients are overrepresented in the period 150 ms after the target 
appearance.  
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Inferred input transients relate to target direction in hand-centered encoding 
 

 Given the strong correspondence between the timing of target appearance and of the 
inferred inputs, we evaluated the extent to which the values of the inferred inputs predicted the 
location of the target. To do so we made a sort of tuning curve by binning targets according to 
the direction from hand to target, then averaging the inputs for each bin to get a trace over time 
for each direction (Fig. 5A). Despite the continuous nature of the movement this approach 
revealed highly distinct inputs for different upcoming movements. 

 
We then decoded target location to verify that inputs were meaningful, particularly 

around the time of target presentation. To do so, we compared the cross-validated decoding 
performance using either inferred inputs or M1 firing rates in different windows of time relative to 
the target presentation, with window sizes equal to 250 ms (Fig. 5B). M1 firing rates yielded a 
stable prediction of the target position throughout the full duration of the trial, consistent with 
M1’s known correlations with movement across time (Hatsopoulos et al., 2007; Wu et al., 2006). 
In contrast, using inferred inputs, decoding performance rapidly decreased when the start of the 
window of input used was >50 ms after the target presentation. This contrast suggests that 
inputs in the model only briefly encode the movement, but they persistently alter the state of the 
dynamical system, such that the encoding is sustained in the evolution of M1 activity for the 
remainder of the movement. 
 

Areas upstream of M1 in the fronto-parietal reach network have been shown to more 
strongly represent the difference vector from the hand to the target than the absolute position of 
the target relative to the torso (Bremner & Andersen, 2012; Pesaran et al., 2006). We therefore 
hypothesized that similar encoding might be present in the inferred inputs. We evaluated the 
performance of a nonlinear decoder predicting target position depending on whether the hand or 
shoulder was used as the origin for each target. Consistent with previous reports, the encoding 
of the targets by the inferred inputs was stronger relative to the hand than relative to the 
shoulder (Fig. 5C left; r2 = 0.70 vs. 0.53 for Monkey RS, 0.63 vs. 0.39 for Monkey MK, and 0.46 
vs. 0.21 for Monkey RJ; p < 0.001 for each monkey, corrected t-test, see Methods). 

 
We also trained a decoder that fit the direction and magnitude of the vector pointing from 

the point of reference (hand or shoulder) to the target. The performance and difference between 
the hand-centric and shoulder-centric models was similar for the direction decoder (Fig. 5C, 
center). The magnitude decoder exhibited weaker performance in general (Fig. 5C, right), with 
no consistent differences by hand vs. shoulder origin. This indicates that the difference in 
decoding performance between the hand- and shoulder- centric decoders is largely due to the 
more accurate representation of target direction by the inferred inputs. 
 
Corrective movements were also preceded by transient inputs 
 
 Many large inputs were time-locked to target presentation, but large inferred input 
transients were also observed outside of these time windows (Fig. 3). We hypothesized that 
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these transients might correspond to corrective submovements, which are common in the RTP 
task (Fig. 6A) and which have been suggested to coarsely share M1 activity patterns with initial 
movements (Rouse, 2018). 
 

In example trials, we found that bends in the hand trajectory were associated with 
transients in the inferred inputs (Fig. 6B). To quantify this, we identified submovements by 
appropriate local minima in the speed of the hand (see Methods). We defined corrective 
submovements as all submovements that occurred after the initial submovement that followed 
the presentation of a new target. We then asked whether the time windows around corrective 
submovement onsets were associated with transients in the inferred inputs. For all three 
monkeys, we found a peak in the inferred input magnitude at the start of corrective 
submovements, 180 ms to 300 ms before the speed minimum (RS: 180 ms; RJ: 300 ms; MK: 
210 ms) (Fig. 6C). As we found for initial movements, the transients in the 200 ms period prior 
to corrective submovements were statistically different from random time windows assessed via 
the area under the ROC curves (Fig. 6D, bottom). This corresponds to the period relative to the 
initial movement where the inputs are particularly active (Fig. 6D, top).  

