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ABSTRACT 

Copy number variations (CNVs) are genomic events where the number of copies of a 

particular gene varies from cell to cell. Cancer cells are associated with somatic CNV changes 

resulting in gene amplifications and gene deletions. However, short of single-cell whole-genome 

sequencing, it is difficult to detect and quantify CNV events in single cells. In contrast, the rapid 

development of single-cell RNA sequencing (scRNA-seq) technologies has enabled easy 

acquisition of single-cell gene expression data. In this work, we employ three methods to infer 

CNV events from scRNA-seq data and provide a statistical comparison of the methods’ results. 

In addition, we combine the analysis of scRNA-seq and inferred CNV data to visualize and 

determine subpopulations and heterogeneity in tumor cell populations.  

 

INTRODUCTION  

 Single-cell RNA-seq (scRNA-seq) is a powerful molecular profiling tool used to measure 

gene expression in individual cells [1]. The development of high-throughput sequencing 

technologies has made it possible to quantify gene expression in thousands of single cells for less 

than $1 USD per cell [2]. However, in addition to understanding the transcriptomic landscape, 

researchers are also interested in profiling the genomic landscape of tumors as well. Among 

genomic variants, copy number variants (CNVs) are an important genetic driver of cancer [3]. 

CNVs are genomic events in which the number of copies of a particular gene varies from 

individual to individual, or even from cell to cell. 

Although there are tools for identifying CNVs using bulk whole-genome sequencing data 

[4], it has been more challenging to determine CNVs in single cells. Single-cell DNA sequencing 

has shown promise, but remains more challenging and is less ubiquitous than scRNA-seq. In 

addition, it remains technically challenging to sequence both the genome and the transcriptome 

from the same single cell [5]. With these challenges in mind, there has been interest in inferring 

CNVs from RNA-seq alone. However, this approach faces difficulties due to non-uniform 

coverage and dynamic variations in gene expression. Nevertheless, in recent years there have 

been several methods attempting this task.  

In this work, we compare three methods that broadly represent the different approaches to 

inferring single-cell CNV profiles directly from scRNA-seq data: InferCNV [6], CaSpER [7], 

and CopyKAT [8]. InferCNV uses smoothed averages over gene windows; CaSpER uses a 
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multi-scale signal processing framework; and CopyKAT uses a Bayesian segmentation 

approach. We compare these methods on a publicly available glioblastoma scRNA-seq dataset 

and measure their performance under varying conditions of the input gene expression data and 

algorithms’ parameters. Lastly, we combine the analysis of scRNA-seq data and the CNV 

profiles inferred from the scRNA-seq data to determine subpopulations and visualize intratumor 

heterogeneity in glioblastoma.    

 

MATERIALS AND METHODS 

Dataset 

 We used a publicly available glioblastoma scRNA-seq dataset (GEO accession 

GSE57872 [9]) of 5496 genes measured in 430 glioblastoma cells isolated from 5 patients 

(MGH26, MGH28, MGH29, MGH30, and MGH31) sequenced using the SMART-seq protocol. 

In addition, 1026 normal brain tissue bulk RNA-seq profiles from the Genotype-Tissue 

Expression (GTEx) project were included as control non-malignant samples intended to mimic 

normal single cells [10]. The normal tissue profiles were from the cerebellum, caudate, cortex, 

basal ganglia, cerebellar hemisphere, frontal cortex, and the hippocampus. For the InferCNV and 

CopyKAT algorithms, the glioblastoma and GTEx data were both accessed in the file 

“glio.wGtexBrain.counts.matrix.gz” at 

https://github.com/broadinstitute/inferCNV_examples/tree/master/glioblastoma. For the CaSpER 

algorithm, the normalized glioblastoma expression data and B-allele frequencies were accessed 

in the file “scell_gbm.rda” at https://github.com/akdess/CaSpER/tree/master/data. 