 
Inferred inputs similarly encode both initial movement and corrective submovements  
 

To understand the information content of the inferred inputs for corrective 
submovements, we trained a decoder (using either support vector regression or random forest 
regression, Methods) to predict the position of the targets from the inferred inputs around 
corrective movements. This decoder explained the 23-28% of the variance in the hand-relative 
target position (Fig. 6E), and 31-41% of the target direction in held-out data (Fig. 6F). As with 
the post-target-presentation inputs, the prediction was much better for target direction relative to 
hand position than for target position relative to the shoulder (r2 = 0.31 vs. 0.05 for Monkey RS, 
0.41 vs. 0.11 for Monkey MK, and 0.36 vs. 0.13 for Monkey RJ, p < 0.001 for each monkey, 
corrected t-test), and the magnitude decoder had weaker performance and did not exhibit 
differences between the hand- and shoulder- centric direction decoders (Fig. 6G). 
  

Given that the inferred inputs to M1 exhibited transients both following initial target 
presentation and around the time of corrective submovements, and that the direction of the 
upcoming movement could be decoded in both cases, we measured the similarity of these two 
representations. As in Figure 5A, we binned the target directions and computed the average 
input for each direction (Fig. 7A). Averaging the inferred input for each direction in a window 
from 350 to 50 ms before to the start of movement, we produced tuning curves for inferred 
inputs at target presentation and at corrective submovement onset. The two representations 
were highly similar (Fig. 7B), with an overall correlation of 0.89 (95% CI [0.83, 0.93]), and for 
each monkey individually (monkey RS: 0.93, 95% CI [0.84, 0.97]; MK: 0.97, [0.93, 0.98]; RJ: 
0.82 [0.67, 0.9]). 

 
 This result was intriguing because in general the target representations in M1 are 
complex, evolving over the course of a trial (Churchland, & Shenoy, 2007; Fu et al., 1995). 
Accordingly, we found that the similarity in input encoding was not simply due to similarity in 
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firing rates. We repeated the comparison of tuning curves using the first 5 principal components 
of the M1 firing rates instead of inferred inputs (Fig. 7C) and found that the correlation in tuning 
between the initial movement period and the corrective submovements was 0.46, 95% CI [0.34, 
0.57], (Monkey RS: 0.53, [0.32, 0.69]; MK: 0.26, [0.01, 0.48]; RJ: 0.57 [0.37, 0.72]). This argues 
that the tuning of inputs is more consistent between initial and corrective movements than the 
tuning of the firing rates themselves.  
 

We also tested whether the consistency in inferred input between initial movements and 
corrections could be explained by consistent tuning throughout the entire trial. We tested the 
tuning correlation between inferred inputs in a 300 ms window centered on the peak speed of 
the initial movement and in a window from 350 to 50 ms before the start of the initial movement 
(Fig. 7D). This correlation was 0.58, compared to 0.89 for the tuning correlation between initial 
movement and corrective movement (p < 0.001, Z-test with Fisher’s Z-transformation; Monkey 
RS, 0.56 vs 0.93, p < 0.001; MK: 0.81 vs 0.97, p = 0.002; RJ: 0.44 vs 0.82, p = 0.005). 
Therefore, the window prior to corrections had a stronger tuning correlation with the initial 
movement than the window centered on the speed maximum, despite the fact that, for each 
target, the initial movement was closer in time to the speed maximum than to the corrective 
movements. This again argues that the tuning consistency observed in the inferred inputs is 
surprising and is not simply a consequence of temporal proximity. 

Discussion 
 

We used LFADS to identify dynamical structure and infer exogenous inputs in M1 
activity recorded during a continuous behavioral task with regular updates of movement goals. 
Most of the inferred input occurred immediately following target presentation and immediately 
preceding corrective movements. The post-target transients were more strongly time-locked to 
target appearance as compared to the start of movement. The details of these input transients 
coded for the direction of the target relative to the hand, and were highly similar for the initial 
movement and the corrective movements. Together these results demonstrate that motor cortex 
is well modeled as a dynamical system that is intermittently perturbed by external input following 
the appearance of a new goal or the realization that a correction is necessary to reach the 
desired goal. 

Though the inputs are inferred and not observed directly, several aspects of their 
structure support the idea that the inferred inputs may strongly resemble real inputs to M1. First, 
the inferred inputs occur when known updates to the task goals occur: target presentation and 
corrections. While target-locked responses predominate in PMd (Hatsopoulos et al., 2004), M1 
neurons are roughly evenly split between target-locked and movement-locked responses (Rao 
& Donoghue, 2014). Second, the inferred inputs resembled a hand-centered “reference frame” 
more than a shoulder-centered frame. Finally, the similarity of inputs for initial target 
presentation and corrections is surprising: firing rates are tuned somewhat differently for 
delayed and non-delayed movements (Ames et al., 2014; Crammond & Kalaska, 2000), and 
generally exhibit inconsistent tuning at different points in the trial (Churchland, & Shenoy, 2007; 
Hatsopoulos et al., 2007).  
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Previous work on corrective movements has proposed at least two distinct processes 
that produce corrections during arm movements (Elliott et al., 2010, 2017): online modifications 
to the initial impulse, and subsequent discrete position adjustments that bring the end effector to 
the target. Our findings argue that these processes may be more unified than previous evidence 
has suggested. First, the similarity of input tuning for initial and corrective movements suggests 
that the rest of the brain may not have to make a strong distinction between instructions and 
corrections. Second, the lack of inputs around the time of max speed does not support an initial 
impulse correction. These results may therefore argue for a greater compartmentalization of 
motor function than suspected, with M1 acting as a movement generator that can take 
movement context into account instead of requiring the rest of the brain to reflect current 
movement details in commands to M1 (Andrew Pruszynski et al., 2014). 

Our findings also have implications for the understanding of reaction times. It has 
previously been argued that reaction times reflect variable timing of the movement commands 
themselves (Cisek, 2007; Roitman & Shadlen, 2002), possibly due to sensory variability 
(Osborne et al., 2005), and commensurate with M1 firing rates being strongly locked to 
movement onset (Rao & Donoghue, 2014). However, we found that inferred input was most 
tightly locked to the target presentation itself, not the movement onset. This suggests that the 
variable reaction time of the monkey is likely due to an interaction of the input with the current 
state of the dynamical system, and that depending on this state the system may be faster or 
slower to initiate. However, it also is possible that this is only true in a continuous-movement 
task like RTP. 

Interestingly, inferred inputs were best described as encoding target position in hand-
centric coordinates rather than body-centric, consistent with representations in cortical areas 
upstream of M1 in the fronto-parietal reach network such as posterior parietal cortex (Bremner & 
Andersen, 2012; Buneo et al., 2002, 2008), and dorsal premotor cortex (Pesaran et al., 2006). 
Reference frames found across the parieto-frontal reach network are highly heterogeneous (Wu 
& Hatsopoulos, 2006) and this type of description leaves out important aspects of motor 
responses (Shenoy et al., 2013; Scott, 2008; Omrani et al., 2017; Fetz, 1992). Nonetheless, to 
the extent that reference frames capture encoding, our work indicates that inputs to M1 are 
closer to hand-centric and suggests that this coordinate system informs the production of motor 
commands in M1. We did not measure eye position in these experiments, so eye-centric 
reference frames could not be considered here. 

Using LFADS to infer inputs has some limitations. In trying to separate activity into a 
dynamical portion and non-dynamical inputs, LFADS fits a dynamical model capturing regular 
statistical structure in population recordings. Inputs that occur predictably on each trial cannot 
be distinguished from autonomous dynamics of the system (Perich et al., 2020), and so LFADS 
is incapable of inferring some possible kinds of external inputs to the recorded population. For 
instance, LFADS would be incapable of inferring sustained inputs that occurred throughout a 
trial. Similarly, feedback inputs that are predictably related to the current state of the system will 
generally be subsumed into the inferred dynamics (Kalidindi et al., 2020). Therefore, LFADS 
likely misses some kinds of inputs to M1. However, dynamical models such as LFADS are 
capable of inferring unpredictable inputs reflecting new external information and updated 
internal goals. For instance, it has been shown that LFADS-inferred inputs encode an 
unexpected jump in a target to one of two locations (Pandarinath et al., 2018). Here, using a 
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more continuous task without physical perturbations, we found that exogenous input is stronger 
in the period between the target presentation and the first movement, as opposed to during the 
movement itself. 

Relatedly, the hyperparameter space for LFADS is high-dimensional, making it 
impractical to perform a global optimization of fits. In fitting LFADS, we selected a set of 
hyperparameters that led to high-performance decoding of movement kinematics, far better than 
using the firing rates alone (Fig. 2). However, the only hyperparameters for which we performed 
a full search were those that related to the level of inferred input. It is possible that exploring a 
larger set of LFADS hyperparameters could help model M1 dynamics during continuous 
movement at an even higher level of precision (Keshtkaran et al., 2021). 