 

Workflows 

 InferCNV uses a corrected moving average of gene expression data to determine CNV 

profiles. Genes are sorted by absolute genomic position. That is, they are first ordered by 

chromosome, and then by genomic start position within the chromosome. The algorithm’s 

authors reason that averaging out the expression of genomically adjacent genes removes gene-

specific expression variability and yields profiles that reflect chromosomal copy number 

variations. To further refine the CNV profile of tumor cells, InferCNV constructs the CNV 

profile of a known normal sample, and then for each gene and each cell, the normal sample is 

subtracted from the tumor sample to determine the final tumor CNV profile.  
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 CaSpER uses a multiscale signal processing framework that combines two streams of 

information: gene expression and B-allele frequencies (BAF), both generated from aligned RNA-

seq reads (BAM file). CaSpER first smooths both the BAF and expression signals using 

recursive iterative median filtering. At each scale, a hidden Markov model is applied to the 

smoothed expression signal and outputs five CNV states: (1) homozygous deletion, (2) 

heterozygous deletion, (3) neutral, (4) one-copy amplification, and (5) multi-copy amplification. 

For labels in state 2 and 4, CaSpER further incorporates information from the BAF signal. If 

there is an accompanying shift in the BAF signal at the segment, states 2 and 4 are corrected to 

states 1 and 5, respectively. BAF shifts are calculated by thresholding the smoothed signal. 

These thresholds are in turn calculated using a Gaussian mixture model fit on the pooled samples 

from all samples across a segment. As a result of these thresholds and corrections, CaSpER 

outputs discrete CNV classes: amplification, neutral, or deletion.  

 CopyKAT combines a Bayesian approach with hierarchical clustering. Like InferCNV 

and CaSpER, CopyKAT sorts genes by absolute genomic position, and then smooths and 

stabilizes the expression levels. CopyKAT next attempts to predict which cells among the input 

cells are diploid using hierarchical clustering. CopyKAT pools cells into several small 

hierarchical clusters and uses a Gaussian mixture model to calculate the variance of each cluster. 

The cluster with the least variance is assumed to be diploid and is used as a predicted normal cell 

reference CNV profile. Using this normal reference, relative gene expression profiles are 

calculated for the predicted tumor cells. The next step is to accurately determine chromosome 

breakpoints where CNV profiles change. Since scRNA-seq coverage is not uniform, CopyKAT 

employs Bayesian methods to best estimate the breakpoints. Specifically, CopyKAT uses a 

Poisson-gamma model and Markov Chain Monte Carlo to generate posterior means per genomic 

window. Then, Kolmogorov-Smirnov tests are used to determine whether to combine or keep 

separate the different windows. The final copy number values for each window are then 

calculated as the posterior averages for all genes spanning across chromosome breakpoints in 

each cell.   

 

Inputs, Outputs, and Technical Considerations 

 All three methods operate on the assumption that gene expression is correlated with copy 

number variation. That is, genes that are highly expressed are likely associated with copy number 
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amplifications and genes that are lowly expressed are likely associated with copy number 

deletions. The key task is then to remove the confounding effect of natural fluctuations in gene 

expression levels, so that the excess or relative gene expression can be directly attributed to copy 

number variation.  

 Following this line of reasoning, all methods require a gene expression matrix (UMI 

counts) as input. InferCNV does not require labeled normal cell samples to work, but if none are 

provided it will simply use the average of all cells as the reference copy number profile. 

CopyKAT can work with either labeled or unlabeled normal cells as reference. If normal cells 

are assumed present but not explicitly labeled, CopyKAT will attempt to predict which cells are 

normal using hierarchical clustering. CopyKAT assumes that tumor cells are highly aneuploid 

while normal cells are diploid. The CopyKAT authors acknowledge this presents a limitation that 

can lead to potential misclassifications if the data only has a few normal cells, or when the tumor 

cells are nearly diploid. CopyKAT also requires expression data from at least five genes on every 

chromosome, whereas InferCNV allows for incomplete expression data. In addition to a gene 

expression matrix, CaSpER requires aligned RNA-seq BAM files to compute the BAF signal 

(Table 1).  

CaSpER outputs discrete CNV classes (deletion, neutral, or amplification) while 

InferCNV and CopyKAT output continuous CNV values. CopyKAT’s CNV values are 

normalized between -1 and 1 for deletion and amplification, respectively, with no CNV change 

from the reference normal cells given as 0. Similarly, InferCNV’s outputs are normalized 

between 0 to 2 with no CNV change from the reference normal cells given as 1.   