Future experiments could enable further understanding of the role of inputs to M1 in the 
generation of movement. For example, cueing with a non-visual input, such as a directional 
sound cue, could help determine whether the shared features of target-evoked and corrective 
movements is a commonality due to vision. Or, using a passive movement condition could serve 
to identify the effect of isolated proprioceptive inputs in the absence of efference copy. 

The current generation of dynamical systems models enable powerful inference about 
cortical population activity. Moreover, this inference permits an examination of the nature of 
inputs, including about their effects on movement variability and initiation under different 
conditions. While at present the source of these inputs is not clear, future pairing of dynamical 
systems techniques with greater biological access will enable even deeper understanding of the 
distribution of computation in the motor system. 
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Methods 

Behavioral task 
 Three adult male rhesus monkeys (Macaca mulatta) were operantly trained to control a 
cursor in a two-dimensional workspace using a two-link robotic exoskeleton (Scott, 1999). The 
animals sat in a primate chair with their dominant arm in the exoskeleton. Their shoulder joint 
was abducted 90° and supported by the manipulandum such that all movements were made 
within the horizontal plane. Direct vision of the limb was precluded by a horizontal projection 
screen above the monkey’s arm. Visual feedback was available via a visual cursor projected 
onto the screen. Cartesian coordinates of the visual cursor were determined by digitizing the 
shoulder and elbow angle along with angular velocity at 500 Hz and transforming these 
variables into a visual cursor position (in centimeters) using the forward kinematic equations for 
the exoskeleton. 
 In this configuration, the monkeys performed a random target pursuit (RTP) task. This 
task required the monkeys to move a cursor (6.7 mm in diameter for monkey RS; MK: 6.7; RJ: 
10) to a series of 7 square targets (10 mm on a side for monkey RS; MK: 13 mm; RJ: 20 mm). 
When the cursor reached the target, the target immediately disappeared and a new one 
appeared at a random location in the workspace. In Monkey RJ, it was necessary to exclude 
some trials where the monkey was disengaged in the task for part of the trial. Trials were 
excluded if the monkey spent more than 500 ms total with a cursor speed less than 1 mm/s. 
 The raw cursor position was filtered both forwards and backwards with a 3rd order low-
pass Butterworth filter with a cutoff frequency of 20 Hz. After computing the velocity via 
numerical differentiation, the same filter was applied again. Because the algorithm requires trials 
of equal length, trials were truncated to a fixed length, and trials that were shorter than this 
length were excluded. The trial length was selected for each data set so as to maximize the total 
number of time bins across all of the included trials (the time bins per trial times number of trials 
retained). 

Neural recordings 
The neural recordings were collected using a microelectrode Utah array composed of 

100 silicon electrodes (1.0 mm electrode length; 400 μm inter-electrode separation). The arrays 
were implanted in the arm area of the primary motor cortex (M1) of each monkey. During a 
recording session, signals from up to 96 electrodes were amplified (gain, 5000), bandpass 
filtered between 0.3 Hz and 7.5 kHz, and recorded digitally (14-bit) at 30 kHz per channel using 
a Cerebus acquisition system (BlackRock Microsystems, Salt Lake City, UT). Only waveforms 
(1.6 ms duration) that crossed a threshold were stored and spike-sorted into single units using 
Offline Sorter (Plexon, Inc., Dallas, TX). For each monkey, a single recording session was 
included, with 100 neurons, 49 neurons, and 51 neurons from monkeys RS, MK, and RJ, 
respectively. 
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Identification of submovements 
 Submovements were identified using the speed of the cursor over time. Candidates for 
the start of submovements were identified as the local minima in the smoothed speed profile. 
The smoothing was performed using a Savitsky-Golay filter with a window of 101 ms and 
polynomial order of 2. These candidates had to satisfy two additional criteria to be accepted as 
the start of a submovement. First, we required that the peak speed of the ensuing movement 
was at least 25 mm/s greater than the speed at the local minimum. This excluded noise and 
small movements during periods of hesitancy. Second, we required that the minimum time 
interval between candidates was 200 ms. This limited the extent to which time windows around 
submovements overlapped. For candidates within 200 ms, we applied a pairwise selection rule 
to eliminate one candidate until all candidates were a minimum of 200 ms apart. This selection 
rule was as follows. For each candidate we computed the speed increase: the next peak speed 
minus the speed at the minimum. In most cases we selected the candidate with the larger 
speed increase. However, there were rare cases in which a pair of candidates represented, 
respectively, the beginning of a submovement and a brief, shallow deceleration interrupting the 
acceleration phase of the submovement. In these cases, we aimed to define the first candidate 
as the beginning of the submovement and overrode the “larger increase” rule. These cases 
were identified if two conditions were both met. First, the dip was shallow: the difference 
between the preceding speed maximum and the second candidate was <10 mm/s. Second, the 
speed increases for the two candidates were similar, defined as neither being more than 5 times 
greater than the other.  

Once the submovements were defined, they were identified as initial movements or 
corrective submovements. The initial movements were defined as the first movement following 
the target presentation. Corrective submovements were defined as submovements occurring 
after the initial submovement but before the presentation of the next target. 

LFADS fitting and model evaluation 
The spiking data recorded during each trial were modeled using Latent Factor Analysis 

via Dynamical Systems (LFADS), described in detail in Pandarinath et al. (2018). This model 
uses a type of variational autoencoder (Kingma & Welling, 2014; Doersch, 2016) to learn a 
dynamical representation of each trial. The central structure of this network consists of two 
artificial recurrent neural networks (RNNs), an “encoder” and a “generator.” The generator is 
trained to produce autonomous dynamics that can be mapped onto the neural activity of a trial. 
The encoder learns to map the activity of a trial onto a distribution of initial states based on how 
likely they were to produce the activity on that trial. In addition, a “controller” RNN can be added 
that learns to compensate for the dynamics that cannot be learned by the autonomous 
generator. The output of the controller is a distribution of inputs to the generator that are passed 
on each time step. To obtain the inferred inputs to the neural population for each trial, LFADS 
samples from the distribution of controller outputs and averages the samples. 
 Most of the LFADS hyperparameters were adapted from those used for similar 
recordings in Pandarinath et al. (2018), with the number of factors outputted from the generator 
set to 50. The full set of hyperparameters is listed in Table 1. Because we were most interested 
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in the inputs from the controller to the generator in the LFADS model, we most thoroughly 
explored the hyperparameters directly responsible for determining the structure of the controller 
outputs (the inferred inputs). These were 1) the penalty on the inferred inputs and 2) the 
dimensionality of the inferred inputs, (|ut| in Pandarinath et al. (2018), including values of zero. 

Models were evaluated by training a linear decoder of movement kinematics from the 
LFADS factors and evaluating the decoder’s performance (see below). We evaluated a range of 
inferred input penalties, ranging from values low enough to produce overfitting to values large 
enough to yield underfitting. 

After performing this search we selected an inferred input penalty (= 2.0) that was at or 
near optimal decoder performance for all monkeys. We fixed the inferred input penalty to this 
value for the search of dimensionality of the inferred input. In the search for the dimensionality 
of the inputs, the decoder performance plateaued at 1 input and larger. We therefore selected 
the input dimensionality for each monkey using the decoding performance for the target (see 
Fig. 2). 
 

Decoding of movement kinematics 
To evaluate the LFADS models, we decoded movement kinematics from the LFADS 

factors. An ordinary least-squares linear model was used to map the factors onto the position 
and velocity of the endpoint (hand), with a 100 ms lag between the LFADS factors and the 
kinematics. To determine the decoder performance, we performed 5-fold cross-validation, 
splitting the time bins into random test sets. Performance of the model was evaluated using the 
held-out variance explained. Performance across the four kinematic variables was averaged to 
obtain a single measure of performance for each training/test set. For the controls in which 
kinematics were decoded directly from neural activity, we obtained continuous firing rates by 
smoothing the raw spike trains with a Gaussian filter with s.d. equal to 25 ms. 
 

Analysis of input timing 
Analyses were performed on the time-varying inferred inputs for each trial. We used all 

trials in the analysis of the inferred inputs, including both those that were used for training and 
validation in training the LFADS network. For analysis of inferred input timing, and decoding 
from inferred inputs below, we excluded the response to the first target on each trial in order to 
eliminate artifacts resulting from the variable behavior of the monkey before the start of the trial. 
To determine whether the timing of the input transients was more closely related to the target 
presentation or to the initial movement (Fig. 4C), we examined the timing of the maximum 
inferred input magnitude in the period between the presentation of the target and the initial 
movement. We included any target presentation in this analysis, regardless of how large the 
maximum input magnitude was. Since the timing of the transients of the individual inputs is 
more exact when the peaks reach a larger threshold (Fig. 4B), and for some directions there is 
on average only a small transient (Fig. 5A) which may not be detected, taking the timing of the 
maximum is conservative for detecting systematic timing precision. But by not setting a 
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threshold for input transients to use, we included all relevant target presentations and thus 
captured the structure of timing in the model in the most general way. 