 

RESULTS 

Experiments 

 We compared the output of the three algorithms when varying the number of normal 

samples used as reference and whether those normal samples were labeled as normal or not. We 

ran InferCNV and CopyKAT using scRNA-seq data from all 430 glioblastoma tumor cells 

combined with 0, 5, 50, 500, or all 1,026 normal brain bulk RNA-seq samples. With CopyKAT, 

we ran each of those conditions twice: once when explicitly labeling which samples were normal 

and once allowing CopyKAT to predict which of the samples were normal. Since CaSpER does 

not require any normal samples, CaSpER was only run once using data from all tumor cells.  
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Comparison of Technical Performance 

 To compare the CNV profiles of each method as a function of varying normal reference 

data, we sorted the estimated copy numbers by absolute genomic position and averaged the data 

over all tumor cells and, separately, all labeled or predicted normal samples. For CopyKAT and 

InferCNV, we averaged the values as reported directly from the method. For CaSpER, we 

encoded deletion as -1, neutral as 0, and amplification as 1. Each method applied to a different 

input thus produced a vector of CNV values, for a total of 16 different vectors: five from 

InferCNV, five from CopyKAT without labeling the normal samples as normal (“unlabeled”), 

five from CopyKAT with labeling the normal samples as normal (“labeled”), and one from 

CaSpER. Each element in the vector of CNV values represents the average CNV profile of each 

gene over all the tumor cells. This averaging procedure allows us to compare CaSpER, which 

has categorical outputs, to InferCNV and CopyKAT, which have continuous CNV profiles. From 

these averages, we computed the pairwise Spearman correlation over all pairs of vectors (Figure 

1). We chose to compute the Spearman correlation, which only measures monotonicity between 

different variables, due to the arbitrariness of the CNV scales computed by each method. As 

expected, the row and one of the columns of low correlation corresponds to InferCNV and 

CopyKAT without any normal references. The remaining columns of low correlation correspond 

to unlabeled CopyKAT when provided with many normal samples. Since these columns do not 

appear in the labeled CopyKAT results, we conclude that these effects are caused by a failure in 

automatic cell type classification. 

In addition to showing the correlation plot, which shows the relations between all the 

methods and all the inputs, we highlight the performance of the three methods when using all 

tumor cells and all normal samples. The CNV profiles of only the tumor cells are shown across 

four approaches (Figure 2). Looking across the genes (columns), we can clearly see that distinct 

bands of CNV amplifications and deletions correspond to different patients (colorbars along 

rows), demonstrating inter-tumor heterogeneity. In contrast, there is little variation within a 

patient sample. Furthermore, CNV breakpoints are clearly present at the chromosome 

boundaries, as expected. Labeled CopyKAT, InferCNV, and CaSpER all produce similar CNV 

profiles. Interestingly, unlabeled CopyKAT appears to detect patient-specific CNV events but is 
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unable to detect the population-wide amplification on chromosome 7 and deletion on 

chromosome 10. 

 

Comparing gene expression and inferred CNV profiles 

 Tumor heterogeneity presents a major challenge in cancer diagnosis and treatment. 

Different tumor subtypes will lead to variable and distinct treatment responses and outcomes. In 

addition to inter-tumor variability, different cells within the same tumor might also harbor 

different mutations and exhibit different responses. Therefore, it is important to profile and 

resolve different subpopulations within a particular cancer, and then again within a particular 

patient. Clustering algorithms are commonly applied scRNA-seq data to detect subpopulations. 

From these clusters, one can apply differential gene expression analysis to determine biomarkers 

and cell types.  

To this end, we wanted to compare cell clusters in the original gene expression data to 

those in the inferred CNV profiles. We applied principal component analysis and then generated 

uniform manifold approximation and projection (UMAP) plots for both the original gene 

expression data (Figure 3) and the corresponding inferred CNV profiles (Figure 4). Although we 

can clearly differentiate between bulk RNA-seq from normal brain samples and scRNA-seq from 

glioblastoma cells (Fig. 3A), the separation between different patients’ glioblastoma cells is less 

pronounced (Fig. 3B). When analyzing the inferred CNV profiles, we only considered the 

glioblastoma cells and combined results from the four algorithm conditions shown in Figure 3. In 

the UMAP projections of these inferred CNV profiles, the cells cluster first by patient (Fig. 4B) 

and then, within each patient, to some extent by algorithm (Fig. 4A). Thus, the inferred CNV 

values show more variability between patients than between methods. As expected by the 

heatmap visualizations, InferCNV, CaSpER, and annotated CopyKAT cluster very tightly. 