To compute statistics for Figure 4C, we used a permutation test to evaluate which 
distribution of latencies had the larger spread. Spread was defined as the full width at half-
height (FWHH) of the peak of the distribution. First we subtracted the modal value from each set 
of latencies to center the peak of both latency distributions on 0. Then we combined the two 
sets of latencies into a single population that we split in half randomly 1000 times. For each of 
these random partitions we computed the FWHH, and took the absolute difference between the 
FWHH of the two random subgroups. These absolute differences constituted the null distribution 
for the permutation test. We compared the difference in FWHH between the actual samples of 
the distribution and the null distribution of spreads to obtain a p-value for the hypothesis that the 
distribution of latencies to the different events had the same spread. Because by definition the 
maxima we examined were before the initial movement, there was a sharp cutoff on the right 
side of the distribution of latencies to the initial movement (Fig. 4C). However, this simply means 
that the FWHH measure is possibly conservative in detecting the greater spread of the initial 
movement distribution. 
 We also considered the possibility that the inputs were better aligned to the acceleration 
phase of the movement. We performed the same analysis, but defining the initial movement 
time by the time at which the movement reaches half of its peak change in speed. Defining the 
initial movement in this way did not affect the results or significance levels. 

To determine whether windows near target appearances could be distinguished from all 
other windows, we calculated the area under the receiver operator characteristic (ROC) for each 
window. To do so, we computed the distribution of input magnitude for a 100 ms long window of 
interest at a fixed latency to the target. We then compute a “background” distribution of input 
magnitude in all other 100 ms windows outside this period. We then computed the area under 
the ROC, which is equal to the probability that the input magnitude in a randomly drawn window 
at the latency of interest is greater than a random window in the background distribution. 

Decoding from inferred inputs 
 We decoded target direction from all the samples of inferred input in 250 ms windows 
around either target presentation or corrective movement. We first split the targets into a training 
and test set, with each containing 50% of the data. We optimized the decoder for each monkey 
on the training set. As part of this optimization, we chose between two methods of decoding, 
support vector regression and random forest regression, using the sklearn implementation of 
both methods (Pedregosa et al., 2011). The optimization procedure included fitting what are 
generally the most important hyperparameters for these two methods (Probst et al., 2019), as 
well preprocessing parameters. For the support vector regression, we used a radial basis 
function and fit the L2 regularization hyperparameter from a range of 0.1 to 1.5. All other 
parameters were set to the sklearn defaults. For the random forest regressor, we fit the minimal 
samples for each leaf (from the values 1, 5, 10, 15), and the maximum number of features to 
consider at each split. The number of features (optimized) was either the full number of 
features, the square root of the number of features, or the base 2 logarithm of the number of 
features. Two preprocessing parameters were optimized: (1) the time window relative to the 
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reference event to use, and (2) the lag between the event and the hand position when 
computing the hand-centered direction to the target. The decoder hyperparameters were 
optimized using 5-fold cross validation on the training set. We then evaluated the selected 
decoder by training on the full training set and predicting target directions on the test set. For 
comparison, we also decoded from firing rates using the same procedure. Firing rates were 
computed as described above in Decoding of movement kinematics. 

To compute performance of the position decoder, we predicted the x- and y-position in 
the relevant reference frame, then computed the general coefficient of determination (r2) 
between the true and predicted values on each held-out set. To obtain a single performance 
score, we averaged the r2 for the x- and y-coordinate, weighted by the variance in each 
dimension. For the direction and magnitude decoders, we first normalized each target position 
vector to the unit circle. We then jointly predicted the x- and y- coordinate of the normalized 
vector along with the magnitude of the unnormalized vector. The performance of the direction 
decoder was defined as the average of the r2 between the predicted and actual x- and y-
coordinates. Cartesian coordinates were chosen instead of angles to eliminate wraparound 
issues for decoding. 

The best-performing hyperparameters on the hyperparameter training set were used to 
evaluate the model using the test set, and to compare hand-centric and shoulder-centric 
decoding using cross-validation. Generalization performance was evaluated using randomly 
shuffled 10-fold cross validation using the test set. This was repeated 10 times, for a total of 100 
splits of the data. Both the hand-centric model and the shoulder-centric model were fit and 
tested using each of the 100 splits to get an estimate of the generalization performance of the 
models. To test the significance of the difference between the hand-centric and shoulder-centric 
model, we applied a paired-sample t-test with corrected variance for cross-validation (Nadeau & 
Bengio, 2003; Bouckaert & Frank, 2004). 

 

Comparing coding of initial and corrective submovements 
 We binned the angle of the target direction relative to the hand into 12 equal-sized bins. 
For each bin, we computed the mean value of inferred input in a window from 350 to 50 ms 
before the initial movement. We performed the same procedure for corrective submovements, 
except using the same window relative to the corrective submovement.  

This resulted in 24 direction-means each for the initial submovements and the corrective 
submovements (12 direction bins ⨉ 2 inferred inputs). We computed the Pearson correlation 
coefficient between the direction-means for the initial submovements and the corrective 
submovements. To combine across the two inferred inputs when computing this correlation, we 
first z-scored the direction-means in each movement condition before computing the correlation 
coefficient. 

For Figure 7C, we performed this same procedure, except that instead of computing the 
means of inferred input for each direction bin, we computed the mean of the first 5 principal 
components of the smoothed firing rates (see above). This was done to denoise the tuning 
curve given that there were fewer corrective submovements than initial movements.  
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Figures 

Figure 1 

 
 
Figure 1. The Random Target Pursuit task elicits continuous movement in response to 
changing movement goals. (a) The monkey performed the random target pursuit task in the 
horizontal plane using a two-link exoskeletal robot. The monkey moves from a starting position 
(gray square) to the target (blue square). Once the target is acquired, a new target immediately 
appears (green square). (b) An example hand trajectory from one trial from Monkey RS. 
Starting position is indicated by the red dot, and the target locations as blue squares. The 
trajectory for each target is drawn with a separate color. (c) The speed profile (green) and 
population firing rate (blue) in recorded units for an example trial in Monkey MK. Multiple local 
minima were present in the speed profile for some targets, indicating submovements / 
corrections. 
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Figure 2 
 

 
Figure 2. Modeling M1 population activity with Latent Factor Analysis via Dynamical Systems 
(LFADS). (a) Schematic of LFADS approach. For each trial, the spatiotemporal pattern of 
population activity is reduced to a vector representing an initial state of a dynamical system 
(blue), and a low dimensional time series that represents exogenous input not explained by the 
autonomous dynamics of that system (red). (b) Kinematic decoding from LFADS factors for 
models with and without a controller. Decoding performance using firing rates is shown for 
reference. Error bars represent standard deviation of performance across cross-validation splits. 
(c) Kinematic decoding performance as a function of LFADS input penalty. (d) Gini coefficient of 
the inferred inputs for models with a range of input penalties. (e) Kinematic decoding 
performance as a function of the dimensionality of inferred inputs used in the LFADS model. (f) 
Target position decoding performances, using the LFADS inferred inputs, as a function of the 
dimensionality of the inputs used in the model. 
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Figure 3 

 
Figure 3. Example inferred input trace for one trial from monkeys (a) RS, (b) MK, and (c) RJ. 
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Figure 4 

 
 

Figure 4. LFADS inputs exhibit transients that are locked to the appearance of new targets and 
prior to corrective movements. (a) Average controller magnitude relative to target presentation. 
SEMs are largely hidden by the traces. (b) Distribution of the timing of peaks in the inferred 
input relative to the appearance of a new target. Distributions are shown for four different 
threshold values above which peaks are included. Distributions for monkey RS. (c) Distribution 
of the timing of maximum inferred input magnitude aligned to target presentation (orange) and 
movement (dark blue). (d) Area under the receiver operating characteristic (ROC) curve 
showing how reliably particular windows in time can be distinguished from the rest of the trial 
using controller magnitude. Values for a range of 100 ms windows (see Methods). Shaded error 
is 95% bootstrapped confidence interval (the error region at some points may be narrower than 
the line thickness). 
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Figure 4 child figure 1 
 