Surprisingly, un-annotated CopyKAT clusters closely as well. Lastly, the cells’ inferred CNV 

profiles (Fig. 4B) produce more distinct patient-specific clusters than the cells’ scRNA-seq data 

(Fig. 3B). 

 

DISCUSSION AND CONCLUSION 

In this work we compared the results from three methods for inferring CNV profiles from 

gene expression data. We found that given sufficient reference information (e.g., BAM files, 
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normal samples with annotations to use as reference profiles) all three methods were quite 

consistent in their predicted CNV profiles. However, in the absence of one or multiple pieces of 

reference information, performance varied wildly. Each method had their own limitations and 

strengths: InferCNV was a robust method, provided that at least some (as few as 5) normal 

samples were provided. CopyKAT was unable to differentiate between normal samples and 

tumor cells except in narrow circumstances with intermediate numbers of unlabeled normal 

samples relative to tumor cells, but performed as reliably as InferCNV when provided with 

normal sample annotations. By exploiting aligned RNA-seq information, CaSpER avoided the 

need for explicit normal references, but it only provided categorical CNV calls and not 

continuous CNV values like the other two methods.  

Nevertheless, despite these caveats, the inferred CNV profiles proved to be a valuable 

tool for visualizing and determining tumor subpopulations and heterogeneity. Patient-specific 

distinctions that were obscured when solely analyzing gene expression data were more readily 

apparent when visualizing inferred CNVs. Interestingly, we discovered that inter-patient tumor 

CNV variability exceeded inter-method CNV variability, providing reassurance that despite the 

technical challenges of CNV estimation, the current methods provide effective approaches to 

uncovering inter-tumor heterogeneity.  

Overall, we believe this work provides the most thorough comparison to date of methods 

for CNV inference from gene expression data and demonstrates the unique potential of CNVs for 

discovery in cancer biology.  
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FIGURES 

  

 

 

 
Figure 1. Inter-Methods Correlation. Spearman correlation matrix for averaged CNV profiles 
generated as described in the Experiments section. On the x-axis, from left to right, the columns 
indicate the results from InferCNV (I), CaSpER (C), CopyKAT provided with labeled normal 
samples (w_K), and CopyKAT provided with unlabeled normal samples (wo_K) for varying 
numbers of normal sample references (the number of normal samples used is given after the 
underscore).  
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Figure 2. Copy Number profiles across methods. Copy number profiles generated by 
InferCNV and CopyKAT provided with 1026 normal samples, and CaSpER with 0 normal 
samples. CopyKAT is shown with and without cell labels. Rows correspond to individual cells 
across the five patient tumor samples (colorbars on the left) and columns correspond to genes 
ordered by chromosomal location (black and grey bars at the top indicate different 
chromosomes). 
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Figure 3. Gene Expression Clustering. UMAP projections of scRNA-seq data. Gene 
expression data is clustered using (A) tumor and normal cells, (B) only tumor cells. Gene 
expression data distinctly clusters tumor cells apart from normal brain tissue; however, within 
the tumor cells, the cells from different patients are not clearly separated. 
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Figure 4. Copy Number Clustering. UMAP projections of inferred CNV data by method and 
by patient. The data shown in these figures correspond to the heatmaps shown in Figure 3 and 
were produced by the same experimental procedure. (A) The cells are colored by method. (B) 
The cells are colored by patient ID.   
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Table 1. Details of three methods compared for inferring copy number variation from 
single-cell RNA-seq data. 

Method Model Input Output Tool 

CaSpER (7) 
 

Multiscale 
signaling 
processing 
framework 

- UMI count 
- Aligned RNA 
seq 
 

- Cell by gene CNV matrix, 
categorical values: 
amplification, deletion, 
neutral 

- R package 
https://github.com/a
kdess/CaSpER 

CopyKAT (8)  Bayesian 
segmentation 
approach 

- UMI count 
- Optimal cell 
annotation  

- Cell by gene CNV matrix, 
continuous values 
- Tumor/normal cell 
classification 

- R package 
https://github.com/n
avinlabcode/copykat 

InferCNV (6)  Smoothed 
averages of 
gene 
windows 

- UMI count 
- Cell 
annotation  

- Cell by gene CNV matrix, 
continuous values 

- R package 
https://github.com/br
oadinstitute/inferCN
V/wiki 

 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.463991doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.463991
http://creativecommons.org/licenses/by/4.0/