 
 
Figure 4 child figure 1. Same as Figure 4b for monkeys MK and RJ. 
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Figure 5 

 
 

Figure 5. LFADS controller values predict the location of the next target. (a) Average of the 
inferred input for different directions of the target relative to the hand. Shading represents ± 
SEM. Monkey RS. (b) Cross-validated decoding performance of target position prediction using 
different time windows. X-axis values are centers of 250 ms windows used to predict target 
direction. (c) Decoding performance on held-out data of target position (left), target direction 
(center) and target distance (right) relative to both the hand and shoulder. Error bars represent 
standard deviation of performance across cross-validation splits. Shld, shoulder. 
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Figure 6 
 
Figure 6. LFADS inferred inputs also 
predict corrective movements. (a) Speed 
of the hand across an example trial for 
monkey RJ. Target presentation times, 
gray lines; initial movements (purple dots) 
and corrections (green dots) identified 
from local speed minima. (b) Movement 
trajectory and inferred input value 1 for 
the same trial as in (a). Black squares, 
target location or initial position of hand at 
start of trial. Arrows, sequence that 
targets were shown. Dots, position of 
hand at one LFADS sample (100 Hz). 
The color of the pale dot trail represents 
value of inferred input 1 at that time point. 
Initial movements and corrections shown 
as in (a). (c) Average controller 
magnitude relative to corrective 
submovement onset. Shaded areas are 
SEMs. (d) Area under ROC curve across 
different windows as in Figure 4d, but 
relative to movement onset for initial and 
corrective movements rather than target 
appearance. Shaded error is 95% 
bootstrapped confidence interval (the 
error region at some points may be 
narrower than the line thickness). (e) 
Cross-validated decoding of target 
position, (f) direction, and (g) magnitude 
for corrective movements. 
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Figure 7 
 

Figure 7. Comparison of controller 
representation of initial movements and 
corrective movements. (a) Average of 
inferred inputs for monkey RS for different 
directions for initial movements (left) and 
corrections (right). Input 1 shown on top, 
input 2 on bottom. (b) Correlation between 
mean controller value in window from 350 
to 50 ms before the movement for initial 
movements vs. corrective movements. 
Each point represents the mean for one 
direction of movement for one input, z-
scored using the mean and s.d. for that 
input. (c) Same as (b) but using 5 principal 
components of firing rates rather than 
controller values. (d) The correlation of 
direction-averaged inferred input around 
the initial movement to direction-averaged 
input around the maximum speed. 
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Table 1 
 
Parameter Name Value 

_clip_value 80 

batch_size 32 

cell_clip_value 5 

cell_weight_scale 1 

ci_enc_dim 128 

co_mean_corr_scale 0 

co_prior_var_scale 0.1 

con_dim 128 

controller_input_lag 1 

do_causal_controller FALSE 

do_feed_factors_to_controller TRUE 

do_reset_learning_rate FALSE 

do_train_encoder_only FALSE 

do_train_io_only FALSE 

do_train_prior_ar_atau TRUE 

do_train_prior_ar_nvar TRUE 

do_train_readin TRUE 

ext_input_dim 0 

factors_dim 50 

feedback_factors_or_rates factors 

gen_cell_input_weight_scale 1 
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gen_cell_rec_weight_scale 1 

gen_dim 100 

ic_dim 200 

ic_enc_dim 64 

Parameter Name (cont.) Value 

ic_post_var_min 0 

ic_prior_var_max 0.1 

ic_prior_var_min 0.1 

ic_prior_var_scale 0.1 

inject_ext_input_to_gen FALSE 

keep_prob 0.98 

kl_ic_weight 1 

kl_increase_steps 900 

kl_start_step 0 

l2_con_scale 500 

l2_gen_scale 500 

l2_increase_steps 900 

l2_start_step 0 

learning_rate_decay_factor 0.98 

learning_rate_init 0.01 

learning_rate_n_to_compare 6 

learning_rate_stop 0.01 

max_ckpt_to_keep 5 

max_ckpt_to_keep_lve 5 
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max_grad_norm 200 

ndatasets 1 

output_dist poisson 

prior_ar_atau 10 

prior_ar_nvar 0.1 

temporal_spike_jitter_width 0 

 
Table 1. Hyperparameter values for fitting LFADS. Parameter names are as in the code 
package. 
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